Lei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7853842/publications.pdf

Version: 2024-02-01

		687363	642732
26	576	13	23
papers	citations	h-index	g-index
			600
28	28	28	628
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo. Nature Nanotechnology, 2020, 15, 145-153.	31.5	159
2	A biomimetic peptide recognizes and traps bacteria in vivo as human defensin-6. Science Advances, 2020, 6, eaaz4767.	10.3	75
3	A biomimetic platelet based on assembling peptides initiates artificial coagulation. Science Advances, 2020, 6, eaaz4107.	10.3	56
4	Selenopeptide Nanomedicine Activates Natural Killer Cells for Enhanced Tumor Chemoimmunotherapy. Advanced Materials, 2022, 34, e2108167.	21.0	32
5	KLVFF peptide functionalized nanoparticles capture $\hat{Al^2}42$ by co-assembly for decreasing cytotoxicity. Chinese Chemical Letters, 2018, 29, 1811-1814.	9.0	26
6	Rapid discovery of self-assembling peptides with one-bead one-compound peptide library. Nature Communications, 2021, 12, 4494.	12.8	23
7	A self-assembling peptide targeting VEGF receptors to inhibit angiogenesis. Chinese Chemical Letters, 2020, 31, 3153-3157.	9.0	22
8	Binding-Induced Fibrillogenesis Peptides Recognize and Block Intracellular Vimentin Skeletonization against Breast Cancer. Nano Letters, 2021, 21, 6202-6210.	9.1	21
9	Enhanced type I photoreaction of indocyanine green <i>via</i> electrostatic-force-driven aggregation. Nanoscale, 2020, 12, 9517-9523.	5.6	21
10	Cyclodextrin-containing hydrogels as an intraocular lens for sustained drug release. PLoS ONE, 2017, 12, e0189778.	2.5	20
11	An intelligent vancomycin release system for preventing surgical site infections of bone tissues. Biomaterials Science, 2020, 8, 3202-3211.	5.4	19
12	Transformable peptide nanoparticles inhibit the migration of N-cadherin overexpressed cancer cells. Chinese Chemical Letters, 2020, 31, 1787-1791.	9.0	15
13	In situ construction of ligand nano-network to integrin $\hat{l}\pm\nu\hat{l}^23$ for angiogenesis inhibition. Chinese Chemical Letters, 2020, 31, 3107-3112.	9.0	14
14	A Monotargeting Peptidic Network Antibody Inhibits More Receptors for Anti-Angiogenesis. ACS Nano, 2021, 15, 13065-13076.	14.6	13
15	Remotely Controlling Drug Release by Light-Responsive Cholesteric Liquid Crystal Microcapsules Triggered by Molecular Motors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59221-59230.	8.0	13
16	Two-photon excited peptide nanodrugs for precise photodynamic therapy. Chemical Communications, 2021, 57, 2245-2248.	4.1	11
17	An antibody-like peptidic network for anti-angiogenesis. Biomaterials, 2021, 275, 120900.	11.4	6
18	<i>In situ</i> construction of nanonetworks from transformable nanoparticles for anti-angiogenic therapy. Journal of Materials Chemistry B, 2018, 6, 5282-5289.	5.8	5

#	Article	IF	CITATION
19	Supramolecular conducting microfibers from amphiphilic tetrathiafulvalene-based organogelator. Chinese Chemical Letters, 2019, 30, 123-126.	9.0	5
20	Photoinduced Single-Crystal to Single-Crystal Transformation via Conformational Change with Turn-On Fluorescence. Crystal Growth and Design, 2022, 22, 2082-2086.	3.0	5
21	Anti-solvatochromic and highly emissive twisted D–A structure with intramolecular hydrogen bond. Materials Chemistry Frontiers, 2022, 6, 512-518.	5.9	4
22	Biomimetic peptide nanoparticles participate in natural coagulation for hemostasis and wound healing. Biomaterials Science, 2022, 10, 2628-2637.	5.4	4
23	Ca2+ accelerates peptide fibrillogenesis via a heterogeneous secondary nucleation pathway. Nanoscale, 2022, , .	5.6	2
24	Smart Peptide Defense Web In Situ Connects for Continuous Interception of IgE against Allergic Rhinitis. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29639-29649.	8.0	2
25	Instant hydrogelation encapsulates drugs onto implants intraoperatively against osteoarticular tuberculosis. Journal of Materials Chemistry B, 2021, 9, 8056-8066.	5.8	1
26	Self-assembly and cellular distribution of a series of transformable peptides. Journal of Materials Chemistry B, 2022, 10, 3886-3894.	5.8	1