
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7845132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptation of the Corticomuscular and Biomechanical Systems of Pianists. Cerebral Cortex, 2022, 32, 709-724.	2.9	3
2	Noncontact and High-Precision Sensing System for Piano Keys Identified Fingerprints of Virtuosity. Sensors, 2022, 22, 4891.	3.8	4
3	Factors of choking under pressure in musicians. PLoS ONE, 2021, 16, e0244082.	2.5	6
4	Human Augmentation for Skill Acquisition and Skill Transfer. , 2021, , .		1
5	Aberrant Cerebello-Cortical Connectivity in Pianists With Focal Task-Specific Dystonia. Cerebral Cortex, 2021, 31, 4853-4863.	2.9	11
6	Back to feedback: aberrant sensorimotor control in music performance under pressure. Communications Biology, 2021, 4, 1367.	4.4	2
7	Specialized Somatosensory–Motor Integration Functions in Musicians. Cerebral Cortex, 2020, 30, 1148-1158.	2.9	25
8	Aberrant Somatosensory–Motor Adaptation in Musicians' Dystonia. Movement Disorders, 2020, 35, 808-815.	3.9	5
9	Overcoming the ceiling effects of experts' motor expertise through active haptic training. Science Advances, 2020, 6, .	10.3	15
10	Soft Exoskeleton Glove with Human Anatomical Architecture: Production of Dexterous Finger Movements and Skillful Piano Performance. IEEE Transactions on Haptics, 2020, 13, 679-690.	2.7	30
11	Musicians' Medicine:Playing-related Movement Disorders and Rehabilitation. The Japanese Journal of Rehabilitation Medicine, 2020, 57, 248-254.	0.0	0
12	Neuromuscular and biomechanical functions subserving finger dexterity in musicians. Scientific Reports, 2019, 9, 12224.	3.3	17
13	Neuromuscular incoordination in musician's dystonia. Parkinsonism and Related Disorders, 2019, 65, 97-104.	2.2	8
14	Distinct roles of brain activity and somatotopic representation in pathophysiology of focal dystonia. Human Brain Mapping, 2019, 40, 1738-1749.	3.6	22
15	Neural Mechanism Subserving Sophistication and Degradation of Musical Skills. The Brain & Neural Networks, 2019, 26, 10-14.	0.1	0
16	Aberrant cortical excitability reflects the loss of hand dexterity in musician's dystonia. Journal of Physiology, 2018, 596, 2397-2411.	2.9	24
17	Probing sensorimotor integration during musical performance. Annals of the New York Academy of Sciences, 2018, 1423, 211-218.	3.8	4
18	Individual differences in sensorimotor skills among musicians. Current Opinion in Behavioral Sciences, 2018, 20, 61-66.	3.9	11

#	Article	IF	CITATIONS
19	Acquisition of skilled finger movements is accompanied by reorganization of the corticospinal system. Journal of Neurophysiology, 2018, 119, 573-584.	1.8	19
20	Restingâ€state basal ganglia network codes a motor musical skill and its disruption From dystonia. Movement Disorders, 2018, 33, 1472-1480.	3.9	13
21	State anxiety disorganizes finger movements during musical performance. Journal of Neurophysiology, 2018, 120, 439-451.	1.8	20
22	Temporal exploration in sequential movements shapes efficient neuromuscular control. Journal of Neurophysiology, 2018, 120, 196-210.	1.8	13
23	Expertise-dependent motor somatotopy of music perception. Neuroscience Letters, 2017, 650, 97-102.	2.1	17
24	Skilful force control in expert pianists. Experimental Brain Research, 2017, 235, 1603-1615.	1.5	35
25	Apollos Gift and Curse: Making Music as a model for Adaptive and Maladaptive Plasticity. E-Neuroforum, 2017, 23, 57-75.	0.1	8
26	Apollos Fluch und Segen: Musizieren als NeuroplastizitÃ e smotor. E-Neuroforum, 2017, 23, 76-95.	0.1	0
27	Research Priorities in Limb and Task-Specific Dystonias. Frontiers in Neurology, 2017, 8, 170.	2.4	34
28	Kinematic Origins of Motor Inconsistency in Expert Pianists. PLoS ONE, 2016, 11, e0161324.	2.5	19
29	Brain Plasticity and the Concept of Metaplasticity in Skilled Musicians. Advances in Experimental Medicine and Biology, 2016, 957, 197-208.	1.6	42
30	The impact of stress on motor performance in skilled musicians suffering from focal dystonia: Physiological and psychological characteristics. Neuropsychologia, 2016, 85, 226-236.	1.6	47
31	Quantification of sound instability in embouchure tremor based on the time-varying fundamental frequency. Journal of Neural Transmission, 2016, 123, 515-521.	2.8	6
32	Objective Evaluation of Performance Stress in Musicians With Focal Hand Dystonia: A Case Series. Journal of Motor Behavior, 2016, 48, 562-572.	0.9	4
33	Shared somatosensory and motor functions in musicians. Scientific Reports, 2016, 6, 37632.	3.3	37
34	The curse of motor expertise: Use-dependent focal dystonia as a manifestation of maladaptive changes in body representation. Neuroscience Research, 2016, 104, 112-119.	1.9	31
35	Secrets of virtuoso: neuromuscular attributes of motor virtuosity in expert musicians. Scientific Reports, 2015, 5, 15750.	3.3	20
36	Losing dexterity: patterns of impaired coordination of finger movements in musician's dystonia. Scientific Reports, 2015, 5, 13360.	3.3	33

#	Article	IF	CITATIONS
37	Acquisition and reacquisition of motor coordination in musicians. Annals of the New York Academy of Sciences, 2015, 1337, 118-124.	3.8	29
38	Music in the Brain: From Listening to Playing. Behavioural Neurology, 2015, 2015, 1-2.	2.1	0
39	Electrophysiological characteristics of task-specific tremor in 22 instrumentalists. Journal of Neural Transmission, 2015, 122, 393-401.	2.8	7
40	Distinct digit kinematics by professional and amateur pianists. Neuroscience, 2015, 284, 643-652.	2.3	15
41	Quantification of a secondary task-specific tremor in a violinist after a temporal lobectomy. Frontiers in Human Neuroscience, 2014, 8, 559.	2.0	0
42	Reorganization of the Finger Posture and Muscular Activity through Daily Piano Practice. Transactions of the Society of Instrument and Control Engineers, 2014, 50, 162-169.	0.2	1
43	Playing beautifully when you have to be fast: spatial and temporal symmetries of movement patterns in skilled piano performance at different tempi. Experimental Brain Research, 2014, 232, 3555-3567.	1.5	25
44	Extraction of practice-dependent and practice-independent finger movement patterns. Neuroscience Letters, 2014, 577, 38-44.	2.1	5
45	Surmounting retraining limits in Musicians' dystonia by transcranial stimulation. Annals of Neurology, 2014, 75, 700-707.	5.3	75
46	Epidemiology and treatment of 23 musicians with task specific tremor. Journal of Clinical Movement Disorders, 2014, 1, 5.	2.2	19
47	Coherence of coactivation and acceleration in task-specific primary bowing tremor. Journal of Neural Transmission, 2014, 121, 739-742.	2.8	8
48	Quantification of instability of tone production in embouchure dystonia. Parkinsonism and Related Disorders, 2014, 20, 1161-1164.	2.2	27
49	Ceiling Effects Prevent Further Improvement of Transcranial Stimulation in Skilled Musicians. Journal of Neuroscience, 2014, 34, 13834-13839.	3.6	90
50	Acquisition of individuated finger movements through musical practice. Neuroscience, 2014, 275, 444-454.	2.3	31
51	Expert pianists do not listen: The expertise-dependent influence of temporal perturbation on the production of sequential movements. Neuroscience, 2014, 269, 290-298.	2.3	29
52	Early optimization in finger dexterity of skilled pianists: implication of transcranial stimulation. BMC Neuroscience, 2013, 14, 35.	1.9	26
53	Transfer of piano practice in fast performance of skilled finger movements. BMC Neuroscience, 2013, 14, 133.	1.9	13
54	Finger-specific loss of independent control of movements in musicians with focal dystonia. Neuroscience, 2013, 247, 152-163.	2.3	42

#	Article	IF	CITATIONS
55	Patterns of muscle activity for digital coarticulation. Journal of Neurophysiology, 2013, 110, 230-242.	1.8	31
56	Task-specific tremor in violinists: Evidence of coactivation in the 3 to 8 Hz frequency range. Movement Disorders, 2013, 28, 1890-1892.	3.9	18
57	Alteration in forward model prediction of sensory outcome of motor action in focal hand dystonia. Frontiers in Human Neuroscience, 2013, 7, 172.	2.0	22
58	Flexibility of movement organization in piano performance. Frontiers in Human Neuroscience, 2013, 7, 173.	2.0	66
59	Effect of Short-term Piano Practice on Fine Control of Finger Movements by the Beginner Pianists. Transactions of the Society of Instrument and Control Engineers, 2013, 49, 840-845.	0.2	0
60	Speed invariance of independent control of finger movements in pianists. Journal of Neurophysiology, 2012, 108, 2060-2068.	1.8	37
61	Probing neural mechanisms of music perception, cognition, and performance using multivariate decoding Psychomusicology: Music, Mind and Brain, 2012, 22, 168-174.	0.3	1
62	Individual differences in the biomechanical effect of loudness and tempo on upper-limb movements during repetitive piano keystrokes. Human Movement Science, 2012, 31, 26-39.	1.4	38
63	Performing music can induce greater modulation of emotion-related psychophysiological responses than listening to music. International Journal of Psychophysiology, 2011, 81, 152-158.	1.0	36
64	Distinct inter-joint coordination during fast alternate keystrokes in pianists with superior skill. Frontiers in Human Neuroscience, 2011, 5, 50.	2.0	50
65	Hand kinematics of piano playing. Journal of Neurophysiology, 2011, 106, 2849-2864.	1.8	141
66	Role of auditory feedback in the control of successive keystrokes during piano playing. Experimental Brain Research, 2010, 204, 223-237.	1.5	48
67	Control of multi-joint arm movements for the manipulation of touch in keystroke by expert pianists. BMC Neuroscience, 2010, 11, 82.	1.9	19
68	Psycho-physiological responses to expressive piano performance. International Journal of Psychophysiology, 2010, 75, 268-276.	1.0	22
69	Emotionâ€related Changes in Heart Rate and Its Variability during Performance and Perception of Music. Annals of the New York Academy of Sciences, 2009, 1169, 359-362.	3.8	53
70	Effective utilization of gravity during arm downswing in keystrokes by expert pianists. Neuroscience, 2009, 164, 822-831.	2.3	50
71	CG animation for piano performance. , 2009, , .		9
72	Organization of the upper limb movement for piano key-depression differs between expert pianists and novice players. Experimental Brain Research, 2008, 185, 581-593.	1.5	74

#	Article	IF	CITATIONS
73	Expertise-dependent modulation of muscular and non-muscular torques in multi-joint arm movements during piano keystroke. Neuroscience, 2008, 156, 390-402.	2.3	66
74	Loudness control in pianists as exemplified in keystroke force measurements on different touches. Journal of the Acoustical Society of America, 2007, 121, 2959-2969.	1.1	50
75	Roles of proximal-to-distal sequential organization of the upper limb segments in striking the keys by expert pianists. Neuroscience Letters, 2007, 421, 264-269.	2.1	44
76	Characteristics of keystroke force in the piano. Journal of Biomechanics, 2007, 40, S397.	2.1	3
77	Prevalence and Causal Factors of Playing-Related Musculoskeletal Disorders of the Upper Extremity and Trunk among Japanese Pianists and Piano Students. Medical Problems of Performing Artists, 2006, 21, 112-117.	0.4	37
78	Control of upper extremity movements in expert pianists when striking the piano keys at various combinations of sound volume and striking tempo. Journal of the Society of Biomechanisms, 2006, 30, 151-155.	0.0	6
79	Finger-Tapping Ability in Male and Female Pianists and Nonmusician Controls. Motor Control, 2005, 9, 23-39.	0.6	69

80 Brain Changes Associated with Acquisition of Musical Expertise. , 0, , 550-575.

2