Lourens Poorter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7846941/publications.pdf

Version: 2024-02-01

189 29,422 85 papers citations h-index

194 194 194 22477
all docs docs citations times ranked citing authors

164

g-index

#	Article	IF	CITATIONS
1	New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61, 167.	0.3	2,818
2	Causes and consequences of variation in leaf mass per area (LMA): a metaâ€analysis. New Phytologist, 2009, 182, 565-588.	3.5	2,056
3	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	4.2	2,002
4	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	13.7	796
5	Biomass resilience of Neotropical secondary forests. Nature, 2016, 530, 211-214.	13.7	763
6	LEAF TRAITS ARE GOOD PREDICTORS OF PLANT PERFORMANCE ACROSS 53 RAIN FOREST SPECIES. Ecology, 2006, 87, 1733-1743.	1.5	684
7	Plant functional traits have globally consistent effects on competition. Nature, 2016, 529, 204-207.	13.7	655
8	ARE FUNCTIONAL TRAITS GOOD PREDICTORS OF DEMOGRAPHIC RATES? EVIDENCE FROM FIVE NEOTROPICAL FORESTS. Ecology, 2008, 89, 1908-1920.	1.5	572
9	The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 2010, 185, 481-492.	3.5	478
10	Functional traits and environmental filtering drive community assembly in a speciesâ€rich tropical system. Ecology, 2010, 91, 386-398.	1.5	447
11	Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2016, 2, e1501639.	4.7	423
12	Global patterns of leaf mechanical properties. Ecology Letters, 2011, 14, 301-312.	3.0	418
13	ARCHITECTURE OF 54 MOIST-FOREST TREE SPECIES: TRAITS, TRADE-OFFS, AND FUNCTIONAL GROUPS. Ecology, 2006, 87, 1289-1301.	1.5	406
14	Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought― and shadeâ€tolerance. Journal of Ecology, 2009, 97, 311-325.	1.9	372
15	Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 2015, 24, 1314-1328.	2.7	366
16	Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 2013, 22, 1261-1271.	2.7	365
17	Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206, 614-636.	3.5	350
18	An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7472-7477.	3.3	335

#	Article	IF	Citations
19	Relationships Among Ecologically Important Dimensions of Plant Trait Variation in Seven Neotropical Forests. Annals of Botany, 2007, 99, 1003-1015.	1.4	317
20	Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 2010, 13, 1338-1347.	3.0	312
21	Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell and Environment, 2011, 34, 137-148.	2.8	308
22	Biodiversity recovery of Neotropical secondary forests. Science Advances, 2019, 5, eaau3114.	4.7	291
23	Seedling Traits Determine Drought Tolerance of Tropical Tree Species. Biotropica, 2008, 40, 321-331.	0.8	282
24	Does functional trait diversity predict aboveâ€ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 2015, 103, 191-201.	1.9	265
25	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	4.2	265
26	Decomposition in tropical forests: a panâ€tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 2009, 97, 801-811.	1.9	256
27	Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance. New Phytologist, 2011, 191, 480-495.	3.5	256
28	Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 2017, 23, 177-190.	4.2	254
29	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	2.7	248
30	Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 2013, 94, 1211-1216.	1.5	239
31	Tissueâ€level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytologist, 2010, 186, 708-721.	3.5	226
32	Linking functional diversity and social actor strategies in a framework for interdisciplinary analysis of nature's benefits to society. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 895-902.	3.3	216
33	Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.	5.8	214
34	CARBOHYDRATE STORAGE AND LIGHT REQUIREMENTS OF TROPICAL MOIST AND DRY FOREST TREE SPECIES. Ecology, 2007, 88, 1000-1011.	1.5	211
35	Beyond the regeneration phase: differentiation of height-light trajectories among tropical tree species. Journal of Ecology, 2005, 93, 256-267.	1.9	208
36	Functional traits determine trade-offs and niches in a tropical forest community. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20627-20632.	3.3	207

#	Article	IF	Citations
37	Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 2011, 99, 254-264.	1.9	202
38	Resilience of Amazon forests emerges from plant traitÂdiversity. Nature Climate Change, 2016, 6, 1032-1036.	8.1	201
39	Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 2015, 96, 1242-1252.	1.5	200
40	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	6.0	198
41	Are Species Adapted to Their Regeneration Niche, Adult Niche, or Both?. American Naturalist, 2007, 169, 433-442.	1.0	193
42	Biodiversity and climate determine the functioning of Neotropical forests. Global Ecology and Biogeography, 2017, 26, 1423-1434.	2.7	193
43	ARCHITECTURE OF 53 RAIN FOREST TREE SPECIES DIFFERING IN ADULT STATURE AND SHADE TOLERANCE. Ecology, 2003, 84, 602-608.	1.5	191
44	The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. Ecology Letters, 2009, 12, 798-805.	3.0	190
45	Functional traits shape ontogenetic growth trajectories of rain forest tree species. Journal of Ecology, 2011, 99, 1431-1440.	1.9	180
46	Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 2016, 104, 817-827.	1.9	180
47	Environmental changes during secondary succession in a tropical dry forest in Mexico. Journal of Tropical Ecology, 2011, 27, 477-489.	0.5	172
48	Ecosystem services research in Latin America: The state of the art. Ecosystem Services, 2012, 2, 56-70.	2.3	170
49	Multidimensional tropical forest recovery. Science, 2021, 374, 1370-1376.	6.0	165
50	Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Global Change Biology, 2015, 21, 2711-2725.	4.2	162
51	Leaf Traits and Herbivory Rates of Tropical Tree Species Differing in Successional Status. Plant Biology, 2004, 6, 746-754.	1.8	160
52	Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist, 2009, 181, 890-900.	3.5	160
53	Amazonian rainforest tree mortality driven by climate and functional traits. Nature Climate Change, 2019, 9, 384-388.	8.1	159
54	Phylogenetic classification of the world's tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1837-1842.	3.3	144

#	Article	IF	CITATIONS
55	Effects of disturbance intensity on species and functional diversity in a tropical forest. Journal of Ecology, 2012, 100, 1453-1463.	1.9	138
56	Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Functional Ecology, 2011, 25, 473-483.	1.7	131
57	Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 2015, 103, 978-989.	1.9	131
58	Lightâ€dependent leaf trait variation in 43 tropical dry forest tree species. American Journal of Botany, 2007, 94, 515-525.	0.8	128
59	Distribution patterns of tropical woody species in response to climatic and edaphic gradients. Journal of Ecology, 2012, 100, 253-263.	1.9	128
60	Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? Forest Ecology and Management, 2013, 303, 35-45.	1.4	125
61	Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12, 267-275.	1.1	123
62	Embolism resistance drives the distribution of Amazonian rainforest tree species along hydroâ€topographic gradients. New Phytologist, 2019, 221, 1457-1465.	3.5	123
63	BAAD: a Biomass And Allometry Database for woody plants. Ecology, 2015, 96, 1445-1445.	1.5	122
64	Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology and Evolution, 2019, 3, 928-934.	3.4	120
65	The importance of biodiversity and dominance for multiple ecosystem functions in a humanâ€modified tropical landscape. Ecology, 2016, 97, 2772-2779.	1.5	119
66	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	4.2	116
67	Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development, 2016, 9, 2415-2440.	1.3	115
68	Leaf size and leaf display of thirty-eight tropical tree species. Oecologia, 2008, 158, 35-46.	0.9	114
69	Seedâ€mass effects in four Mediterranean <i>Quercus</i> species (Fagaceae) growing in contrasting light environments. American Journal of Botany, 2007, 94, 1795-1803.	0.8	112
70	Abiotic and biotic drivers of biomass change in a Neotropical forest. Journal of Ecology, 2017, 105, 1223-1234.	1.9	112
71	Changing drivers of species dominance during tropical forest succession. Functional Ecology, 2014, 28, 1052-1058.	1.7	111
72	Functional diversity changes during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 89-96.	1.1	110

#	Article	ΙF	Citations
73	Title is missing!. Plant Ecology, 2003, 166, 295-306.	0.7	108
74	Legume abundance along successional and rainfall gradients in Neotropical forests. Nature Ecology and Evolution, $2018, 2, 1104-1111$.	3.4	107
75	Resprouting as a persistence strategy of tropical forest trees: relations with carbohydrate storage and shade tolerance. Ecology, 2010, 91, 2613-2627.	1.5	105
76	Light-dependent changes in the relationship between seed mass and seedling traits: a meta-analysis for rain forest tree species. Oecologia, 2005, 142, 378-387.	0.9	104
77	Functional Trait Strategies of Trees in Dry and Wet Tropical Forests Are Similar but Differ in Their Consequences for Succession. PLoS ONE, 2015, 10, e0123741.	1.1	102
78	Effects of wild ungulates on the regeneration, structure and functioning of temperate forests: A semi-quantitative review. Forest Ecology and Management, 2018, 424, 406-419.	1.4	101
79	Leaf adaptations of evergreen and deciduous trees of semiâ€arid and humid savannas on three continents. Journal of Ecology, 2013, 101, 430-440.	1.9	100
80	LEAF OPTICAL PROPERTIES ALONG A VERTICAL GRADIENT IN A TROPICAL RAIN FOREST CANOPY IN COSTA RICA. American Journal of Botany, 1995, 82, 1257-1263.	0.8	99
81	Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions. Carbon Balance and Management, 2017, 12, 1.	1.4	98
82	Can traits predict individual growth performance? A test in a hyperdiverse tropical forest. New Phytologist, 2018, 219, 109-121.	3.5	98
83	Light environment, sapling architecture, and leaf display in six rain forest tree species. American Journal of Botany, 1999, 86, 1464-1473.	0.8	94
84	Effects of seasonal drought on gap and understorey seedlings in a Bolivian moist forest. Journal of Tropical Ecology, 2000, 16, 481-498.	0.5	92
85	Tree architecture and lifeâ€history strategies across 200 coâ€occurring tropical tree species. Functional Ecology, 2011, 25, 1260-1268.	1.7	92
86	Controls on Coarse Wood Decay in Temperate Tree Species: Birth of the LOGLIFE Experiment. Ambio, 2012, 41, 231-245.	2.8	92
87	Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest. Biotropica, 2012, 44, 276-283.	0.8	90
88	Linking sizeâ€dependent growth and mortality with architectural traits across 145 coâ€occurring tropical tree species. Ecology, 2014, 95, 353-363.	1.5	90
89	Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Functional Ecology, 2018, 32, 461-474.	1.7	90
90	Regeneration of canopy tree species at five sites in West African moist forest. Forest Ecology and Management, 1996, 84, 61-69.	1.4	88

#	Article	IF	CITATIONS
91	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	86
92	Wood density explains architectural differentiation across 145 coâ€occurring tropical tree species. Functional Ecology, 2012, 26, 274-282.	1.7	85
93	Leaf optical properties in Venezuelan cloud forest trees. Tree Physiology, 2000, 20, 519-526.	1.4	80
94	Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Global Change Biology, 2019, 25, 3609-3624.	4.2	78
95	The trait contribution to wood decomposition rates of 15 Neotropical tree species. Ecology, 2010, 91, 3686-3697.	1.5	75
96	Functional traits predict drought performance and distribution of Mediterranean woody species. Acta Oecologica, 2014, 56, 10-18.	0.5	75
97	Bark traits and lifeâ€history strategies of tropical dry―and moist forest trees. Functional Ecology, 2014, 28, 232-242.	1.7	74
98	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	1.9	71
99	The Relationships of Wood-, Gas- and Water Fractions of Tree Stems to Performance and Life History Variation in Tropical Trees. Annals of Botany, 2008, 102, 367-375.	1.4	69
100	Gaps and Forest Zones in Tropical Moist Forest in Ivory Coast. Biotropica, 1993, 25, 258.	0.8	68
101	Photosynthetic induction responses of two rainforest tree species in relation to light environment. Oecologia, 1993, 96, 193-199.	0.9	65
102	The hydraulic efficiency–safety tradeâ€off differs between lianas and trees. Ecology, 2019, 100, e02666.	1.5	65
103	Effects of ENSO and Temporal Rainfall Variation on the Dynamics of Successional Communities in Old-Field Succession of a Tropical Dry Forest. PLoS ONE, 2013, 8, e82040.	1.1	64
104	Architecture of Iberian canopy tree species in relation to wood density, shade tolerance and climate. Plant Ecology, 2012, 213, 707-722.	0.7	63
105	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	5.8	62
106	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	2.7	62
107	Oldâ€growth Neotropical forests are shifting in species and trait composition. Ecological Monographs, 2016, 86, 228-243.	2.4	61
108	Spatial distribution of gaps along three catenas in the moist forest of Ta \tilde{A}^- National Park, Ivory Coast. Journal of Tropical Ecology, 1994, 10, 385-398.	0.5	58

#	Article	IF	Citations
109	Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.	1.5	57
110	Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees. Annals of Botany, 2007, 100, 831-838.	1.4	56
111	Diversity of Tropical Tree Seedling Responses to Drought. Biotropica, 2007, 39, 683-690.	0.8	56
112	Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest. Journal of Tropical Ecology, 2010, 26, 497-508.	0.5	55
113	Mechanical branch constraints contribute to life-history variation across tree species in a Bolivian forest. Journal of Ecology, 2006, 94, 1192-1200.	1.9	52
114	Plant Functional Traits and the Distribution of West African Rain Forest Trees along the Rainfall Gradient. Biotropica, 2011, 43, 552-561.	0.8	52
115	Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits. Annals of Botany, 2014, 114, 315-324.	1.4	52
116	Biodiversity in species, traits, and structure determines carbon stocks and uptake in tropical forests. Biotropica, 2017, 49, 593-603.	0.8	52
117	Long-term effects of wild ungulates on the structure, composition and succession of temperate forests. Forest Ecology and Management, 2019, 432, 478-488.	1.4	52
118	Sapling performance along resource gradients drives tree species distributions within and across tropical forests. Ecology, 2014, 95, 2514-2525.	1.5	49
119	Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits. Oecologia, 2013, 172, 961-972.	0.9	48
120	Rainfall and temperature affect tree species distribution in Ghana. Journal of Tropical Ecology, 2014, 30, 435-446.	0.5	48
121	Forest structure drives changes in light heterogeneity during tropical secondary forest succession. Journal of Ecology, 2021, 109, 2871-2884.	1.9	45
122	Leaf Vein Length per Unit Area Is Not Intrinsically Dependent on Image Magnification: Avoiding Measurement Artifacts for Accuracy and Precision Â. Plant Physiology, 2014, 166, 829-838.	2.3	43
123	Nutrient resorption is associated with leaf vein density and growth performance of dipterocarp tree species. Journal of Ecology, 2015, 103, 541-549.	1.9	43
124	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	1.2	43
125	Patterns and Determinants of Floristic Variation across Lowland Forests of Bolivia. Biotropica, 2011, 43, 405-413.	0.8	41
126	The potential of secondary forests. Science, 2015, 348, 642-643.	6.0	41

#	Article	IF	CITATIONS
127	Is spatial structure the key to promote plant diversity in Mediterranean forest plantations?. Basic and Applied Ecology, 2011, 12, 251-259.	1.2	36
128	The Effects of Drought and Shade on the Performance, Morphology and Physiology of Ghanaian Tree Species. PLoS ONE, 2015, 10, e0121004.	1.1	36
129	A 7000â€year history of changing plant trait composition in an Amazonian landscape; the role of humans and climate. Ecology Letters, 2019, 22, 925-935.	3.0	36
130	Assessing the reliability of predicted plant trait distributions at the global scale. Global Ecology and Biogeography, 2020, 29, 1034-1051.	2.7	36
131	Relationships between leaf mass per area and nutrient concentrations in 98 Mediterranean woody species are determined by phylogeny, habitat and leaf habit. Trees - Structure and Function, 2018, 32, 497-510.	0.9	35
132	Small and slow is safe: On the drought tolerance of tropical tree species. Global Change Biology, 2022, 28, 2622-2638.	4.2	35
133	Leaf Optical Properties Along a Vertical Gradient in a Tropical Rain Forest Canopy in Costa Rica. American Journal of Botany, 1995, 82, 1257.	0.8	34
134	Resource capture and use by tropical forest tree seedlings and their consequences for competition. , 2005, , 35-64.		34
135	Ecological impact of Prosopis species invasion in Turkwel riverine forest, Kenya. Journal of Arid Environments, 2013, 92, 89-97.	1.2	34
136	Functional recovery of secondary tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
137	Landâ€use intensification effects on functional properties in tropical plant communities. Ecological Applications, 2016, 26, 174-189.	1.8	33
138	Disturbance intensity is a stronger driver of biomass recovery than remaining treeâ€community attributes in a managed Amazonian forest. Journal of Applied Ecology, 2018, 55, 1647-1657.	1.9	33
139	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	3.4	32
140	Faunal community consequence of interspecific bark trait dissimilarity in earlyâ€stage decomposing logs. Functional Ecology, 2016, 30, 1957-1966.	1.7	31
141	Does a ruderal strategy dominate the endemic flora of the West African forests?. Journal of Biogeography, 2007, 34, 1100-1111.	1.4	30
142	Demographic drivers of functional composition dynamics. Ecology, 2017, 98, 2743-2750.	1.5	30
143	Maximum size distributions in tropical forest communities: relationships with rainfall and disturbance. Journal of Ecology, 2008, 96, 495-504.	1.9	29
144	Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span. Annals of Botany, 2012, 110, 1027-1033.	1.4	29

#	Article	IF	CITATIONS
145	A monocarpic tree species in a polycarpic world: how can Tachigali vasquezii maintain itself so successfully in a tropical rain forest community?. Journal of Ecology, 2005, 93, 268-278.	1.9	28
146	Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 2021, 30, 459-475.	2.7	27
147	Climate and soil drive forest structure in Bolivian lowland forests. Journal of Tropical Ecology, 2011, 27, 333-345.	0.5	25
148	Is there a tree economics spectrum of decomposability?. Soil Biology and Biochemistry, 2018, 119, 135-142.	4.2	25
149	Trait divergence and habitat specialization in tropical floodplain forests trees. PLoS ONE, 2019, 14, e0212232.	1.1	25
150	Above- and Below-ground Cascading Effects of Wild Ungulates in Temperate Forests. Ecosystems, 2021, 24, 153-167.	1.6	25
151	Amazonian Dark Earth Shapes the Understory Plant Community in a Bolivian Forest. Biotropica, 2015, 47, 152-161.	0.8	24
152	Lianas have more acquisitive traits than trees in a dry but not in a wet forest. Journal of Ecology, 2021, 109, 2367-2384.	1.9	22
153	Pit and tracheid anatomy explain hydraulic safety but not hydraulic efficiency of 28 conifer species. Journal of Experimental Botany, 2022, 73, 1033-1048.	2.4	22
154	Liana species decline in Congo basin contrasts with global patterns. Ecology, 2020, 101, e03004.	1.5	21
155	Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests. Environmental Research Letters, 2022, 17, 014047.	2.2	21
156	Dead wood diversity promotes fungal diversity. Oikos, 2021, 130, 2202-2216.	1.2	20
157	Functional traits shape tree species distribution in the Himalayas. Journal of Ecology, 2021, 109, 3818-3834.	1.9	19
158	Productive leaf functional traits of Chinese savanna species. Plant Ecology, 2012, 213, 1449-1460.	0.7	18
159	Nearâ€infrared spectrometry allows fast and extensive predictions of functional traits from dry leaves and branches. Ecological Applications, 2018, 28, 1157-1167.	1.8	18
160	Cattle affect regeneration of the palm species <i>Attalea princeps</i> in a Bolivian forest–savanna mosaic. Biotropica, 2019, 51, 28-38.	0.8	17
161	Drought resilience of conifer species is driven by leaf lifespan but not by hydraulic traits. New Phytologist, 2022, 235, 978-992.	3.5	17
162	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	2.7	17

#	Article	IF	CITATIONS
163	Rainfall seasonality and drought performance shape the distribution of tropical tree species in Ghana. Ecology and Evolution, 2018, 8, 8582-8597.	0.8	16
164	Growth of 19 conifer species is highly sensitive to winter warming, spring frost and summer drought. Annals of Botany, 2021, 128, 545-557.	1.4	15
165	Methodology matters for comparing coarse wood and bark decay rates across tree species. Methods in Ecology and Evolution, 2020, 11, 828-838.	2.2	14
166	Unleached Prosopis litter inhibits germination but leached stimulates seedling growth of dry woodland species. Journal of Arid Environments, 2017, 138, 44-50.	1.2	13
167	Predicting Acacia invasive success in South Africa on the basis of functional traits, native climatic niche and human use. Biodiversity and Conservation, 2011, 20, 2729-2743.	1.2	12
168	Monodominance of <i>Parashorea chinensis</i> on fertile soils in a Chinese tropical rain forest. Journal of Tropical Ecology, 2014, 30, 311-322.	0.5	12
169	Fauna Community Convergence During Decomposition of Deadwood Across Tree Species and Forests. Ecosystems, 2021, 24, 926-938.	1.6	12
170	Temperate forests respond in a non-linear way to a population gradient of wild deer. Forestry, 2021, 94, 502-511.	1.2	12
171	The integration of empirical, remote sensing and modelling approaches enhances insight in the role of biodiversity in climate change mitigation by tropical forests. Current Opinion in Environmental Sustainability, 2017, 26-27, 69-76.	3.1	11
172	Structure and composition of the liana assemblage of a mixed rain forest in the Congo Basin. Plant Ecology and Evolution, 2015, 148, 29-42.	0.3	10
173	Traits, strategies, and niches of liana species in a tropical seasonal rainforest. Oecologia, 2021, 196, 499-514.	0.9	10
174	Temperature and soils predict the distribution of plant species along the Himalayan elevational gradient. Journal of Tropical Ecology, 2022, 38, 58-70.	0.5	10
175	Strong floristic distinctiveness across Neotropical successional forests. Science Advances, 2022, 8, .	4.7	10
176	Functional traits shape size-dependent growth and mortality rates of dry forest tree species. Journal of Plant Ecology, 0, , rtw103.	1.2	9
177	Testing for functional convergence of temperate rainforest tree assemblages in Chile and New Zealand. New Zealand Journal of Botany, 2016, 54, 175-203.	0.8	9
178	Edaphic characteristics drive functional traits distribution in Amazonian floodplain forests. Plant Ecology, 2021, 222, 349-360.	0.7	9
179	Stem Trait Spectra Underpin Multiple Functions of Temperate Tree Species. Frontiers in Plant Science, 2022, 13, 769551.	1.7	9
180	Effects of Amazonian Dark Earths on growth and leaf nutrient balance of tropical tree seedlings. Plant and Soil, 2015, 396, 241-255.	1.8	8

#	Article	IF	CITATIONS
181	Scaling relationships among functional traits are similar across individuals, species, and communities. Journal of Vegetation Science, 2020, 31, 571-580.	1.1	8
182	LEAF TRAITS ARE GOOD PREDICTORS OF PLANT PERFORMANCE ACROSS 53 RAIN FOREST SPECIES. , 2006, 87, 1733.		5
183	Stem traits, compartments and tree species affect fungal communities on decaying wood. Environmental Microbiology, 2022, 24, 3625-3639.	1.8	4
184	Landscape openness has different effects on the structure, diversity and functional composition of Brazilian rainforests. Forest Ecology and Management, 2022, 520, 120395.	1.4	4
185	Driving factors of forest growth: a reply to Ferry <i>etÂal.</i> (2012). Journal of Ecology, 2012, 100, 1069-1073.	1.9	3
186	Letters to the editor about the contents of past issues and comments on topics of current concern toFrontiersreaders. Frontiers in Ecology and the Environment, 2007, 5, 237-240.	1.9	1
187	Considering inner and outer bark as distinctive tissues helps to disentangle the effects of bark traits on decomposition. Journal of Ecology, 2022, 110, 2359-2373.	1.9	1
188	Ten simple rules for managing communications with a large number of coauthors. PLoS Computational Biology, 2022, 18, e1010185.	1.5	1
189	Land-use intensification effects on functional properties in tropical plant communities. , 2015, , 150521083605001.		O