Violeta Chitu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/785356/publications.pdf

Version: 2024-02-01

26 papers 2,665 citations

471509 17 h-index 24 g-index

29 all docs

29 docs citations

29 times ranked 3925 citing authors

#	Article	IF	CITATIONS
1	Modeling CSFâ€1 receptor deficiency diseases – how close are we?. FEBS Journal, 2022, 289, 5049-5073.	4.7	24
2	Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: opportunities and challenges. Cellular and Molecular Life Sciences, 2022, 79, 219.	5.4	64
3	Microglial reduction of colony stimulating factorâ€l receptor expression is sufficient to confer adult onset leukodystrophy. Glia, 2021, 69, 779-791.	4.9	19
4	Is Preâ€Symptomatic Immunosuppression Protective in <scp><i>CSF1R</i></scp> <i>â€</i> Related Leukoencephalopathy?. Movement Disorders, 2021, 36, 852-856.	3.9	19
5	Reply to: "Investigation of Disease Modifying Mechanisms in <scp><i>CSF1R</i>â€Related</scp> Leukoencephalopathy― Movement Disorders, 2021, 36, 1471-1471.	3.9	1
6	Colony stimulating factors in the nervous system. Seminars in Immunology, 2021, 54, 101511.	5.6	22
7	Microglial Homeostasis Requires Balanced CSF-1/CSF-2 Receptor Signaling. Cell Reports, 2020, 30, 3004-3019.e5.	6.4	53
8	CSF-1 controls cerebellar microglia and is required for motor function and social interaction. Journal of Experimental Medicine, 2019, 216, 2265-2281.	8.5	138
9	BSCI-18. ABLATION OF Csf2 MITIGATES RADIATION-INDUCED NEUROCOGNITIVE DECLINE INDEPENDENT OF HIPPOCAMPAL NEUROGENESIS. Neuro-Oncology Advances, 2019, 1, i4-i4.	0.7	O
10	Mast cells enhance sterile inflammation in chronic nonbacterial osteomyelitis. DMM Disease Models and Mechanisms, $2019,12,12$	2.4	10
11	Regulation of Embryonic and Postnatal Development by the CSF-1 Receptor. Current Topics in Developmental Biology, 2017, 123, 229-275.	2.2	121
12	Emerging Roles for CSF-1 Receptor and its Ligands in the Nervous System. Trends in Neurosciences, 2016, 39, 378-393.	8.6	259
13	PACSIN2: a BAR-rier forming the megakaryocyte DMS. Blood, 2015, 126, 5-6.	1.4	2
14	Macrophage depletion ameliorates nephritis induced by pathogenic antibodies. Journal of Autoimmunity, 2015, 57, 42-52.	6.5	74
15	Phenotypic characterization of a Csf1r haploinsufficient mouse model of adult-onset leukodystrophy with axonal spheroids and pigmented glia (ALSP). Neurobiology of Disease, 2015, 74, 219-228.	4.4	80
16	Therapeutic targeting of macrophages in lupus nephritis. Discovery Medicine, 2015, 20, 43-9.	0.5	40
17	CSF-1 Receptor Signaling in Myeloid Cells. Cold Spring Harbor Perspectives in Biology, 2014, 6, a021857-a021857.	5.5	566
18	PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts. Blood, 2012, 120, 3126-3135.	1.4	79

#	Article	IF	CITATION
19	Measurement of Macrophage Growth and Differentiation. Current Protocols in Immunology, 2011, 92, Unit 14.20.1-26.	3.6	13
20	Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. Journal of Leukocyte Biology, 2010, 88, 495-505.	3.3	307
21	PSTPIP2 Limits Osteoclast Precursor Differentiation and Inflammation-Associated Bone Loss Blood, 2010, 116, 1489-1489.	1.4	2
22	Primed innate immunity leads to autoinflammatory disease in PSTPIP2-deficient cmo mice. Blood, 2009, 114, 2497-2505.	1.4	77
23	Pombe Cdc15 homology (PCH) proteins: coordinators of membrane–cytoskeletal interactions. Trends in Cell Biology, 2007, 17, 145-156.	7.9	81
24	Colony-stimulating factor-1 in immunity and inflammation. Current Opinion in Immunology, 2006, 18, 39-48.	5.5	542
25	The PCH Family Member MAYP/PSTPIP2 Directly Regulates F-Actin Bundling and Enhances Filopodia Formation and Motility in Macrophages. Molecular Biology of the Cell, 2005, 16, 2947-2959.	2.1	72
26	Mutation of Mouse MAYP/PSTPIP2 Causes a Macrophage Autoinflammatory Disease Blood, 2005, 106, 2224-2224.	1.4	0