List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7849282/publications.pdf Version: 2024-02-01

ANDERS RALIN

#	Article	IF	CITATIONS
1	Environmental Risk Assessment of Emerging Contaminants—The Case of Nanomaterials. , 2022, , 349-371.		1
2	Prospective environmental risk screening of seven advanced materials based on production volumes and aquatic ecotoxicity. NanoImpact, 2022, 25, 100393.	4.5	9
3	Can Current Regulations Account for Intentionally Produced Nanoplastics?. Environmental Science & Technology, 2022, 56, 3836-3839.	10.0	15
4	Separating toxicity and shading in algal growth inhibition tests of nanomaterials and colored substances. Nanotoxicology, 2022, 16, 265-275.	3.0	3
5	Nanotechnology meets circular economy. Nature Nanotechnology, 2022, 17, 682-685.	31.5	8
6	Dietary uptake and effects of copper in Sticklebacks at environmentally relevant exposures utilizing stable isotope-labeled 65CuCl2 and 65CuO NPs. Science of the Total Environment, 2021, 757, 143779.	8.0	6
7	Molecular and biophysical basis for the disruption of lung surfactant function by chemicals. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183499.	2.6	12
8	A "point-of-entry―bioaccumulation study of nanoscale pigment copper phthalocyanine in aquatic organisms. Environmental Science: Nano, 2021, 8, 554-564.	4.3	7
9	Assessing the aquatic toxicity and environmental safety of tracer compounds Rhodamine B and Rhodamine WT. Water Research, 2021, 197, 117109.	11.3	82
10	Influence of Aging on Bioaccumulation and Toxicity of Copper Oxide Nanoparticles and Dissolved Copper in the Sediment-Dwelling Oligochaete Tubifex tubifex: A Long-Term Study Using a Stable Copper Isotope. Frontiers in Toxicology, 2021, 3, 737158.	3.1	3
11	Nanomaterials in the European chemicals legislation – methodological challenges for registration and environmental safety assessment. Environmental Science: Nano, 2021, 8, 731-747.	4.3	18
12	Emerging lanthanum (III)-containing materials for phosphate removal from water: A review towards future developments. Environment International, 2020, 145, 106115.	10.0	62
13	Influence of natural organic matter on the aquatic ecotoxicity of engineered nanoparticles: Recommendations for environmental risk assessment. NanoImpact, 2020, 20, 100263.	4.5	23
14	Extensive literature search on grayanotoxins and 5â€hydroxymethylfurfural. EFSA Supporting Publications, 2020, 17, 1920E.	0.7	1
15	Optimising testing strategies for classification of human health and environmental hazards – A proof-of-concept study. Toxicology Letters, 2020, 335, 64-70.	0.8	1
16	Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials – A case study for silver and titanium dioxide representative materials. Aquatic Toxicology, 2020, 225, 105543.	4.0	13
17	Trophic transfer of CuO NPs from sediment to worms (<i>Tubifex tubifex</i>) to fish (<i>Gasterosteus) Tj ETQqI (⁶⁵Cu). Environmental Science: Nano, 2020, 7, 2360-2372.</i>	1 1 0.7843 4.3	314 rgBT /Ove 11
18	Mechanistic Insights in the Interaction of Chemicals with Surfactant Membrane Models in vitro. Biophysical Journal, 2020, 118, 86a.	0.5	0

#	Article	IF	CITATIONS
19	A Small-Scale Setup for Algal Toxicity Testing of Nanomaterials and Other Difficult Substances. Journal of Visualized Experiments, 2020, , .	0.3	2
20	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
21	Release of Ag/ZnO Nanomaterials and Associated Risks of a Novel Water Sterilization Technology. Water (Switzerland), 2019, 11, 2276.	2.7	3
22	Best practices from nano-risk analysis relevant for other emerging technologies. Nature Nanotechnology, 2019, 14, 998-1001.	31.5	30
23	Ecotoxicity screening of novel phosphorus adsorbents used for lake restoration. Chemosphere, 2019, 222, 469-478.	8.2	10
24	Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. Environmental Science: Nano, 2019, 6, 505-518.	4.3	24
25	Acute toxicity and risk evaluation of the CSO disinfectants performic acid, peracetic acid, chlorine dioxide and their by-products hydrogen peroxide and chlorite. Science of the Total Environment, 2019, 677, 1-8.	8.0	26
26	When Fluorescence Is not a Particle: The Tissue Translocation of Microplastics in <i>Daphnia magna</i> Seems an Artifact. Environmental Toxicology and Chemistry, 2019, 38, 1495-1503.	4.3	126
27	Data supporting the investigation of interaction of biologically relevant proteins with ZnO nanomaterials: AÂconfounding factor for inÂvitro toxicity endpoints. Data in Brief, 2019, 23, 103795.	1.0	7
28	Ingestion and effects of micro- and nanoplastics in blue mussel (Mytilus edulis) larvae. Marine Pollution Bulletin, 2019, 140, 423-430.	5.0	79
29	Trophic transfer of CuO NPs and dissolved Cu from sediment to worms to fish – a proof-of-concept study. Environmental Science: Nano, 2019, 6, 1140-1155.	4.3	17
30	Interaction of biologically relevant proteins with ZnO nanomaterials: A confounding factor for in vitro toxicity endpoints. Toxicology in Vitro, 2019, 56, 41-51.	2.4	23
31	Proxy Measures for Simplified Environmental Assessment of Manufactured Nanomaterials. Environmental Science & Technology, 2018, 52, 13670-13680.	10.0	30
32	Anti-biofilm effects of gold and silver nanoparticles synthesized by the <i>Rhodiola rosea</i> rhizome extracts. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 886-899.	2.8	98
33	Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial) Tj ETQq1 13, 3571-3591.	1 0.78431 6.7	4 rgBT /Ov 165
34	The applicability of chemical alternatives assessment for engineered nanomaterials. Integrated Environmental Assessment and Management, 2017, 13, 177-187.	2.9	23
35	Ecotoxicity testing and environmental risk assessment of iron nanomaterials for sub-surface remediation $\hat{a} \in \mathbb{C}^{*}$ Recommendations from the FP7 project NanoRem. Chemosphere, 2017, 182, 525-531.	8.2	51
36	Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integrated Environmental Assessment and Management, 2017, 13, 488-493.	2.9	443

#	Article	IF	CITATIONS
37	Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO 2) and their by-products hydrogen peroxide (H 2 O 2) and chlorite (ClO 2 â~'). International Journal of Hygiene and Environmental Health, 2017, 220, 570-574.	4.3	29
38	Ingestion of micro- and nanoplastics in Daphnia magna – Quantification of body burdens and assessment of feeding rates and reproduction. Environmental Pollution, 2017, 228, 398-407.	7.5	387
39	NanoCRED: A transparent framework to assess the regulatory adequacy of ecotoxicity data for nanomaterials – Relevance and reliability revisited. NanoImpact, 2017, 6, 81-89.	4.5	45
40	An assessment of the importance of exposure routes to the uptake and internal localisation of fluorescent nanoparticles in zebrafish (<i>Danio rerio</i>), using light sheet microscopy. Nanotoxicology, 2017, 11, 351-359.	3.0	52
41	Revising REACH guidance on information requirements and chemical safety assessment for engineered nanomaterials for aquatic ecotoxicity endpoints: recommendations from the EnvNano project. Environmental Sciences Europe, 2017, 29, 14.	5.5	24
42	The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquatic Toxicology, 2017, 183, 11-20.	4.0	298
43	A critical analysis of the environmental dossiers from the OECD sponsorship programme for the testing of manufactured nanomaterials. Environmental Science: Nano, 2017, 4, 282-291.	4.3	38
44	Regulatory adequacy of aquatic ecotoxicity testing of nanomaterials. NanoImpact, 2017, 8, 28-37.	4.5	38
45	Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials. NanoImpact, 2017, 8, 1-10.	4.5	64
46	Acute toxicity of copper oxide nanoparticles to <i>Daphnia magna</i> under different test conditions. Toxicological and Environmental Chemistry, 2017, 99, 665-679.	1.2	22
47	Not all that glitters is gold—Electron microscopy study on uptake of gold nanoparticles in <i>Daphnia magna</i> and related artifacts. Environmental Toxicology and Chemistry, 2017, 36, 1503-1509.	4.3	11
48	Teaching nanosafety. Nature Nanotechnology, 2017, 12, 596-596.	31.5	1
49	EU Regulation of Nanobiocides: Challenges in Implementing the Biocidal Product Regulation (BPR). Nanomaterials, 2016, 6, 33.	4.1	42
50	Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna. Aquatic Toxicology, 2016, 177, 526-535.	4.0	30
51	Control banding tools for occupational exposure assessment of nanomaterials — Ready for use in a regulatory context?. NanoImpact, 2016, 2, 1-17.	4.5	54
52	Methodological considerations for using umu assay to assess photo-genotoxicity of engineered nanoparticles. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 796, 34-39.	1.7	6
53	Regulatory ecotoxicity testing of nanomaterials – proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles. Nanotoxicology, 2016, 10, 1442-1447.	3.0	103
54	A Multimethod Approach for Investigating Algal Toxicity of Platinum Nanoparticles. Environmental Science & Technology, 2016, 50, 10635-10643.	10.0	65

#	Article	IF	CITATIONS
55	Acute and chronic effects from pulse exposure of D. magna to silver and copper oxide nanoparticles. Aquatic Toxicology, 2016, 180, 209-217.	4.0	18
56	Aquatic Ecotoxicity Testing of Nanoparticles—The Quest To Disclose Nanoparticle Effects. Angewandte Chemie - International Edition, 2016, 55, 15224-15239.	13.8	105
57	Aquatische Ökotoxizitävon Nanopartikeln – Versuche zur Aufkläung von Nanopartikeleffekten. Angewandte Chemie, 2016, 128, 15448-15464.	2.0	7
58	A certain shade of green: Can algal pigments reveal shading effects of nanoparticles?. Integrated Environmental Assessment and Management, 2016, 12, 200-202.	2.9	14
59	Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions. Ecotoxicology and Environmental Safety, 2016, 127, 144-152.	6.0	66
60	Nanoproducts – what is actually available to European consumers?. Environmental Science: Nano, 2016, 3, 169-180.	4.3	144
61	DPSIR and Stakeholder Analysis of the Use of Nanosilver. NanoEthics, 2015, 9, 297-319.	0.8	13
62	Nanoparticle ecotoxicity—physical and/or chemical effects?. Integrated Environmental Assessment and Management, 2015, 11, 722-724.	2.9	18
63	Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions. Aquatic Toxicology, 2015, 161, 10-16.	4.0	44
64	The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2015, 34, 497-506.	4.3	101
65	Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater — Using humic acid and iron nano-sized colloids as test particles. Science of the Total Environment, 2015, 532, 103-111.	8.0	47
66	Nanosilver: Safety, health and environmental effects and role in antimicrobial resistance. Materials Today, 2015, 18, 122-123.	14.2	74
67	Techniques and Protocols for Dispersing Nanoparticle Powders in Aqueous Media—Is there a Rationale for Harmonization?. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2015, 18, 299-326.	6.5	114
68	Controlling silver nanoparticle exposure in algal toxicity testing – A matter of timing. Nanotoxicology, 2015, 9, 201-209.	3.0	44
69	Mixtures of Chemical Pollutants at European Legislation Safety Concentrations: How Safe Are They?. Toxicological Sciences, 2014, 141, 218-233.	3.1	108
70	What Are the Warning Signs That We Should Be Looking For?. , 2014, , 9-24.		1
71	NanoRiskCat: a conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	74
72	Balancing scientific tensions. Nature Nanotechnology, 2014, 9, 870-870.	31.5	9

#	Article	IF	CITATIONS
73	Trophic transfer of differently functionalized zinc oxide nanoparticles from crustaceans (Daphnia) Tj ETQq1 1 0.78	4314 rgB1 4.0	- /Overlock
74	Uptake and depuration of gold nanoparticles in Daphnia magna. Ecotoxicology, 2014, 23, 1172-1183.	2.4	60
75	Environmental exposure assessment framework for nanoparticles in solid waste. Journal of Nanoparticle Research, 2014, 16, 2394.	1.9	64
76	The challenges of testing metal and metal oxide nanoparticles in algal bioassays: titanium dioxide and gold nanoparticles as case studies. Nanotoxicology, 2013, 7, 1082-1094.	3.0	62
77	Bioaccumulation and ecotoxicity of carbon nanotubes. Chemistry Central Journal, 2013, 7, 154.	2.6	229
78	Operationalization and application of "early warning signs―to screen nanomaterials for harmful properties. Environmental Sciences: Processes and Impacts, 2013, 15, 190-203.	3.5	19
79	Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater. Chemosphere, 2013, 90, 627-633.	8.2	26
80	Growth inhibition and recovery of Lemna gibba after pulse exposure to sulfonylurea herbicides. Ecotoxicology and Environmental Safety, 2013, 89, 89-94.	6.0	21
81	Influence of pH, light cycle, and temperature on ecotoxicity of four sulfonylurea herbicides towards Lemna gibba. Ecotoxicology, 2013, 22, 33-41.	2.4	14
82	Evidence for effects of manufactured nanomaterials on crops is inconclusive. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3336-E3336.	7.1	16
83	European Regulation Affecting Nanomaterials - Review of Limitations and Future Recommendations. Dose-Response, 2012, 10, dose-response.1.	1.6	50
84	The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. Aquatic Toxicology, 2012, 118-119, 1-8.	4.0	78
85	Environmental risk analysis for nanomaterials: Review and evaluation of frameworks. Nanotoxicology, 2012, 6, 196-212.	3.0	96
86	When enough is enough. Nature Nanotechnology, 2012, 7, 409-411.	31.5	80
87	Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	58
88	How to assess exposure of aquatic organisms to manufactured nanoparticles?. Environment International, 2011, 37, 1068-1077.	10.0	118
89	Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies. Science of the Total Environment, 2011, 409, 4109-4124.	8.0	15
90	Degradability of aged aquatic suspensions of C60 nanoparticles. Environmental Pollution, 2011, 159, 3134-3137.	7.5	17

#	Article	IF	CITATIONS
91	Redefining risk research priorities for nanomaterials. Journal of Nanoparticle Research, 2010, 12, 383-392.	1.9	57
92	Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off?. Journal of Contaminant Hydrology, 2010, 118, 165-183.	3.3	333
93	Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation. Science of the Total Environment, 2010, 408, 1745-1754.	8.0	339
94	Conscious worst case definition for risk assessment, part I. Science of the Total Environment, 2010, 408, 3852-3859.	8.0	12
95	The nano cocktail: Ecotoxicological effects of engineered nanoparticles in chemical mixtures. Integrated Environmental Assessment and Management, 2010, 6, 311-313.	2.9	52
96	Algal testing of titanium dioxide nanoparticles—Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology, 2010, 269, 190-197.	4.2	273
97	Insignificant acute toxicity of TiO2 nanoparticles to willow trees. Journal of Soils and Sediments, 2009, 9, 46-53.	3.0	107
98	Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges. Chemosphere, 2009, 77, 351-358.	8.2	66
99	The known unknowns of nanomaterials: Describing and characterizing uncertainty within environmental, health and safety risks. Nanotoxicology, 2009, 3, 222-233.	3.0	78
100	Setting the limits for engineered nanoparticles in European surface waters – are current approaches appropriate?. Journal of Environmental Monitoring, 2009, 11, 1774.	2.1	67
101	Nanomaterials in Consumer Products. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 359-367.	0.2	11
102	Source Analysis and Hazard Screening of Xenobiotic Organic Compounds in Wastewater from Food-Processing Industries. Water, Air and Soil Pollution, 2008, 8, 505-517.	0.8	1
103	Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology, 2008, 17, 387-395.	2.4	655
104	Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology, 2008, 17, 438-447.	2.4	253
105	Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 2008, 17, 372-386.	2.4	1,459
106	Late lessons from early warnings for nanotechnology. Nature Nanotechnology, 2008, 3, 444-447.	31.5	132
107	Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquatic Toxicology, 2008, 86, 379-387.	4.0	341
108	Influence of wastewater characteristics on methane potential in food-processing industry wastewaters. Water Research, 2008, 42, 2195-2203.	11.3	76

#	Article	IF	CITATIONS
109	Toxicity of water and sediment from stormwater retarding basins to Hydra hexactinella. Environmental Pollution, 2008, 156, 922-927.	7.5	11
110	Environmental challenges for nanomedicine. Nanomedicine, 2008, 3, 605-608.	3.3	27
111	Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology, 2007, 1, 243-250.	3.0	195
112	Risk assessment of xenobiotics in stormwater discharged to Harrestrup Ã, Denmark. Desalination, 2007, 215, 187-197.	8.2	89
113	Selected stormwater priority pollutants — a European perspective. Science of the Total Environment, 2007, 383, 41-51.	8.0	229
114	MIXTURE AND SINGLE-SUBSTANCE TOXICITY OF SELECTIVE SEROTONIN REUPTAKE INHIBITORS TOWARD ALGAE AND CRUSTACEANS. Environmental Toxicology and Chemistry, 2007, 26, 85.	4.3	126
115	Toxicity of water and sediment in a small urban river (Store Vejleå, Denmark). Environmental Pollution, 2006, 144, 621-625.	7.5	39
116	Transfer of hydrophobic contaminants in urban runoff particles to benthic organisms estimated by an in vitro bioaccessibility test. Water Science and Technology, 2006, 54, 323-330.	2.5	8
117	ECOTOXICITY OF MIXTURES OF ANTIBIOTICS USED IN AQUACULTURES. Environmental Toxicology and Chemistry, 2006, 25, 2208.	4.3	140
118	ACUTE AND CHRONIC EFFECTS OF PULSE EXPOSURE OF DAPHNIA MAGNA TO DIMETHOATE AND PIRIMICARB. Environmental Toxicology and Chemistry, 2006, 25, 1187.	4.3	70
119	A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater. Science of the Total Environment, 2006, 370, 29-38.	8.0	54
120	Phytotoxicity of grey wastewater evaluated by toxicity tests. Urban Water Journal, 2006, 3, 13-20.	2.1	19
121	Chemical hazard identification and assessment tool for evaluation of stormwater priority pollutants. Water Science and Technology, 2005, 51, 47-55.	2.5	36
122	A novel method for evaluating bioavailability of polycyclic aromatic hydrocarbons in sediments of an urban stream. Water Science and Technology, 2005, 51, 275-281.	2.5	37
123	Xenobiotic organic compounds in leachates from ten Danish MSW landfills—chemical analysis and toxicity tests. Water Research, 2004, 38, 3845-3858.	11.3	189
124	TOXICITY OF MONO- AND DIESTERS OF 0-PHTHALIC ESTERS TO A CRUSTACEAN, A GREEN ALGA, AND A BACTERIUM. Environmental Toxicology and Chemistry, 2003, 22, 3037.	4.3	60
125	In situ biodegradation determined by carbon isotope fractionation of aromatic hydrocarbons in an anaerobic landfill leachate plume (Vejen, Denmark). Journal of Contaminant Hydrology, 2003, 64, 59-72.	3.3	84
126	Natural attenuation of xenobiotic organic compounds in a landfill leachate plume (Vejen, Denmark). Journal of Contaminant Hydrology, 2003, 65, 269-291.	3.3	86

#	ARTICLE	IF	CITATIONS
127	Present and Long-Term Composition of MSW Landfill Leachate: A Review. Critical Reviews in Environmental Science and Technology, 2002, 32, 297-336.	12.8	1,807
128	Algal tests with soil suspensions and elutriates: A comparative evaluation for PAH-contaminated soils. Chemosphere, 2002, 46, 251-258.	8.2	48
129	Development of Methodology for Hazard Identification of Rainwater Collected for Reuse. , 2002, , 1.		0
130	Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 2001, 16, 659-718.	3.0	1,044
131	Toxicity of Organic Chemical Pollution in Groundwater Downgradient of a Landfill (Grindsted,) Tj ETQq1 1 0.7843	814 rgBT / 10:0	Overlock 10
132	Toxicity testing of organic chemicals in groundwater polluted with landfill leachate. Environmental Toxicology and Chemistry, 1999, 18, 2046-2053.	4.3	46
133	Correcting for toxic inhibition in quantification of genotoxic response in the umuC test. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1999, 441, 171-180.	1.7	16
134	TOXICITY TESTING OF ORGANIC CHEMICALS IN GROUNDWATER POLLUTED WITH LANDFILL LEACHATE. Environmental Toxicology and Chemistry, 1999, 18, 2046.	4.3	1
135	Aquatic biodegradation behavior of pentachlorophenol assessed through a battery of shake flask dieâ€away tests. Environmental Toxicology and Chemistry, 1998, 17, 1712-1719.	4.3	14
136	Screening of pesticide toxicity in surface water from an agricultural area at Phuket Island (Thailand). Environmental Pollution, 1998, 102, 185-190.	7.5	21
137	Continuous Ecotoxicological Data Evaluated Relative to a Control Response. Journal of Agricultural, Biological, and Environmental Statistics, 1998, 3, 405.	1.4	23
138	Algal toxicity tests with volatile and hazardous compounds in air-tight test flasks with CO2 enriched headspace. Chemosphere, 1996, 32, 1513-1526.	8.2	65
139	Monitoring pesticides in surface water using bioassays on XAD-2 preconcentrated samples. Water Science and Technology, 1996, 33, 339.	2.5	11
140	Monitoring pesticides in surface water using bioassays on XAD-2 preconcentrated samples. Water Science and Technology, 1996, 33, 339-347.	2.5	4