
## Jan C Axmacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7854316/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF               | CITATIONS   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 1  | Taxon- and functional group-specific responses of ground beetles and spiders to landscape complexity<br>and management intensity in apple orchards of the North China Plain. Agriculture, Ecosystems and<br>Environment, 2022, 323, 107700. | 5.3              | 8           |
| 2  | Does China's increasing coupling of â€~urban population' and â€~urban area' growth indicators reflect a growing social and economic sustainability?. Journal of Environmental Management, 2022, 301, 113932.                                | 7.8              | 40          |
| 3  | Geographical divergence of species richness and local homogenization of plant assemblages due to climate change in grasslands. Biodiversity and Conservation, 2022, 31, 797-810.                                                            | 2.6              | 3           |
| 4  | Effects of farmland consolidation in southern China on wild bee species composition, nesting location and body size variations. Agricultural and Forest Entomology, 2022, 24, 371-379.                                                      | 1.3              | 5           |
| 5  | Buddhist monasteries facilitated landscape conservation on the Qinghai-Tibetan Plateau. Landscape<br>Ecology, 2022, 37, 1559-1572.                                                                                                          | 4.2              | 5           |
| 6  | Once a pond in time: employing palaeoecology to inform farmland pond restoration. Restoration Ecology, 2021, 29, e13301.                                                                                                                    | 2.9              | 7           |
| 7  | A novel â€ <sup>~</sup> triple drawdown' method highlights deficiencies in invasive alien crayfish survey and control techniques. Journal of Applied Ecology, 2021, 58, 316-326.                                                            | 4.0              | 19          |
| 8  | Openâ€canopy ponds benefit diurnal pollinator communities in an agricultural landscape: implications<br>for farmland pond management. Insect Conservation and Diversity, 2021, 14, 307-324.                                                 | 3.0              | 6           |
| 9  | Training future generations to deliver evidenceâ€based conservation and ecosystem management.<br>Ecological Solutions and Evidence, 2021, 2, e12032.                                                                                        | 2.0              | 23          |
| 10 | Moths are strongly attracted to ultraviolet and blue radiation. Insect Conservation and Diversity, 2021, 14, 188-198.                                                                                                                       | 3.0              | 25          |
| 11 | The â€ <sup>-</sup> Pritchard Trap': A novel quantitative survey method for crayfish. Ecological Solutions and Evidence, 2021, 2, e12070.                                                                                                   | 2.0              | 3           |
| 12 | Estimating the number of species shared by incompletely sampled communities. Ecography, 2021, 44, 1098-1108.                                                                                                                                | 4.5              | 3           |
| 13 | Perennial crops can complement semi-natural habitats in enhancing ground beetle (Coleoptera:) Tj ETQq1 1 0.78                                                                                                                               | 4314 rgBT<br>6.3 | - /Qverlock |
| 14 | Improving the pollinator pantry: Restoration and management of open farmland ponds enhances the complexity of plant-pollinator networks. Agriculture, Ecosystems and Environment, 2021, 320, 107611.                                        | 5.3              | 6           |
| 15 | Assessing methods to improve benthic fish sampling in a stony headwater stream. Ecological Solutions and Evidence, 2021, 2, e12111.                                                                                                         | 2.0              | 1           |
| 16 | Diverse Locations and a Long History: Historical Context for Urban Leopards (Panthera pardus) in the<br>Early Anthropocene From Seoul, Korea. Frontiers in Conservation Science, 2021, 2, .                                                 | 1.9              | 1           |
| 17 | Temporal-dynamics of ground beetles in <i>Larix gmelinii</i> forest in Greater Khingan Mountains,<br>China. Acta Ecologica Sinica, 2021, 41, .                                                                                              | 0.1              | 0           |
| 18 | Sustainable wildlife extraction and the impacts of socio-economic change among the<br>Kukama-Kukamilla people of the Pacaya-Samiria National Reserve, Peru. Oryx, 2020, 54, 260-269.                                                        | 1.0              | 11          |

JAN C AXMACHER

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Chordâ€Normalized Expected Species Shared (CNESS)â€distance represents a superior measure of species turnover patterns. Methods in Ecology and Evolution, 2020, 11, 273-280.                                                                                  | 5.2 | 9         |
| 20 | Predictability of species diversity by family diversity across global terrestrial animal taxa. Clobal<br>Ecology and Biogeography, 2020, 29, 629-644.                                                                                                             | 5.8 | 19        |
| 21 | Ponds as insect chimneys: Restoring overgrown farmland ponds benefits birds through elevated productivity of emerging aquatic insects. Biological Conservation, 2020, 241, 108253.                                                                                | 4.1 | 33        |
| 22 | Nocturnal pollinators strongly contribute to pollen transport of wild flowers in an agricultural landscape. Biology Letters, 2020, 16, 20190877.                                                                                                                  | 2.3 | 49        |
| 23 | The taxon―and functional traitâ€dependent effects of field margin and landscape composition on predatory arthropods in wheat fields of the North China Plain. Insect Conservation and Diversity, 2020, 13, 328-339.                                               | 3.0 | 7         |
| 24 | China's national nature reserve network shows great imbalances in conserving the country's mega-diverse vegetation. Science of the Total Environment, 2020, 717, 137159.                                                                                          | 8.0 | 19        |
| 25 | Diversity and seasonal changes in carabid assemblages of a mature, secondary and plantation forest mosaic in the Zhangguangcai Mountains in northeastern China. Insect Conservation and Diversity, 2020, 13, 340-350.                                             | 3.0 | 3         |
| 26 | Sustainability Dynamics of Traditional Villages: A Case Study in Qiannan Prefecture, Guizhou, China.<br>Sustainability, 2020, 12, 314.                                                                                                                            | 3.2 | 12        |
| 27 | Largeâ€scale αâ€diversity patterns in plants and ground beetles (Coleoptera: Carabidae) indicate a high<br>biodiversity conservation value of China's restored temperate forest landscapes. Diversity and<br>Distributions, 2019, 25, 1613-1624.                  | 4.1 | 15        |
| 28 | Contrasting effects of natural shrubland and plantation forests on bee assemblages at neighboring apple orchards in Beijing, China. Biological Conservation, 2019, 237, 456-462.                                                                                  | 4.1 | 28        |
| 29 | Productive Oilseed Rape Strips Supplement Seminatural Field-Margins in Promoting Ground-Dwelling<br>Predatory Invertebrates in Agricultural Landscapes. Journal of Insect Science, 2019, 19, .                                                                    | 1.5 | 7         |
| 30 | Seasonal benefits of farmland pond management for birds. Bird Study, 2019, 66, 342-352.                                                                                                                                                                           | 1.0 | 9         |
| 31 | Pond management enhances the local abundance and species richness of farmland bird communities.<br>Agriculture, Ecosystems and Environment, 2019, 273, 130-140.                                                                                                   | 5.3 | 33        |
| 32 | Large woody debris "rewilding―rapidly restores biodiversity in riverine food webs. Journal of Applied<br>Ecology, 2018, 55, 895-904.                                                                                                                              | 4.0 | 54        |
| 33 | Consequences of pond management for chironomid assemblages and diversity in English farmland ponds. Journal of Limnology, 2018, , .                                                                                                                               | 1.1 | 1         |
| 34 | Changes in Assemblages and Diversity Patterns of Carabidae (Coleoptera) from 1997 to 2014 in a<br>Desalinized, Intensively Cultivated Agricultural Landscape in Northern China. The Coleopterists<br>Bulletin, 2018, 72, 597.                                     | 0.2 | 2         |
| 35 | Different response patterns of epigaeic spiders and carabid beetles to varying environmental<br>conditions in fields and semi-natural habitats of an intensively cultivated agricultural landscape.<br>Agriculture, Ecosystems and Environment, 2018, 264, 54-62. | 5.3 | 35        |
| 36 | Effects of Plant Diversity, Vegetation Composition, and Habitat Type on Different Functional Trait<br>Groups of Wild Bees in Rural Beijing. Journal of Insect Science, 2018, 18, .                                                                                | 1.5 | 12        |

| #  | Article                                                                                                                                                                                                                            | IF                  | CITATIONS                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|
| 37 | Two new species of Feroperis Lafer (Carabidae, Pterostichus) from China, with a key to all known<br>Chinese species in this subgenus. ZooKeys, 2018, 799, 95-114.                                                                  | 1.1                 | 3                        |
| 38 | New opportunities for biodiversity conservation in rural China?. , 2018, , .                                                                                                                                                       |                     | 0                        |
| 39 | Different radial growth responses to climate warming by two dominant tree species at their upper<br>altitudinal limit on Changbai Mountain. Journal of Forestry Research, 2017, 28, 795-804.                                       | 3.6                 | 21                       |
| 40 | Buried alive: Aquatic plants survive in â€~ghost ponds' under agricultural fields. Biological<br>Conservation, 2017, 212, 105-110.                                                                                                 | 4.1                 | 37                       |
| 41 | Elevational species richness gradients in a hyperdiverse insect taxon: a global metaâ€study on geometrid<br>moths. Global Ecology and Biogeography, 2017, 26, 412-424.                                                             | 5.8                 | 83                       |
| 42 | The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq(                                                                                                                        | 0 0 0 rgBT /<br>1.9 | Overlock 10 <sup>-</sup> |
| 43 | Simulation of the hydrological impacts of climate change on a restored floodplain. Hydrological<br>Sciences Journal, 2017, 62, 2482-2510.                                                                                          | 2.6                 | 20                       |
| 44 | A second horizon scan of biogeography: Golden Ages, Midas touches, and the Red Queen. Frontiers of<br>Biogeography, 2016, 8, .                                                                                                     | 1.8                 | 3                        |
| 45 | Geometrid moth assemblages reflect high conservation value of naturally regenerated secondary forests in temperate China. Forest Ecology and Management, 2016, 374, 111-118.                                                       | 3.2                 | 11                       |
| 46 | Environmental factors acting at multiple scales determine assemblages of insects and plants in<br>agricultural mountain landscapes of northern China. Agriculture, Ecosystems and Environment, 2016,<br>224, 86-94.                | 5.3                 | 10                       |
| 47 | A new role for pond management in farmland bird conservation. Agriculture, Ecosystems and Environment, 2016, 233, 179-191.                                                                                                         | 5.3                 | 35                       |
| 48 | Coupled Hydrological/Hydraulic Modelling of River Restoration Impacts and Floodplain<br>Hydrodynamics. River Research and Applications, 2016, 32, 1927-1948.                                                                       | 1.7                 | 33                       |
| 49 | Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles. Scientific Reports, 2016, 6, 23511.                                          | 3.3                 | 29                       |
| 50 | High phylogenetic diversity is preserved in species-poor high-elevation temperate moth assemblages.<br>Scientific Reports, 2016, 6, 23045.                                                                                         | 3.3                 | 8                        |
| 51 | China draws lines to green future. Nature, 2016, 531, 305-305.                                                                                                                                                                     | 27.8                | 17                       |
| 52 | Streamlining China's protected areas. Science, 2016, 351, 1160-1160.                                                                                                                                                               | 12.6                | 43                       |
| 53 | Resilience of insect assemblages to climate change in mature temperate mountain forests of NE China.<br>Journal of Insect Conservation, 2015, 19, 1163-1172.                                                                       | 1.4                 | 5                        |
| 54 | Differential radial growth response of three coexisting dominant tree species to local and largeâ€scale<br>climate variability in a subtropical evergreen broadâ€eaved forest of China. Ecological Research, 2015,<br>30, 745-754. | 1.5                 | 16                       |

JAN C AXMACHER

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern <scp>C</scp> hina. Ecology and Evolution, 2015, 5, 531-542.       | 1.9 | 24        |
| 56 | Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China. Scientific Reports, 2015, 5, 9115.                | 3.3 | 18        |
| 57 | Effects of plant diversity, habitat and agricultural landscape structure on the functional diversity of carabid assemblages in the North China Plain. Insect Conservation and Diversity, 2015, 8, 163-176. | 3.0 | 44        |
| 58 | Ground beetle assemblages in Beijing's new mountain forests. Forest Ecology and Management, 2014,<br>334, 369-376.                                                                                         | 3.2 | 22        |
| 59 | Altitudinal diversity patterns of ground beetles (Coleoptera: Carabidae) in the forests of Changbai<br>Mountain, Northeast China. Insect Conservation and Diversity, 2014, 7, 161-171.                     | 3.0 | 32        |
| 60 | River–floodplain hydrology of an embanked lowland Chalk river and initial response to embankment<br>removal. Hydrological Sciences Journal, 2013, 58, 627-650.                                             | 2.6 | 17        |
| 61 | Relationships between Plant Diversity and the Abundance and α-Diversity of Predatory Ground Beetles<br>(Coleoptera: Carabidae) in a Mature Asian Temperate Forest Ecosystem. PLoS ONE, 2013, 8, e82792.    | 2.5 | 35        |
| 62 | Plant Invasions in China $\hat{a} \in$ Challenges and Chances. PLoS ONE, 2013, 8, e64173.                                                                                                                  | 2.5 | 30        |
| 63 | A Comparison of Terrestrial Arthropod Sampling Methods. Journal of Resources and Ecology, 2012, 3, 174-182.                                                                                                | 0.4 | 67        |
| 64 | The role of pond management for biodiversity conservation in an agricultural landscape. Aquatic<br>Conservation: Marine and Freshwater Ecosystems, 2012, 22, 626-638.                                      | 2.0 | 72        |
| 65 | Ground Beetle (Coleoptera: Carabidae) Assemblages of Restored Semiâ€natural Habitats and Intensively<br>Cultivated Fields in Northern China. Restoration Ecology, 2012, 20, 234-239.                       | 2.9 | 21        |
| 66 | Forest vegetation responses to climate and environmental change: A case study from Changbai<br>Mountain, NE China. Forest Ecology and Management, 2011, 262, 2052-2060.                                    | 3.2 | 49        |
| 67 | Global warming, elevational ranges and the vulnerability of tropical biota. Biological Conservation, 2011, 144, 548-557.                                                                                   | 4.1 | 185       |
| 68 | Spatial α-diversity patterns of diverse insect taxa in Northern China: Lessons for biodiversity conservation. Biological Conservation, 2011, 144, 2362-2368.                                               | 4.1 | 28        |
| 69 | Effects of forest disturbance and regeneration on net precipitation and soil water dynamics in tropical montane rain forest on Mount Kilimanjaro, Tanzania. , 2011, , 491-501.                             |     | 1         |
| 70 | Germination and emergence of <i>Ambrosia artemisiifolia</i> L. under changing environmental conditions in China. Plant Species Biology, 2011, 26, 125-133.                                                 | 1.0 | 21        |
| 71 | Net precipitation and soil water dynamics in clearings, old secondary and oldâ€growth forests in the montane rain forest belt of Mount Kilimanjaro, Tanzania. Hydrological Processes, 2011, 25, 418-428.   | 2.6 | 21        |
| 72 | Securing a Future for China's Wild Plant Resources. BioScience, 2011, 61, 720-725.                                                                                                                         | 4.9 | 35        |

JAN C AXMACHER

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Invasion pattern of Eupatorium adenophorum Spreng in southern China. Biological Invasions, 2010, 12,<br>1721-1730.                                                                                                   | 2.4 | 68        |
| 74 | Ground beetles (Coleoptera: Carabidae) in the intensively cultivated agricultural landscape of<br>Northern China – implications for biodiversity conservation. Insect Conservation and Diversity, 2010,<br>3, 34-43. | 3.0 | 31        |
| 75 | Habitat-GIS-based models for ground beetles (Coleoptera: Carabidae) distribution in agricultural<br>landscape. , 2009, , .                                                                                           |     | 1         |
| 76 | Challenges in developing China's marine protected area system. Marine Policy, 2009, 33, 599-605.                                                                                                                     | 3.2 | 54        |
| 77 | Determinants of diversity in afrotropical herbivorous insects (Lepidoptera: Geometridae): plant<br>diversity, vegetation structure or abiotic factors?. Journal of Biogeography, 2009, 36, 337-349.                  | 3.0 | 91        |
| 78 | Effects of Crofton weed Ageratina adenophora on assemblages of Carabidae (Coleoptera) in the<br>Yunnan Province, South China. Agriculture, Ecosystems and Environment, 2008, 124, 173-178.                           | 5.3 | 15        |
| 79 | Ground beetle (Coleoptera: Carabidae) inventories: a comparison of light and pitfall trapping. Bulletin<br>of Entomological Research, 2007, 97, 577-583.                                                             | 1.0 | 32        |
| 80 | Long-term effects of rainforest disturbance on the nutrient composition of throughfall, organic<br>layer percolate and soil solution at Mt. Kilimanjaro. Science of the Total Environment, 2007, 376,<br>241-254.    | 8.0 | 14        |
| 81 | Field Margins as Rapidly Evolving Local Diversity Hotspots for Ground Beetles (Coleoptera: Carabidae)<br>in Northern China. The Coleopterists Bulletin, 2006, 60, 135-143.                                           | 0.2 | 12        |
| 82 | A Comparison of Manual and Automatic Moth Sampling Methods (Lepidoptera: Arctiidae, Geometridae)<br>in a Rain Forest in Costa Rica. Environmental Entomology, 2006, 35, 757-764.                                     | 1.4 | 44        |
| 83 | Biogeochemistry of an afrotropical montane rain forest on Mt. Kilimanjaro, Tanzania. Journal of<br>Tropical Ecology, 2006, 22, 77-89.                                                                                | 1.1 | 21        |
| 84 | Diversity of carabids (Coleoptera, Carabidae) in the desalinized agricultural landscape of Quzhou county, China. Agriculture, Ecosystems and Environment, 2006, 113, 45-50.                                          | 5.3 | 25        |
| 85 | Changes of soil organic carbon in an intensively cultivated agricultural region: A<br>denitrification–decomposition (DNDC) modelling approach. Science of the Total Environment, 2006,<br>372, 203-214.              | 8.0 | 43        |
| 86 | Effects of Fire on the Diversity of Geometrid Moths on Mt. Kilimanjaro. , 2006, , 69-75.                                                                                                                             |     | 0         |
| 87 | Diverging diversity patterns of vascular plants and geometrid moths during forest regeneration on<br>Mt Kilimanjaro, Tanzania. Journal of Biogeography, 2004, 31, 895-904.                                           | 3.0 | 50        |
| 88 | Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect. Diversity and Distributions, 2004, 10, 293-302.                                                       | 4.1 | 69        |