Leonhard Möckl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7845238/publications.pdf

Version: 2024-02-01

414414 516710 1,194 31 16 32 citations g-index h-index papers 41 41 41 2046 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Physical Principles of Membrane Shape Regulation by the Glycocalyx. Cell, 2019, 177, 1757-1770.e21.	28.9	187
2	The Emerging Role of the Mammalian Glycocalyx in Functional Membrane Organization and Immune System Regulation. Frontiers in Cell and Developmental Biology, 2020, 8, 253.	3.7	128
3	Tuning Nanoparticle Uptake: Live-Cell Imaging Reveals Two Distinct Endocytosis Mechanisms Mediated by Natural and Artificial EGFR Targeting Ligand. Nano Letters, 2012, 12, 3417-3423.	9.1	111
4	Super-resolution Microscopy with Single Molecules in Biology and Beyond–Essentials, Current Trends, and Future Challenges. Journal of the American Chemical Society, 2020, 142, 17828-17844.	13.7	108
5	Superâ€resolved Fluorescence Microscopy: Nobel Prize in Chemistry 2014 for Eric Betzig, Stefan Hell, and Williamâ€E. Moerner. Angewandte Chemie - International Edition, 2014, 53, 13972-13977.	13.8	105
6	Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx. Developmental Cell, 2019, 50, 57-72.e6.	7.0	74
7	Genome-wide CRISPR screens reveal a specific ligand for the glycan-binding immune checkpoint receptor Siglec-7. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	73
8	Deep learning in single-molecule microscopy: fundamentals, caveats, and recent developments [Invited]. Biomedical Optics Express, 2020, 11, 1633.	2.9	65
9	Accurate and rapid background estimation in single-molecule localization microscopy using the deep neural network BGnet. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 60-67.	7.1	46
10	Cellâ€Penetrating and Neurotargeting Dendritic siRNA Nanostructures. Angewandte Chemie - International Edition, 2015, 54, 1946-1949.	13.8	44
11	Accurate phase retrieval of complex 3D point spread functions with deep residual neural networks. Applied Physics Letters, 2019, 115, 251106.	3.3	33
12	The glycocalyx regulates the uptake of nanoparticles by human endothelial cells <i>in vitro</i> Nanomedicine, 2017, 12, 207-217.	3.3	29
13	The Endothelial Glycocalyx Controls Interactions of Quantum Dots with the Endothelium and Their Translocation across the Blood–Tissue Border. ACS Nano, 2017, 11, 1498-1508.	14.6	24
14	Switching first contact: photocontrol of E. coli adhesion to human cells. Chemical Communications, 2016, 52, 1254-1257.	4.1	22
15	New insights into the intracellular distribution pattern of cationic amphiphilic drugs. Scientific Reports, 2017, 7, 44277.	3.3	21
16	Azido Pentoses: A New Tool To Efficiently Label <i>Mycobacterium tuberculosis</i> Clinical Isolates. ChemBioChem, 2017, 18, 1172-1176.	2.6	17
17	Two High-Pressure Phases of SiS2as Missing Links between the Extremes of Only Edge-Sharing and Only Corner-Sharing Tetrahedra. Inorganic Chemistry, 2015, 54, 1240-1253.	4.0	16
18	Multi-color super-resolution imaging to study human coronavirus RNA during cellular infection. Cell Reports Methods, 2022, 2, 100170.	2.9	13

#	Article	IF	CITATIONS
19	Dendrimerâ€Based Signal Amplification of Clickâ€Labelled DNA in Situ. ChemBioChem, 2017, 18, 1716-1720.	2.6	10
20	A Photoswitchable Trivalent Cluster Mannoside to Probe the Effects of Ligand Orientation in Bacterial Adhesion. ChemBioChem, 2019, 20, 2373-2382.	2.6	8
21	Microdomain Formation Controls Spatiotemporal Dynamics of Cellâ€Surface Glycoproteins. ChemBioChem, 2015, 16, 2023-2028.	2.6	7
22	More Than 50 Years after Its Discovery in SiO2 Octahedral Coordination Has Also Been Established in SiS2 at High Pressure. Inorganic Chemistry, 2017, 56, 372-377.	4.0	6
23	Bisacylphosphane oxides as photo-latent cytotoxic agents and potential photo-latent anticancer drugs. Scientific Reports, 2019, 9, 6003.	3.3	6
24	Small molecule inhibitors of mammalian glycosylation. Matrix Biology Plus, 2022, 16, 100108.	3.5	6
25	Supersensitive Multifluorophore RNAâ€FISH for Early Virus Detection and Flowâ€FISH by Using Click Chemistry. ChemBioChem, 2020, 21, 2214-2218.	2.6	5
26	En route from artificial to natural: Evaluation of inhibitors of mannose-specific adhesion of E. coli under flow. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2031-2036.	2.4	4
27	Der Wittelsbacher und der Hope-Diamant. Chemie in Unserer Zeit, 2012, 46, 356-364.	0.1	2
28	Artificial Formation and Tuning of Glycoprotein Networks on Live Cell Membranes: A Singleâ€Molecule Tracking Study. ChemPhysChem, 2016, 17, 829-835.	2.1	2
29	Invasiveness of Cells Leads to Changes in Their Interaction Behavior with the Glycocalyx. Advanced Biology, 2018, 2, 1800083.	3.0	1
30	Die neue Macht des Forschers. Nachrichten Aus Der Chemie, 2018, 66, 103-103.	0.0	0
31	Von Kautschuk zu Metallen: ein Werkslabor mit Weltgeltung. Nachrichten Aus Der Chemie, 2018, 66, 892-895.	0.0	O