List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7848241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Research, 2009, 141, 158-168.	2.2	357
2	A Plant Virus Manipulates the Behavior of Its Whitefly Vector to Enhance Its Transmission Efficiency and Spread. PLoS ONE, 2013, 8, e61543.	2.5	185
3	A non-persistently transmitted-virus induces a pull–push strategy in its aphid vector to optimize transmission and spread. Virus Research, 2014, 186, 38-46.	2.2	108
4	Quantitative detection of Citrus tristeza virus in plant tissues and single aphids by real-time RT-PCR. European Journal of Plant Pathology, 2008, 120, 177-188.	1.7	81
5	A virus responds instantly to the presence of the vector on the host and forms transmission morphs. ELife, 2013, 2, e00183.	6.0	81
6	Cauliflower mosaic virus is preferentially acquired from the phloem by its aphid vectors. Journal of General Virology, 2002, 83, 3163-3171.	2.9	77
7	Distribution and Relative Abundance of Insect Vectors of Xylella fastidiosa in Olive Groves of the Iberian Peninsula. Insects, 2018, 9, 175.	2.2	76
8	Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability. Scientific Reports, 2016, 6, 19120.	3.3	68
9	Differences in the mechanism of inoculation between a semi-persistent and a non-persistent aphid-transmitted plant virus. Journal of General Virology, 2012, 93, 662-667.	2.9	63
10	Aphids secrete watery saliva into plant tissues from the onset of stylet penetration. Entomologia Experimentalis Et Applicata, 2011, 139, 145-153.	1.4	61
11	Identification of Plant Virus Receptor Candidates in the Stylets of Their Aphid Vectors. Journal of Virology, 2018, 92, .	3.4	53
12	<i>Cucurbit aphid-borne yellows virus</i> (CABYV) modifies the alighting, settling and probing behaviour of its vector <i>Aphis gossypii</i> favouring its own spread. Annals of Applied Biology, 2016, 169, 284-297.	2.5	51
13	Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus. Virus Research, 2004, 100, 83-88.	2.2	50
14	Risk assessment of â€~Candidatus Liberibacter solanacearum' transmission by the psyllids Bactericera trigonica and B. tremblayi from Apiaceae crops to potato. Scientific Reports, 2017, 7, 45534.	3.3	48
15	Impact of Ultraviolet-blocking Plastic Films on Insect Vectors of Virus Diseases Infesting Crisp Lettuce. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 711-716.	1.0	47
16	The Relationship between Host Lifespan and Pathogen Reservoir Potential: An Analysis in the System Arabidopsis thaliana-Cucumber mosaic virus. PLoS Pathogens, 2014, 10, e1004492.	4.7	45
17	Stylet penetration activities linked to the acquisition and inoculation of <i><scp>C</scp>andidatus </i> <scp>L</scp> iberibacter solanacearum by its vector tomato potato psyllid. Entomologia Experimentalis Et Applicata, 2014, 151, 170-181.	1.4	44
18	The incidence and distribution of viruses infecting lettuce, cultivated Brassica and associated natural vegetation in Spain. Annals of Applied Biology, 2004, 144, 339-346.	2.5	38

#	Article	IF	CITATIONS
19	Spatio-Temporal Dynamics of Viruses are Differentially Affected by Parasitoids Depending on the Mode of Transmission. Viruses, 2012, 4, 3069-3089.	3.3	38
20	Genetic Diversity and Potential Vectors and Reservoirs of <i>Cucurbit aphid-borne yellows virus</i> in Southeastern Spain. Phytopathology, 2013, 103, 1188-1197.	2.2	38
21	Electrical penetration graph technique as a tool to monitor the early stages of aphid resistance to insecticides. Pest Management Science, 2016, 72, 707-718.	3.4	38
22	Impact of UV-A radiation on the performance of aphids and whiteflies and on the leaf chemistry of their host plants. Journal of Photochemistry and Photobiology B: Biology, 2014, 138, 307-316.	3.8	36
23	Tomato Yellow Leaf Curl Virus Benefits Population Growth of the Q Biotype of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Neotropical Entomology, 2014, 43, 385-392.	1.2	35
24	Control of insect vectors and plant viruses in protected crops by novel pyrethroid-treated nets. Pest Management Science, 2015, 71, 1397-1406.	3.4	34
25	Feeding Behavior and Virus-transmission Ability of Insect Vectors Exposed to Systemic Insecticides. Plants, 2020, 9, 895.	3.5	32
26	Quantitative estimation of plum pox virus targets acquired and transmitted by a single Myzus persicae. Archives of Virology, 2009, 154, 1391-1399.	2.1	30
27	A Single Amino Acid Position in the Helper Component of Cauliflower Mosaic Virus Can Change the Spectrum of Transmitting Vector Species. Journal of Virology, 2005, 79, 13587-13593.	3.4	29
28	Intracellular Salivation Is the Mechanism Involved in the Inoculation of Cauliflower Mosaic Virus by Its Major Vectors <1>Brevicoryne brassicae 1 and <1>Myzus persicae 1 . Annals of the Entomological Society of America, 2005, 98, 763-769.	2.5	28
29	Calculation of Diagnostic Parameters of Advanced Serological and Molecular Tissue-Print Methods for Detection of <i>Citrus tristeza virus</i> : A Model for Other Plant Pathogens. Phytopathology, 2012, 102, 114-121.	2.2	28
30	Stylet penetration activities of the whitefly Bemisia tabaci associated with inoculation of the crinivirus Tomato chlorosis virus. Journal of General Virology, 2017, 98, 1515-1520.	2.9	28
31	EPG combined with micro-CT and video recording reveals new insights on the feeding behavior of Philaenus spumarius. PLoS ONE, 2018, 13, e0199154.	2.5	26
32	Virus Diseases in Lettuce in the Mediterranean Basin. Advances in Virus Research, 2012, 84, 247-288.	2.1	23
33	Sulfoxaflor and Natural Pyrethrin with Piperonyl Butoxide Are Effective Alternatives to Neonicotinoids against Juveniles of Philaenus spumarius, the European Vector of Xylella fastidiosa. Insects, 2019, 10, 225.	2.2	23
34	Assessing the Impact on Virus Transmission and Insect Vector Behavior of a Viral Mixed Infection in Melon. Phytopathology, 2020, 110, 174-186.	2.2	22
35	Effect of UV-Blocking Plastic Films on Take-Off and Host Plant Finding Ability of Diaphorina citri (Hemiptera: Liviidae). Journal of Economic Entomology, 2015, 108, 245-251.	1.8	21
36	Newly Distinguished Cell Punctures Associated with Transmission of the Semipersistent Phloem-Limited Beet Yellows Virus. Journal of Virology, 2018, 92, .	3.4	20

#	Article	IF	CITATIONS
37	Continuous indoor rearing of <i>Philaenus spumarius</i> , the main European vector of <i>Xylella fastidiosa</i> . Journal of Applied Entomology, 2018, 142, 901-904.	1.8	19
38	Characterization of the electrical penetration graphs of the psyllid <i><scp>B</scp>actericera trigonica</i> on carrots. Entomologia Experimentalis Et Applicata, 2017, 163, 127-139.	1.4	18
39	Changes in feeding behaviour are not related to the reduction in the transmission rate of plant viruses by Aphis gossypii (Homoptera: Aphididae) to melon plants colonized by Beauveria bassiana (Ascomycota: Hypocreales). Biological Control, 2019, 130, 95-103.	3.0	18
40	The phloem-pd: a distinctive brief sieve element stylet puncture prior to sieve element phase of aphid feeding behavior. Arthropod-Plant Interactions, 2020, 14, 67-78.	1.1	18
41	Feeding behavior in relation to spittlebug transmission of Xylella fastidiosa. Journal of Pest Science, 2020, 93, 1197-1213.	3.7	18
42	Seasonal Abundance of Psyllid Species on Carrots and Potato Crops in Spain. Insects, 2019, 10, 287.	2.2	16
43	Feeding behavior, life history, and virus transmission ability of <i>Bemisia tabaci</i> Mediterranean species (Hemiptera: Aleyrodidae) under elevated CO ₂ . Insect Science, 2020, 27, 558-570.	3.0	16
44	Dispersal of <i>Neophilaenus campestris</i> , a vector of <i>Xylella fastidiosa</i> , from olive groves to overâ€summering hosts. Journal of Applied Entomology, 2021, 145, 648-659.	1.8	16
45	Estimation of vector propensity for Lettuce mosaic virus based on viral detection in single aphids. Spanish Journal of Agricultural Research, 2007, 5, 376.	0.6	16
46	Temporal and spatial spread of Lettuce mosaic virus in lettuce crops in central Spain: factors involved in Lettuce mosaic virus epidemics. Annals of Applied Biology, 2007, 150, 351-360.	2.5	15
47	Flight performance and the factors affecting the flight behaviour of Philaenus spumarius the main vector of Xylella fastidiosa in Europe. Scientific Reports, 2021, 11, 17608.	3.3	15
48	Estimation of the accuracy of two diagnostic methods for the detection of <i>Plum pox virus</i> in nursery blocks by latent class models. Plant Pathology, 2012, 61, 413-422.	2.4	14
49	Sex-specific probing behaviour of the carrot psyllid Bactericera trigonica and its implication in the transmission of â€~Candidatus Liberibacter solanacearum'. European Journal of Plant Pathology, 2017, 147, 627-637.	1.7	14
50	<i>Barley yellow dwarf virus</i> Can Be Inoculated During Brief Intracellular Punctures in Phloem Cells Before the Sieve Element Continuous Salivation Phase. Phytopathology, 2020, 110, 85-93.	2.2	13
51	Aphid Resistance: An Overlooked Ecological Dimension of Nonstructural Carbohydrates in Cereals. Frontiers in Plant Science, 2020, 11, 937.	3.6	13
52	Supplementary UV radiation on eggplants indirectly deters Bemisia tabaci settlement without altering the predatory orientation of their biological control agents Nesidiocoris tenuis and Sphaerophoria rueppellii. Journal of Pest Science, 2019, 92, 1057-1070.	3.7	12
53	Psyllids as major vectors of plant pathogens. Entomologia Generalis, 2021, 41, 419-438.	3.1	12
54	Biological and molecular characterization of P101 isolate, a tobamoviral pepper strain from Bulgaria. Archives of Virology, 2003, 148, 2115-2135.	2.1	9

#	Article	IF	CITATIONS
55	Susceptibility of <i>Prunus</i> rootstocks to natural infection of <i>Plum pox virus</i> and effect of mineral oil treatments. Annals of Applied Biology, 2010, 157, 447-457.	2.5	9
56	Flight behaviour of vegetable pests and their natural enemies under different ultravioletâ€blocking enclosures. Annals of Applied Biology, 2015, 167, 116-126.	2.5	9
57	Aphid orientation and performance in glasshouses under different UVâ€A/UVâ€B radiation regimes. Entomologia Experimentalis Et Applicata, 2017, 163, 344-353.	1.4	9
58	Spatial and temporal spread of <i>Citrus tristeza virus</i> and its aphid vectors in the North western area of Morocco. Insect Science, 2016, 23, 903-912.	3.0	8
59	Transmission of â€~Candidatus Liberibacter solanacearum' by Bactericera trigonica Hodkinson to vegetable hosts. Spanish Journal of Agricultural Research, 2018, 15, e1011.	0.6	8
60	Parapause breakage as a key step for the continuous indoor rearing of <i>Philaenus spumarius</i> . Journal of Applied Entomology, 2021, 145, 1062-1067.	1.8	7
61	Habitat manipulation for sustainable management of <i>Philaenus spumarius</i> , the main vector of <i>Xylella fastidiosa</i> in Europe. Pest Management Science, 2022, 78, 4183-4194.	3.4	7
62	The occurrence and abundance of two alien eucalypt psyllids in apple orchards. Pest Management Science, 2014, 70, 1676-1683.	3.4	6
63	INSECTICIDE-TREATED NETS AS A NEW APPROACH TO CONTROL VEGETABLE PESTS IN PROTECTED CROPS. Acta Horticulturae, 2014, , 103-111.	0.2	6
64	The role of plant labile carbohydrates and nitrogen on wheat-aphid relationsÂ. Scientific Reports, 2021, 11, 12529.	3.3	6
65	Candidate insect vectors of apple proliferation in Northwest Spain. SpringerPlus, 2016, 5, 1240.	1.2	5
66	Effect of Potato virus Y Presence in Solanum tuberosum (Solanales: Solanaceae) and Chenopodium album on Aphid (Hemiptera: Aphididae) Behavior. Environmental Entomology, 2018, 47, 654-659.	1.4	5
67	Semipersistently Transmitted, Phloem Limited Plant Viruses Are Inoculated during the First Subphase of Intracellular Stylet Penetrations in Phloem Cells. Viruses, 2021, 13, 137.	3.3	5
68	Artificial diet delivery system for <i>Philaenus spumarius</i> , the European vector of <i>Xylella fastidiosa</i> . Journal of Applied Entomology, 2019, 143, 882-892.	1.8	4
69	Host plant preference of Trioza erytreae on lemon and bitter orange plants. Arthropod-Plant Interactions, 2021, 15, 887-896.	1.1	4
70	Fasting alters aphid probing behaviour but does not universally increase the transmission rate of non-circulative viruses. Journal of General Virology, 2017, 98, 3111-3121.	2.9	4
71	â€~Candidatus Liberibacter Solanacearum' Is Unlikely to Be Transmitted Spontaneously from Infected Carrot Plants to Citrus Plants by Trioza Erytreae. Insects, 2020, 11, 514.	2.2	3
72	Epidemiology of Citrus tristeza virus in nursery blocks of Citrus macrophylla and evaluation of control measures. Spanish Journal of Agricultural Research, 2012, 10, 1107.	0.6	2

#	Article	IF	CITATIONS
73	A novel molecular diagnostic method for the gut content analysis of Philaenus DNA. Scientific Reports, 2022, 12, 492.	3.3	2
74	Aphids Are Unable to Ingest Phloem Sap from the Peduncles of Lime Fruits. Plants, 2020, 9, 1528.	3.5	1
75	Probing behavior of Neophilaenus campestris on various plant species. Entomologia Experimentalis Et Applicata, 0, , .	1.4	1
76	Transmission of Phloem-Limited Viruses to the Host Plants by Their Aphid Vectors. Progress in Botany Fortschritte Der Botanik, 2020, , 357-382.	0.3	0