
Jörg Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7850082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Archaeal Connectase is a specific and efficient protein ligase related to proteasome β subunits. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
2	Regulation AAA-ATPases., 2021,, 513-523.		1
3	A secreted fungal histidine―and alanineâ€rich protein regulates metal ion homeostasis and oxidative stress. New Phytologist, 2020, 227, 1174-1188.	7.3	35
4	Structural diversity of oligomeric β-propellers with different numbers of identical blades. ELife, 2019, 8, .	6.0	21
5	Structural characterization of the bacterial proteasome homolog BPH reveals a tetradecameric double-ring complex with unique inner cavity properties. Journal of Biological Chemistry, 2018, 293, 920-930.	3.4	6
6	Rpn11-mediated ubiquitin processing in an ancestral archaeal ubiquitination system. Nature Communications, 2018, 9, 2696.	12.8	19
7	The Architecture of the Anbu Complex Reflects an Evolutionary Intermediate at the Origin of the Proteasome System. Structure, 2017, 25, 834-845.e5.	3.3	11
8	Replacement of GroEL in Escherichia coli by the Group II Chaperonin from the Archaeon Methanococcus maripaludis. Journal of Bacteriology, 2016, 198, 2692-2700.	2.2	9
9	Origin of a folded repeat protein from an intrinsically disordered ancestor. ELife, 2016, 5, .	6.0	43
10	Structure and Evolution of N-domains in AAA Metalloproteases. Journal of Molecular Biology, 2015, 427, 910-923.	4.2	23
11	The Archaeal Proteasome Is Regulated by a Network of AAA ATPases. Journal of Biological Chemistry, 2012, 287, 39254-39262.	3.4	42
12	Structure and Activity of the N-Terminal Substrate Recognition Domains in Proteasomal ATPases. Molecular Cell, 2009, 34, 580-590.	9.7	116
13	Two unique membrane-bound AAA proteins from Sulfolobus solfataricus. Biochemical Society Transactions, 2009, 37, 118-122.	3.4	1
14	Inherent chaperone-like activity of aspartic proteases reveals a distant evolutionary relation to double-ï^ barrel domains of AAA-ATPases. Protein Science, 2007, 16, 644-653.	7.6	11
15	Characterization of AMA, a new AAA protein from Archaeoglobus and methanogenic archaea. Journal of Structural Biology, 2006, 156, 130-138.	2.8	5
16	Chaperonin function—effects of crowding and confinement. Journal of Molecular Recognition, 2004, 17, 465-472.	2.1	19
17	Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn. FEBS Letters, 2003, 547, 201-204.	2.8	32
18	Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis. Biochemical Journal, 2003, 371, 669-673.	3.7	29

Jörg Martin

#	Article	IF	CITATIONS
19	Requirement for GroEL/GroES-Dependent Protein Folding under Nonpermissive Conditions of Macromolecular Crowding. Biochemistry, 2002, 41, 5050-5055.	2.5	40
20	AAA proteins. Current Opinion in Structural Biology, 2002, 12, 746-753.	5.7	319
21	Chaperonins - keeping a lid on folding proteins. FEBS Letters, 2001, 505, 343-347.	2.8	19
22	Hsp90 chaperone complexes are required for the activity and stability of yeast protein kinases Mik1, Wee1 and Swe1. FEBS Journal, 2001, 268, 2281-2289.	0.2	53
23	Assembly of Chaperonin Complexes. Molecular Biotechnology, 2001, 19, 141-152.	2.4	8
24	High Salt-induced Conversion of Escherichia coliGroEL into a Fully Functional Thermophilic Chaperonin. Journal of Biological Chemistry, 2000, 275, 33504-33511.	3.4	15
25	Molecular chaperones and mitochondrial protein folding. Journal of Bioenergetics and Biomembranes, 1997, 29, 35-43.	2.3	65
26	Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature, 1996, 379, 420-426.	27.8	370
27	Molecular chaperones in cellular protein folding. BioEssays, 1994, 16, 689-692.	2.5	43
28	The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Nature, 1993, 366, 228-233.	27.8	291
29	Identification of nucleotide-binding regions in the chaperonin proteins GroEL and GroES. Nature, 1993, 366, 279-282.	27.8	103
30	Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature, 1991, 352, 36-42.	27.8	900