List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7848606/publications.pdf Version: 2024-02-01

		17440	19190
213	15,251	63	118
papers	citations	h-index	g-index
221	221	221	13736
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Identification of Late-Onset Hypogonadism in Middle-Aged and Elderly Men. New England Journal of Medicine, 2010, 363, 123-135.	27.0	1,274
2	Meta-analysis: Excess Mortality After Hip Fracture Among Older Women and Men. Annals of Internal Medicine, 2010, 152, 380.	3.9	1,053
3	Hypothalamic-Pituitary-Testicular Axis Disruptions in Older Men Are Differentially Linked to Age and Modifiable Risk Factors: The European Male Aging Study. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2737-2745.	3.6	790
4	Androgens and Bone. Endocrine Reviews, 2004, 25, 389-425.	20.1	611
5	Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiological Reviews, 2017, 97, 135-187.	28.8	541
6	Characteristics of Secondary, Primary, and Compensated Hypogonadism in Aging Men: Evidence from the European Male Ageing Study. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1810-1818.	3.6	481
7	Age-Related Changes in General and Sexual Health in Middle-Aged and Older Men: Results from the European Male Ageing Study (EMAS). Journal of Sexual Medicine, 2010, 7, 1362-1380.	0.6	377
8	Age-associated changes in hypothalamic–pituitary–testicular function in middle-aged and older men are modified by weight change and lifestyle factors: longitudinal results from the European Male Ageing Study. European Journal of Endocrinology, 2013, 168, 445-455.	3.7	316
9	Fracture Risk and Zoledronic Acid Therapy in Men with Osteoporosis. New England Journal of Medicine, 2012, 367, 1714-1723.	27.0	285
10	Characteristics of Androgen Deficiency in Late-Onset Hypogonadism: Results from the European Male Aging Study (EMAS). Journal of Clinical Endocrinology and Metabolism, 2012, 97, 1508-1516.	3.6	258
11	Sex Steroid Actions in Male Bone. Endocrine Reviews, 2014, 35, 906-960.	20.1	239
12	Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporosis International, 2013, 24, 87-98.	3.1	236
13	Optimal Vitamin D Status: A Critical Analysis on the Basis of Evidence-Based Medicine. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1283-E1304.	3.6	234
14	European Academy of Andrology (EAA) guidelines on investigation, treatment and monitoring of functional hypogonadism in males. Andrology, 2020, 8, 970-987.	3.5	230
15	Bone and mineral metabolism in aged male rats: short and long term effects of androgen deficiency Endocrinology, 1992, 130, 2906-2916.	2.8	201
16	Estrogens Are Essential for Male Pubertal Periosteal Bone Expansion. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 6025-6029.	3.6	190
17	Skeletal sexual dimorphism: relative contribution of sex steroids, GH–IGF1, and mechanical loading. Journal of Endocrinology, 2010, 207, 127-134.	2.6	186
18	Late-Onset Hypogonadism and Mortality in Aging Men. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1357-1366.	3.6	184

#	Article	IF	CITATIONS
19	Comparison of serum testosterone and estradiol measurements in 3174 European men using platform immunoassay and mass spectrometry; relevance for the diagnostics in aging men. European Journal of Endocrinology, 2012, 166, 983-991.	3.7	169
20	Association of hypogonadism with vitamin D status: the European Male Ageing Study. European Journal of Endocrinology, 2012, 166, 77-85.	3.7	166
21	Relative Impact of Androgen and Estrogen Receptor Activation in the Effects of Androgens on Trabecular and Cortical Bone in Growing Male Mice: A Study in the Androgen Receptor Knockout Mouse Model. Journal of Bone and Mineral Research, 2006, 21, 576-585.	2.8	163
22	Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions. Cellular and Molecular Life Sciences, 2012, 69, 1651-1667.	5.4	142
23	The European Male Ageing Study (EMAS): design, methods and recruitment. Journal of Developmental and Physical Disabilities, 2009, 32, 11-24.	3.6	137
24	Aromatase Inhibition Impairs Skeletal Modeling and Decreases Bone Mineral Density in Growing Male Rats*. Endocrinology, 1997, 138, 2301-2307.	2.8	134
25	Low Free Testosterone Is Associated with Hypogonadal Signs and Symptoms in Men with Normal Total Testosterone. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2647-2657.	3.6	129
26	Increased Estrogen Rather Than Decreased Androgen Action Is Associated with Longer Androgen Receptor CAG Repeats. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 277-284.	3.6	125
27	Differential effects on bone of estrogen receptor and androgen receptor activation in orchidectomized adult male mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13573-13578.	7.1	121
28	Differential regulation of bone and body composition in male mice with combined inactivation of androgen and estrogen receptorâ€i±. FASEB Journal, 2009, 23, 232-240.	0.5	119
29	Development of and Recovery from Secondary Hypogonadism in Aging Men: Prospective Results from the EMAS. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3172-3182.	3.6	118
30	Age-Related (Type II) Femoral Neck Osteoporosis in Men: Biochemical Evidence for Both Hypovitaminosis D- and Androgen Deficiency-Induced Bone Resorption. Journal of Bone and Mineral Research, 1997, 12, 2119-2126.	2.8	116
31	Sexual dimorphism in cortical bone size and strength but not density is determined by independent and time-specific actions of sex steroids and IGF-1: Evidence from pubertal mouse models. Journal of Bone and Mineral Research, 2010, 25, 617-626.	2.8	116
32	Sex hormone-binding globulin regulation of androgen bioactivity in vivo: validation of the free hormone hypothesis. Scientific Reports, 2016, 6, 35539.	3.3	116
33	Structural basis for nuclear hormone receptor DNA binding. Molecular and Cellular Endocrinology, 2012, 348, 411-417.	3.2	115
34	Muscle-bone interactions: From experimental models to the clinic? A critical update. Molecular and Cellular Endocrinology, 2016, 432, 14-36.	3.2	115
35	Identifying postmenopausal women with osteoporosis by calcaneal ultrasound, metacarpal digital X-ray radiogrammetry and phalangeal radiographic absorptiometry: a comparative study. Osteoporosis International, 2005, 16, 93-100.	3.1	114
36	Androgen Signaling in Myocytes Contributes to the Maintenance of Muscle Mass and Fiber Type Regulation But Not to Muscle Strength or Fatigue. Endocrinology, 2009, 150, 3558-3566.	2.8	111

#	Article	IF	CITATIONS
37	Down-Regulation of the Serum Stimulatory Components of the Insulin-like Growth Factor (IGF) System (IGF-I, IGF-II, IGF Binding Protein [BP]-3, and IGFBP-5) in Age-Related (Type II) Femoral Neck Osteoporosis. Journal of Bone and Mineral Research, 1999, 14, 2150-2158.	2.8	106
38	A satellite cellâ€specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB Journal, 2014, 28, 2979-2994.	0.5	100
39	Associations Between Sex Steroids and the Development of Metabolic Syndrome: A Longitudinal Study in European Men. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1396-1404.	3.6	97
40	Postmenopausal osteoporosis treatment with antiresorptives: Effects of discontinuation or long-term continuation on bone turnover and fracture risk—a perspective. Journal of Bone and Mineral Research, 2012, 27, 963-974.	2.8	94
41	Androgen receptor (AR) in osteocytes is important for the maintenance of male skeletal integrity: Evidence from targeted AR disruption in mouse osteocytes. Journal of Bone and Mineral Research, 2012, 27, 2535-2543.	2.8	93
42	Evidence From the Aged Orchidectomized Male Rat Model That 17β-Estradiol Is a More Effective Bone-Sparing and Anabolic Agent Than 5α-Dihydrotestosterone. Journal of Bone and Mineral Research, 2002, 17, 2080-2086.	2.8	91
43	Impaired quality of life and sexual function in overweight and obese men: the European Male Ageing Study. European Journal of Endocrinology, 2011, 164, 1003-1011.	3.7	90
44	Bone and mineral metabolism in the androgen-resistant (testicular feminized) male rat. Journal of Bone and Mineral Research, 1993, 8, 801-809.	2.8	88
45	Vitamin D metabolites and the gut microbiome in older men. Nature Communications, 2020, 11, 5997.	12.8	88
46	Sex steroids and the male skeleton: a tale of two hormones. Trends in Endocrinology and Metabolism, 2010, 21, 89-95.	7.1	86
47	Aromatization of androgens is important for skeletal maintenance of aged male rats. Calcified Tissue International, 1996, 59, 179-183.	3.1	85
48	An Aged Rat Model of Partial Androgen Deficiency: Prevention of Both Loss of Bone and Lean Body Mass by Low-Dose Androgen Replacement ¹ . Endocrinology, 2000, 141, 1642-1647.	2.8	83
49	The hinge region in androgen receptor control. Molecular and Cellular Endocrinology, 2012, 358, 1-8.	3.2	82
50	Assessment of Sexual Health in Aging Men in Europe: Development and Validation of the European Male Ageing Study Sexual Function Questionnaire. Journal of Sexual Medicine, 2008, 5, 1374-1385.	0.6	80
51	Action of androgens versus estrogens in male skeletal homeostasis. Bone, 1998, 23, 391-394.	2.9	78
52	Musculoskeletal Frailty: A Geriatric Syndrome at the Core of Fracture Occurrence in Older Age. Calcified Tissue International, 2012, 91, 161-177.	3.1	78
53	Androgen Deficiency Exacerbates High-Fat Diet-Induced Metabolic Alterations in Male Mice. Endocrinology, 2016, 157, 648-665.	2.8	78
54	Growth Without Growth Hormone Receptor: Estradiol Is a Major Growth Hormone-Independent Regulator of Hepatic IGF-I Synthesis. Journal of Bone and Mineral Research. 2005. 20. 2138-2149.	2.8	76

#	Article	IF	CITATIONS
55	Testosterone Prevents Orchidectomy-Induced Bone Loss in Estrogen Receptor-α Knockout Mice. Biochemical and Biophysical Research Communications, 2001, 285, 70-76.	2.1	75
56	Skeletal effects of estrogen deficiency as induced by an aromatase inhibitor in an aged male rat model. Bone, 2000, 27, 611-617.	2.9	73
57	Sex hormones, their receptors and bone health. Osteoporosis International, 2008, 19, 1517-1525.	3.1	72
58	Osteoporosis in men. Best Practice and Research in Clinical Endocrinology and Metabolism, 2011, 25, 321-335.	4.7	72
59	<scp>EAA</scp> clinical guideline on management of bone health in the andrological outpatient clinic. Andrology, 2018, 6, 272-285.	3.5	69
60	Osteoporosis and osteoporotic fracture occurrence and prevention in the elderly: a geriatric perspective. Best Practice and Research in Clinical Endocrinology and Metabolism, 2008, 22, 765-785.	4.7	68
61	Endocrine determinants of incident sarcopenia in middle-aged and elderly European men. Journal of Cachexia, Sarcopenia and Muscle, 2015, 6, 242-252.	7.3	68
62	Androgen receptor disruption increases the osteogenic response to mechanical loading in male mice. Journal of Bone and Mineral Research, 2010, 25, 124-131.	2.8	66
63	The aged male rat as a model for human osteoporosis: Evaluation by nondestructive measurements and biomechanical testing. Calcified Tissue International, 1993, 53, 342-347.	3.1	65
64	Role of the Androgen Receptor in Skeletal Homeostasis: The Androgen-Resistant Testicular Feminized Male Mouse Model. Journal of Bone and Mineral Research, 2004, 19, 1462-1470.	2.8	64
65	Low Prolactin Is Associated with Sexual Dysfunction and Psychological or Metabolic Disturbances in Middle-Aged and Elderly Men: The European Male Aging Study (EMAS). Journal of Sexual Medicine, 2014, 11, 240-253.	0.6	63
66	Active Vitamin D (1,25-Dihydroxyvitamin D) and Bone Health in Middle-Aged and Elderly Men: The European Male Aging Study (EMAS). Journal of Clinical Endocrinology and Metabolism, 2013, 98, 995-1005.	3.6	61
67	Genetic Determinants of Circulating Estrogen Levels and Evidence of a Causal Effect of Estradiol on Bone Density in Men. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 991-1004.	3.6	60
68	Treatment of Men with Central Hypogonadism: Alternatives for Testosterone Replacement Therapy. International Journal of Molecular Sciences, 2021, 22, 21.	4.1	59
69	Androgens and bone. Current Opinion in Endocrinology, Diabetes and Obesity, 2008, 15, 250-254.	2.3	58
70	Thyroid hormones and male sexual function. Journal of Developmental and Physical Disabilities, 2012, 35, 668-679.	3.6	58
71	Comparisons of Immunoassay and Mass Spectrometry Measurements of Serum Estradiol Levels and Their Influence on Clinical Association Studies in Men. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1097-E1102.	3.6	58
72	Additive Protective Effects of Estrogen and Androgen Treatment on Trabecular Bone in Ovariectomized Rats. Journal of Bone and Mineral Research, 2004, 19, 1833-1839.	2.8	56

#	Article	IF	CITATIONS
73	Androgens and estrogens in skeletal sexual dimorphism. Asian Journal of Andrology, 2014, 16, 213.	1.6	56
74	Genetic variation in the RANKL/RANK/OPG signaling pathway is associated with bone turnover and bone mineral density in men. Journal of Bone and Mineral Research, 2010, 25, 1830-1838.	2.8	55
75	Once-Yearly Zoledronic Acid in Older Men Compared with Women with Recent Hip Fracture. Journal of the American Geriatrics Society, 2011, 59, 2084-2090.	2.6	55
76	Sensitive routine liquid chromatography–tandem mass spectrometry method for serum estradiol and estrone without derivatization. Analytical and Bioanalytical Chemistry, 2013, 405, 8569-8577.	3.7	54
77	Calcium and bone homeostasis in heterozygous carriers of CYP24A1 mutations: A cross-sectional study. Bone, 2015, 81, 89-96.	2.9	54
78	Frailty in Relation to Variations in Hormone Levels of the Hypothalamic-Pituitary-Testicular Axis in Older Men: Results From the European Male Aging Study. Journal of the American Geriatrics Society, 2011, 59, 814-821.	2.6	52
79	Association of cognitive performance with the metabolic syndrome and with glycaemia in middleâ€aged and older European men: the European Male Ageing Study. Diabetes/Metabolism Research and Reviews, 2010, 26, 668-676.	4.0	47
80	Influence of age and sex steroids on bone density and geometry in middle-aged and elderly European men. Osteoporosis International, 2011, 22, 1513-1523.	3.1	46
81	Osteoporosis in older men: Recent advances inÂpathophysiology and treatment. Best Practice and Research in Clinical Endocrinology and Metabolism, 2013, 27, 527-539.	4.7	46
82	Symptomatic androgen deficiency develops only when both total and free testosterone decline in obese men who may have incident biochemical secondary hypogonadism: Prospective results from the EMAS. Clinical Endocrinology, 2018, 89, 459-469.	2.4	44
83	Testosterone boosts physical activity in male mice via dopaminergic pathways. Scientific Reports, 2018, 8, 957.	3.3	43
84	Androgen resistance and deficiency have different effects on the growing skeleton of the rat. Calcified Tissue International, 1994, 55, 198-203.	3.1	42
85	Semaphorin signaling in bone. Molecular and Cellular Endocrinology, 2016, 432, 66-74.	3.2	42
86	Bone and muscle protective potential of the prostate-sparing synthetic androgen 7α-methyl-19-nortestosterone: Evidence from the aged orchidectomized male rat model. Bone, 2005, 36, 663-670.	2.9	41
87	Cohort Profile: The European Male Ageing Study. International Journal of Epidemiology, 2013, 42, 391-401.	1.9	41
88	Age-related changes in female mouse cortical bone microporosity. Bone, 2018, 113, 1-8.	2.9	41
89	Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage. Endocrinology, 2015, 156, 4522-4533.	2.8	39
90	Estrogen-specific action on bone geometry and volumetric bone density: Longitudinal observations in an adult with complete androgen insensitivity. Bone, 2009, 45, 392-397.	2.9	38

#	Article	IF	CITATIONS
91	Novel insights in the regulation and mechanism of androgen action on bone. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 240-244.	2.3	38
92	Conadal sex steroid status and bone health in middle-aged and elderly European men. Osteoporosis International, 2010, 21, 1331-1339.	3.1	37
93	Effect of Polymorphisms in Selected Genes Involved in Pituitary-Testicular Function on Reproductive Hormones and Phenotype in Aging Men. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1898-1908.	3.6	37
94	Determination of human reference values for serum total 1,25-dihydroxyvitamin D using an extensively validated 2D ID-UPLC–MS/MS method. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 127-133.	2.5	37
95	Physical activity in the androgen receptor knockout mouse: Evidence for reversal of androgen deficiency on cancellous bone. Biochemical and Biophysical Research Communications, 2009, 378, 139-144.	2.1	34
96	The androgen receptor has no direct antiresorptive actions in mouse osteoclasts. Molecular and Cellular Endocrinology, 2015, 411, 198-206.	3.2	34
97	Reassessing Free-Testosterone Calculation by Liquid Chromatography–Tandem Mass Spectrometry Direct Equilibrium Dialysis. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 2167-2174.	3.6	33
98	Long-term complications in patients with chronic hypoparathyroidism: a cross-sectional study. European Journal of Endocrinology, 2019, 180, 71-78.	3.7	33
99	Higher 25(OH)D2 Is Associated With Lower 25(OH)D3 and 1,25(OH)2D3. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 2736-2744.	3.6	32
100	Associations of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D With Bone Mineral Density, Bone Mineral Density Change, and Incident Nonvertebral Fracture. Journal of Bone and Mineral Research, 2015, 30, 1403-1413.	2.8	32
101	Phosphorus metabolism in peritoneal dialysis- and haemodialysis-treated patients. Nephrology Dialysis Transplantation, 2016, 31, 1508-1514.	0.7	32
102	Sex steroids and the kidney: role in renal calcium and phosphate handling. Molecular and Cellular Endocrinology, 2018, 465, 61-72.	3.2	32
103	Natural history, risk factors and clinical features of primary hypogonadism in ageing men: Longitudinal Data from the European Male Ageing Study. Clinical Endocrinology, 2016, 85, 891-901.	2.4	31
104	Vitamin D supplementation in cutaneous malignant melanoma outcome (ViDMe): a randomized controlled trial. BMC Cancer, 2017, 17, 562.	2.6	31
105	Reversing Sex Steroid Deficiency and Optimizing Skeletal Development in the Adolescent with Gonadal Failure. , 2005, 8, 150-165.		29
106	Androgens have antiresorptive effects on trabecular disuse osteopenia independent from muscle atrophy. Bone, 2016, 93, 33-42.	2.9	29
107	Lower bone turnover and relative bone deficits in men with metabolic syndrome: a matter of insulin sensitivity? The European Male Ageing Study. Osteoporosis International, 2016, 27, 3227-3237.	3.1	29
108	Serum Testosterone is Inversely and Sex Hormone-binding Globulin is Directly Associated with All-cause Mortality in Men. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e625-e637.	3.6	29

#	Article	IF	CITATIONS
109	Influence of bone remodelling rate on quantitative ultrasound parameters at the calcaneus and DXA BMDa of the hip and spine in middle-aged and elderly European men: the European Male Ageing Study (EMAS). European Journal of Endocrinology, 2011, 165, 977-986.	3.7	28
110	Functional effects of sex hormone-binding globulin variants. Nature Reviews Endocrinology, 2014, 10, 516-517.	9.6	28
111	Reproductive Hormone Levels Predict Changes in Frailty Status in Community-Dwelling Older Men: European Male Ageing Study Prospective Data. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 701-709.	3.6	28
112	Age-associated endocrine deficiencies as potential determinants of femoral neck (type II) osteoporotic fracture occurrence in elderly men. Journal of Developmental and Physical Disabilities, 1997, 20, 134-143.	3.6	27
113	Associations of total and free 250HD and 1,25(0H)2D with serum markers of inflammation in older men. Osteoporosis International, 2016, 27, 2291-2300.	3.1	27
114	Accuracy and reproducibility of mouse cortical bone microporosity as quantified by desktop microcomputed tomography. PLoS ONE, 2017, 12, e0182996.	2.5	27
115	Elevated luteinizing hormone despite normal testosterone levels in older men—natural history, risk factors and clinical features. Clinical Endocrinology, 2018, 88, 479-490.	2.4	26
116	An Aged Rat Model of Partial Androgen Deficiency: Prevention of Both Loss of Bone and Lean Body Mass by Low-Dose Androgen Replacement. Endocrinology, 2000, 141, 1642-1647.	2.8	26
117	MANTA and MANTA-RAy: Rationale and Design of Trials Evaluating Effects of Filgotinib on Semen Parameters in Patients with Inflammatory Diseases. Advances in Therapy, 2022, 39, 3403-3422.	2.9	26
118	Low vitamin D and the risk of developing chronic widespread pain: results from the European male ageing study. BMC Musculoskeletal Disorders, 2016, 17, 32.	1.9	25
119	Influence of Lifestyle Factors on Quantitative Heel Ultrasound Measurements in Middle-Aged and Elderly Men. Calcified Tissue International, 2010, 86, 211-219.	3.1	24
120	Effects of sex hormone-binding globulin (SHBG) on androgen bioactivity inÂvitro. Molecular and Cellular Endocrinology, 2016, 437, 280-291.	3.2	23
121	Genetic variant in the osteoprotegerin gene is associated with aromatase inhibitor-related musculoskeletal toxicity in breast cancer patients. European Journal of Cancer, 2016, 56, 31-36.	2.8	23
122	Associations of Serum Testosterone and Sex Hormone–Binding Globulin With Incident Cardiovascular Events in Middle-Aged to Older Men. Annals of Internal Medicine, 2022, 175, 159-170.	3.9	23
123	Influence of Insulin-Like Growth Factor Binding Protein (IGFBP)-1 and IGFBP-3 on Bone Health: Results from the European Male Ageing Study. Calcified Tissue International, 2011, 88, 503-510.	3.1	22
124	A role for selective androgen response elements in the development of the epididymis and the androgen control of the 5 \hat{I}_{\pm} reductase II gene. FASEB Journal, 2012, 26, 4360-4372.	0.5	22
125	Genetic Variation in Sex Hormone Genes Influences Heel Ultrasound Parameters in Middle-Aged and Elderly Men: Results From the European Male Aging Study (EMAS). Journal of Bone and Mineral Research, 2009, 24, 314-323.	2.8	21
126	Aromatase inhibitors and selective estrogen receptor modulators: Unconventional therapies for functional hypogonadism?. Andrology, 2020, 8, 1590-1597.	3.5	21

#	Article	IF	CITATIONS
127	Sociodemographic, lifestyle and medical influences on serum testosterone and sex hormone–binding globulin in men from UK Biobank. Clinical Endocrinology, 2021, 94, 290-302.	2.4	21
128	Inflammatory markers are associated with quality of life, physical activity, and gait speed but not sarcopenia in aged men (40–79Âyears). Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1818-1831.	7.3	21
129	The Estrogen Receptor Ligand ICI 182,780 Does Not Impair the Bone-Sparing Effects of Testosterone in the Young Orchidectomized Rat Model. Calcified Tissue International, 2002, 70, 170-175.	3.1	20
130	The androgen receptor depends on ligandâ€binding domain dimerization for transcriptional activation. EMBO Reports, 2021, 22, e52764.	4.5	20
131	Polymorphisms in Genes Involved in the NF-κB Signalling Pathway Are Associated with Bone Mineral Density, Geometry and Turnover in Men. PLoS ONE, 2011, 6, e28031.	2.5	19
132	Association of 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D and parathyroid hormone with mortality among middle-aged and older European men. Age and Ageing, 2014, 43, 528-535.	1.6	19
133	Frailty and bone health in European men. Age and Ageing, 2016, 46, 635-641.	1.6	19
134	Nonandrogenic Anabolic Hormones Predict Risk of Frailty: European Male Ageing Study Prospective Data. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2798-2806.	3.6	19
135	Lower serum testosterone concentrations are associated with a higher incidence of dementia in men: The UK Biobank prospective cohort study. Alzheimer's and Dementia, 2022, 18, 1907-1918.	0.8	19
136	Androgens and osteoporosis. Andrologia, 2000, 32, 125-130.	2.1	18
137	1β,25-Dihydroxyvitamin D 3 : A new vitamin D metabolite in human serum. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 341-348.	2.5	18
138	Associations of obesity with socioeconomic and lifestyle factors in middle-aged and elderly men: European Male Aging Study (EMAS). European Journal of Endocrinology, 2015, 172, 59-67.	3.7	17
139	Free Testosterone Reflects Metabolic as well as Ovarian Disturbances in Subfertile Oligomenorrheic Women. International Journal of Endocrinology, 2018, 2018, 1-8.	1.5	17
140	Influence of Polymorphisms in the RANKL/RANK/OPG Signaling Pathway on Volumetric Bone Mineral Density and Bone Geometry at the Forearm in Men. Calcified Tissue International, 2011, 89, 446-455.	3.1	16
141	Glycemia but not the Metabolic Syndrome is Associated with Cognitive Decline: Findings from the European Male Ageing Study. American Journal of Geriatric Psychiatry, 2017, 25, 662-671.	1.2	16
142	A shortened tamoxifen induction scheme to induce CreER recombinase without side effects on the male mouse skeleton. Molecular and Cellular Endocrinology, 2017, 452, 57-63.	3.2	15
143	Bone turnover predicts change in volumetric bone density and bone geometry at the radius in men. Osteoporosis International, 2017, 28, 935-944.	3.1	15
144	Androgen Receptor in Neurons Slows Age-Related Cortical Thinning in Male Mice. Journal of Bone and Mineral Research, 2019, 34, 508-519.	2.8	15

#	Article	IF	CITATIONS
145	Arthralgia induced by endocrine treatment for breast cancer: A prospective study of serum levels of insulin like growth factor-I, its binding protein and oestrogens. European Journal of Cancer, 2014, 50, 2925-2931.	2.8	14
146	Estrogen Deficiency in Men Is a Challenge for Both the Hypothalamus and Pituitary. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 3024-3026.	3.6	13
147	Evaluation of cognitive subdomains, 25-hydroxyvitamin D, and 1,25-dihydroxyvitamin D in the European Male Ageing Study. European Journal of Nutrition, 2017, 56, 2093-2103.	3.9	13
148	Androgen and estrogen actions on male physical activity: a story beyond muscle. Journal of Endocrinology, 2018, 238, R31-R52.	2.6	13
149	Testosterone replacement in congenital hypogonadotropic hypogonadism maintains bone density but has only limited osteoanabolic effects. Andrology, 2019, 7, 302-306.	3.5	13
150	Total, Bioavailable, and Free 25(OH)D Relationship with Indices of Bone Health in Elderly: A Randomized Controlled Trial. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e990-e1001.	3.6	13
151	Testosterone Reduces Body Fat in Male Mice by Stimulation of Physical Activity Via Extrahypothalamic ERα Signaling. Endocrinology, 2021, 162, .	2.8	13
152	Erectile dysfunction predicts mortality in middle-aged and older men independent of their sex steroid status. Age and Ageing, 2022, 51, .	1.6	11
153	Need for Estradiol Assays With a Lower Functional Sensitivity in Clinical Studies Examining Postmenopausal Women Treated With Aromatase Inhibitors. Journal of Clinical Oncology, 2013, 31, 509-509.	1.6	10
154	Estradiol and Age-Related Bone Loss in Men. Physiological Reviews, 2018, 98, 1-1.	28.8	10
155	Androgen exposure and the maintenance of skeletal integrity in aging men. Aging Male, 1998, 1, 180-187.	1.9	9
156	O-173. Coping style and depression level influence outcome in IVF. Human Reproduction, 1999, 14, 96-96.	0.9	9
157	Relationship of Total and Free 25-Hydroxyvitamin D to Biomarkers and Metabolic Indices in Healthy Children. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e1631-e1640.	3.6	9
158	Mechanical stress regulates bone regulatory gene expression independent of estrogen and vitamin D deficiency in rats. Journal of Orthopaedic Research, 2021, 39, 42-52.	2.3	9
159	The ESR1 (6q25) Locus Is Associated with Calcaneal Ultrasound Parameters and Radial Volumetric Bone Mineral Density in European Men. PLoS ONE, 2011, 6, e22037.	2.5	9
160	Androgen Receptor Polymorphism-Dependent Variation in Prostate-Specific Antigen Concentrations of European Men. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2048-2056.	2.5	8
161	Bone health in ageing men. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 1173-1208.	5.7	8
162	Possibilities and limitations of signal summing for an immunosuppressant LC-MS/MS method. Analytical and Bioanalytical Chemistry, 2015, 407, 6191-6199.	3.7	7

#	Article	IF	CITATIONS
163	Estrogen receptor alpha signaling in extrahypothalamic neurons during late puberty decreases bone size and strength in female but not in male mice. FASEB Journal, 2020, 34, 7118-7126.	0.5	7
164	Novel model to study the physiological effects of temporary or prolonged sex steroid deficiency in male mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E415-E424.	3.5	7
165	Testosterone and bone. , 2012, , 177-190.		6
166	Early effects of androgen deprivation on bone and mineral homeostasis in adult men: a prospective cohort study. European Journal of Endocrinology, 2020, 183, 181-189.	3.7	6
167	Aging Men With Insufficient Vitamin D Have a Higher Mortality Risk: No Added Value of its Free Fractions or Active Form. Journal of Clinical Endocrinology and Metabolism, 2021, , .	3.6	6
168	Estrogens, the be-all and end-all of male hypogonadal bone loss?. Osteoporosis International, 2015, 26, 29-33.	3.1	5
169	Prospective evaluation of hypogonadism in male metastatic renal cell carcinoma patients treated with targeted therapies. Acta Clinica Belgica, 2019, 74, 169-179.	1.2	5
170	Bone mineral density is preserved in men with idiopathic infertility. Andrology, 2020, 8, 315-322.	3.5	5
171	Self-Reported Shorter Than Desired Ejaculation Latency and Related Distress—Prevalence and Clinical Correlates: Results From the European Male Ageing Study. Journal of Sexual Medicine, 2021, 18, 908-919.	0.6	5
172	Oncogenic osteomalacia illustrating the effect of fibroblast growth factor 23 on phosphate homeostasis. CKJ: Clinical Kidney Journal, 2012, 5, 240-243.	2.9	4
173	Osteoporosis in Men. , 2013, , 757-802.		4
174	Low heel ultrasound parameters predict mortality in men: results from the European Male Ageing Study (EMAS). Age and Ageing, 2015, 44, 801-807.	1.6	4
175	Androgens In Men Study (AIMS): protocol for meta-analyses of individual participant data investigating associations of androgens with health outcomes in men. BMJ Open, 2020, 10, e034777.	1.9	4
176	Androgen action on renal calcium and phosphate handling: Effects of bisphosphonate treatment and low calcium diet. Molecular and Cellular Endocrinology, 2020, 514, 110891.	3.2	4
177	High serum FSH is not a risk factor for low bone mineral density in infertile men. Bone, 2020, 136, 115366.	2.9	4
178	Aging and Bone Loss. , 2010, , 207-219.		4
179	The number of androgen receptor CAG repeats and mortality in men. Aging Male, 2022, 25, 167-172.	1.9	4
180	Bone disorders: Mechanisms and targets. Molecular and Cellular Endocrinology, 2016, 432, 1-2.	3.2	3

#	Article	IF	CITATIONS
181	Testicular Vein Sampling Can Reveal Gonadotropin-Independent Unilateral Steroidogenesis Supporting Spermatogenesis. Journal of the Endocrine Society, 2019, 3, 1881-1886.	0.2	3
182	25-OHD response to vitamin D supplementation in children: effect of dose but not GC haplotype. European Journal of Endocrinology, 2021, 185, 333-342.	3.7	3
183	The impact of androgen deprivation therapy on bone mineral density in men treated for paraphilic disorder: A retrospective cohort study. Andrology, 2022, 10, 545-550.	3.5	3
184	Clinical Risk Factors for Osteoporotic Hip Fracture in Elderly Women – Implications for Fracture Prevention. European Journal of Trauma and Emergency Surgery, 2001, 27, 163-170.	0.3	2
185	Hypocalcemia after Denosumab in a Pulmonary Hypertension Patient Receiving Epoprostenol. Respiration, 2018, 95, 139-142.	2.6	2
186	Osteoporosis in men: what is similar and what is different?. , 2021, , 589-632.		2
187	Chapter 24. Gonadal Steroids. , 0, , 117-123.		2
188	Animal Models for Gender-Based Skeletal Differences. , 2004, , 1043-1051.		2
189	Reproductive hormone levels, androgen receptor CAG repeat length and their longitudinal relationships with decline in cognitive subdomains in men: The European Male Ageing Study Physiology and Behavior, 2022, 252, 113825.	2.1	2
190	Inhaled corticosteroids and risk of osteoporosis in asthma - reply. Journal of Internal Medicine, 2005, 258, 296-299.	6.0	1
191	Targeted disruption of androgen receptor in mouse osteocytes: The androgen receptor in osteocytes is important for the maintenance of bone structure in males. Bone, 2012, 50, S60.	2.9	1
192	Which model to predict fracture risk?. Nature Reviews Endocrinology, 2014, 10, 194-195.	9.6	1
193	Minimal interference from paricalcitol (Zemplar®) in underivatized 1,25-dihydroxyvitamin D LC-MS/MS assays. Clinica Chimica Acta, 2014, 429, 104-105.	1.1	1
194	The impact of isolated teratozoospermia on the cumulative life birth rate in IUI. Fertility and Sterility, 2002, 78, S56.	1.0	0
195	Genetic aspects in the gender-specific aging of men. Journal of Men's Health, 2008, 5, A3-A3.	0.3	Ο
196	Androgens and osteoporosis. Andrologia, 2000, 32, 125-130.	2.1	0
197	Estrogen and the Skeleton – Rodents. , 2010, , 283-287.		0
198	Case report: Parameters of mineral metabolism after removal of a phosphaturic mesenchymal tumor. Bone, 2011, 48, S84.	2.9	0

#	Article	IF	CITATIONS
199	â€~Fracture incidence after 3 years of aromatase inhibitor therapy'. Annals of Oncology, 2014, 25, 1665-1666.	1.2	0
200	P093 Sleep characteristics and frailty in men: the influence of testosterone. Rheumatology, 2021, 60, .	1.9	0
201	Abstract P2-13-06: Effect of letrozole on bone and joints in collagen-induced arthritis in mice. , 2012, , .		0
202	Selective and Classical Androgen Response Elements in Androgen-Regulated Gene Expression. , 2013, , 13-27.		0
203	Abstract P1-13-09: Sensitive liquid chromatography-tandem mass spectrometry method for serum estradiol and estrone assessment without derivatisation, overcoming cross reactivity with exemestane. , 2013, , .		0
204	Abstract P1-13-08: Arthralgia and changes in serum levels of IGF-I, its binding protein and estrogen in breast cancer patients on endocrine agents. , 2013, , .		0
205	Abstract P1-03-05: Genetic variant in the OPG gene is associated with aromatase inhibitor-related musculoskeletal toxicity in breast cancer patients. , 2015, , .		0
206	Low free testosterone is associated with hypogonadal symptoms in men with normal total testosterone levels: results from the European Male Ageing Study. Endocrine Abstracts, 0, , .	0.0	0
207	Letter to the Editor: 25-Hydroxyvitamin D Does Not Interfere With Liquid Chromatography Tandem Mass Spectrometry Assays for 1,25-Dihydroxyvitamin D. Journal of Clinical Endocrinology and Metabolism, 2015, 100, L82-L83.	3.6	0
208	Endogenous testosterone supports spermatogenesis even in the absence of gonadotrophins: evidence from a case report. Endocrine Abstracts, 0, , .	0.0	0
209	SAT0700â€The relationship between musculoskeltal pain, inflammation and depression in men. , 2018, , .		0
210	Endogenous testosterone supports spermatogenesis even in the absence of gonadotrophins: evidence from a case report. Endocrine Abstracts, 0, , .	0.0	0
211	High serum FSH is not a risk factor for low bone mineral density in infertile men. Endocrine Abstracts, 0, , .	0.0	0
212	Free 25-hydroxyvitamin D, but not free 1.25-dihydroxyvitamin D, predicts all-cause mortality in ageing men. Endocrine Abstracts, 0, , .	0.0	0
213	Inactivation of AR or ERα in extrahypothalamic neurons does not affect osteogenic response to loading in male mice. Endocrinology, 0, , .	2.8	0