
Leonhard Möckl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7845238/publications.pdf Version: 2024-02-01

Ι ΓΟΝΗΛΡΟ ΜΑσα

#	Article	IF	CITATIONS
1	Multi-color super-resolution imaging to study human coronavirus RNA during cellular infection. Cell Reports Methods, 2022, 2, 100170.	2.9	13
2	Small molecule inhibitors of mammalian glycosylation. Matrix Biology Plus, 2022, 16, 100108.	3.5	6
3	Genome-wide CRISPR screens reveal a specific ligand for the glycan-binding immune checkpoint receptor Siglec-7. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	73
4	Super-resolution Microscopy with Single Molecules in Biology and Beyond–Essentials, Current Trends, and Future Challenges. Journal of the American Chemical Society, 2020, 142, 17828-17844.	13.7	108
5	Supersensitive Multifluorophore RNAâ€FISH for Early Virus Detection and Flowâ€FISH by Using Click Chemistry. ChemBioChem, 2020, 21, 2214-2218.	2.6	5
6	Accurate and rapid background estimation in single-molecule localization microscopy using the deep neural network BGnet. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 60-67.	7.1	46
7	The Emerging Role of the Mammalian Glycocalyx in Functional Membrane Organization and Immune System Regulation. Frontiers in Cell and Developmental Biology, 2020, 8, 253.	3.7	128
8	Deep learning in single-molecule microscopy: fundamentals, caveats, and recent developments [Invited]. Biomedical Optics Express, 2020, 11, 1633.	2.9	65
9	Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx. Developmental Cell, 2019, 50, 57-72.e6.	7.0	74
10	Bisacylphosphane oxides as photo-latent cytotoxic agents and potential photo-latent anticancer drugs. Scientific Reports, 2019, 9, 6003.	3.3	6
11	A Photoswitchable Trivalent Cluster Mannoside to Probe the Effects of Ligand Orientation in Bacterial Adhesion. ChemBioChem, 2019, 20, 2373-2382.	2.6	8
12	Physical Principles of Membrane Shape Regulation by the Glycocalyx. Cell, 2019, 177, 1757-1770.e21.	28.9	187
13	Accurate phase retrieval of complex 3D point spread functions with deep residual neural networks. Applied Physics Letters, 2019, 115, 251106.	3.3	33
14	Die neue Macht des Forschers. Nachrichten Aus Der Chemie, 2018, 66, 103-103.	0.0	0
15	Von Kautschuk zu Metallen: ein Werkslabor mit Weltgeltung. Nachrichten Aus Der Chemie, 2018, 66, 892-895.	0.0	0
16	Invasiveness of Cells Leads to Changes in Their Interaction Behavior with the Glycocalyx. Advanced Biology, 2018, 2, 1800083.	3.0	1
17	The Endothelial Glycocalyx Controls Interactions of Quantum Dots with the Endothelium and Their Translocation across the Bloodâ \in "Tissue Border. ACS Nano, 2017, 11, 1498-1508.	14.6	24
18	The glycocalyx regulates the uptake of nanoparticles by human endothelial cells <i>in vitro</i> . Nanomedicine, 2017, 12, 207-217.	3.3	29

Leonhard Möckl

#	Article	IF	CITATIONS
19	Azido Pentoses: A New Tool To Efficiently Label <i>Mycobacterium tuberculosis</i> Clinical Isolates. ChemBioChem, 2017, 18, 1172-1176.	2.6	17
20	Dendrimerâ€Based Signal Amplification of Click‣abelled DNA in Situ. ChemBioChem, 2017, 18, 1716-1720.	2.6	10
21	New insights into the intracellular distribution pattern of cationic amphiphilic drugs. Scientific Reports, 2017, 7, 44277.	3.3	21
22	More Than 50 Years after Its Discovery in SiO2 Octahedral Coordination Has Also Been Established in SiS2 at High Pressure. Inorganic Chemistry, 2017, 56, 372-377.	4.0	6
23	Artificial Formation and Tuning of Glycoprotein Networks on Live Cell Membranes: A Singleâ€Molecule Tracking Study. ChemPhysChem, 2016, 17, 829-835.	2.1	2
24	En route from artificial to natural: Evaluation of inhibitors of mannose-specific adhesion of E. coli under flow. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2031-2036.	2.4	4
25	Switching first contact: photocontrol of E. coli adhesion to human cells. Chemical Communications, 2016, 52, 1254-1257.	4.1	22
26	Microdomain Formation Controls Spatiotemporal Dynamics of Cell‣urface Glycoproteins. ChemBioChem, 2015, 16, 2023-2028.	2.6	7
27	Two High-Pressure Phases of SiS2as Missing Links between the Extremes of Only Edge-Sharing and Only Corner-Sharing Tetrahedra. Inorganic Chemistry, 2015, 54, 1240-1253.	4.0	16
28	Cellâ€Penetrating and Neurotargeting Dendritic siRNA Nanostructures. Angewandte Chemie - International Edition, 2015, 54, 1946-1949.	13.8	44
29	Superâ€resolved Fluorescence Microscopy: Nobel Prize in Chemistry 2014 for Eric Betzig, Stefan Hell, and Williamâ€E. Moerner. Angewandte Chemie - International Edition, 2014, 53, 13972-13977.	13.8	105
30	Der Wittelsbacher und der Hope-Diamant. Chemie in Unserer Zeit, 2012, 46, 356-364.	0.1	2
31	Tuning Nanoparticle Uptake: Live-Cell Imaging Reveals Two Distinct Endocytosis Mechanisms Mediated by Natural and Artificial EGFR Targeting Ligand. Nano Letters, 2012, 12, 3417-3423.	9.1	111