Yuanhui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7845083/publications.pdf

Version: 2024-02-01

91 papers 5,169 citations

39 h-index 70 g-index

92 all docs 92 docs citations

92 times ranked 3334 citing authors

#	Article	IF	CITATIONS
1	Hydrothermal liquefaction for algal biorefinery: A critical review. Renewable and Sustainable Energy Reviews, 2014, 38, 933-950.	16.4	306
2	Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Bioresource Technology, 2014, 152, 130-139.	9.6	301
3	Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy and Environmental Science, 2011, 4, 4587.	30.8	285
4	A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy and Environmental Science, 2013, 6, 3765.	30.8	228
5	Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresource Technology, 2014, 154, 322-329.	9.6	225
6	Valorization of hydrothermal liquefaction aqueous phase: pathways towards commercial viability. Progress in Energy and Combustion Science, 2020, 77, 100819.	31.2	204
7	Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Applied Energy, 2014, 128, 209-216.	10.1	186
8	Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts. Bioresource Technology, 2013, 133, 389-397.	9.6	147
9	Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. Bioresource Technology, 2015, 178, 139-146.	9.6	144
10	Synergistic and Antagonistic Interactions during Hydrothermal Liquefaction of Soybean Oil, Soy Protein, Cellulose, Xylose, and Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 14501-14509.	6.7	111
11	Renewable diesel blendstocks produced by hydrothermal liquefaction of wet biowaste. Nature Sustainability, 2018, 1, 702-710.	23.7	110
12	Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction. Energy Conversion and Management, 2017, 134, 340-346.	9.2	106
13	Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Bioresource Technology, 2015, 184, 328-335.	9.6	101
14	Anaerobic digestion of wastewater generated from the hydrothermal liquefaction of Spirulina: Toxicity assessment and minimization. Energy Conversion and Management, 2017, 141, 420-428.	9.2	101
15	Energy and nutrient recovery efficiencies in biocrude oil produced via hydrothermal liquefaction of Chlorella pyrenoidosa. RSC Advances, 2014, 4, 16958.	3 . 6	91
16	Hydrothermal Liquefaction of Microalgae in an Ethanol–Water Co-Solvent To Produce Biocrude Oil. Energy & Samp; Fuels, 2014, 28, 5178-5183.	5.1	88
17	Effects of furan derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial community. Bioresource Technology, 2015, 175, 152-159.	9.6	86
18	Towards biohythane production from biomass: Influence of operational stage on anaerobic fermentation and microbial community. International Journal of Hydrogen Energy, 2016, 41, 4429-4438.	7.1	81

#	Article	IF	Citations
19	Environment-enhancing process for algal wastewater treatment, heavy metal control and hydrothermal biofuel production: A critical review. Bioresource Technology, 2020, 298, 122421.	9.6	80
20	Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: Effects of operational parameters and relations of products. Bioresource Technology, 2015, 184, 336-343.	9.6	79
21	Anaerobic conversion of the hydrothermal liquefaction aqueous phase: fate of organics and intensification with granule activated carbon/ozone pretreatment. Green Chemistry, 2019, 21, 1305-1318.	9.0	79
22	Nitrogen Migration and Transformation during Hydrothermal Liquefaction of Livestock Manures. ACS Sustainable Chemistry and Engineering, 2018, 6, 13570-13578.	6.7	78
23	Experimental and model enhancement of food waste hydrothermal liquefaction with combined effects of biochemical composition and reaction conditions. Bioresource Technology, 2019, 284, 139-147.	9.6	78
24	Nutrient Flows and Quality of Bio-crude Oil Produced via Catalytic Hydrothermal Liquefaction of Low-Lipid Microalgae. Bioenergy Research, 2014, 7, 1317-1328.	3.9	73
25	Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk. Bioresource Technology, 2017, 243, 9-16.	9.6	72
26	Inhibitors degradation and microbial response during continuous anaerobic conversion of hydrothermal liquefaction wastewater. Science of the Total Environment, 2018, 630, 1124-1132.	8.0	72
27	Effect of ash on hydrothermal liquefaction of high-ash content algal biomass. Algal Research, 2017, 25, 297-306.	4.6	70
28	Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: Methane potential, microbial diversity and synergistic impact evaluation. Waste Management, 2017, 68, 120-127.	7.4	69
29	Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes. Water Science and Technology, 2015, 72, 2139-2147.	2.5	68
30	Recovery of reducing sugars and volatile fatty acids from cornstalk at different hydrothermal treatment severity. Bioresource Technology, 2016, 199, 220-227.	9.6	67
31	Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency. Energy, 2019, 167, 189-197.	8.8	67
32	Bioprocess engineering for biohythane production from low-grade waste biomass: technical challenges towards scale up. Current Opinion in Biotechnology, 2018, 50, 25-31.	6.6	62
33	Integrated anaerobic digestion and algae cultivation for energy recovery and nutrient supply from post-hydrothermal liquefaction wastewater. Bioresource Technology, 2018, 266, 349-356.	9.6	62
34	Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement. Waste Management, 2017, 70, 247-254.	7.4	59
35	Physical pretreatments of wastewater algae to reduce ash content and improve thermal decomposition characteristics. Bioresource Technology, 2014, 169, 816-820.	9.6	58
36	Adsorption or direct interspecies electron transfer? A comprehensive investigation of the role of biochar in anaerobic digestion of hydrothermal liquefaction aqueous phase. Chemical Engineering Journal, 2022, 435, 135078.	12.7	52

3

#	Article	IF	CITATIONS
37	Influence of catalysts on hydrogen production from wastewater generated from the HTL of human feces via catalytic hydrothermal gasification. International Journal of Hydrogen Energy, 2017, 42, 20503-20511.	7.1	51
38	Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. Science of the Total Environment, 2019, 651, 61-69.	8.0	47
39	Biocrude Oil Production through the Maillard Reaction between Leucine and Glucose during Hydrothermal Liquefaction. Energy & Energy & Samp; Fuels, 2019, 33, 8758-8765.	5.1	42
40	Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four types of post-hydrothermal liquefaction wastewater. Journal of Applied Phycology, 2016, 28, 1031-1039.	2.8	39
41	Biogas liquid digestate grown Chlorella sp. for biocrude oil production via hydrothermal liquefaction. Science of the Total Environment, 2018, 635, 70-77.	8.0	39
42	Biohythane production of post-hydrothermal liquefaction wastewater: A comparison of two-stage fermentation and catalytic hydrothermal gasification. Bioresource Technology, 2019, 274, 335-342.	9.6	38
43	Algae biomass as a precursor for synthesis of nitrogen-and sulfur-co-doped carbon dots: A better probe in Arabidopsis guard cells and root tissues. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 315-322.	3.8	36
44	Performance and microbial community of carbon nanotube fixed-bed microbial fuel cell continuously fed with hydrothermal liquefied cornstalk biomass. Bioresource Technology, 2015, 185, 294-301.	9.6	32
45	Extract Nitrogen-Containing Compounds in Biocrude Oil Converted from Wet Biowaste via Hydrothermal Liquefaction. ACS Sustainable Chemistry and Engineering, 2016, 4, 2182-2190.	6.7	32
46	An Overview of Room Air Motion Measurement: Technology and Application. HVAC and R Research, 2007, 13, 929-950.	0.6	31
47	<i>110th Anniversary: </i> Influence of Solvents on Biocrude from Hydrothermal Liquefaction of Soybean Oil, Soy Protein, Cellulose, Xylose, and Lignin, and Their Quinary Mixture. Industrial & Som Engineering Chemistry Research, 2019, 58, 13971-13976.	3.7	30
48	Moisture effects on gas-phase biofilter ammonia removal efficiency, nitrous oxide generation, and microbial communities. Journal of Hazardous Materials, 2014, 271, 292-301.	12.4	29
49	Comparative production of biochars from corn stalk and cow manure. Bioresource Technology, 2019, 291, 121855.	9.6	28
50	Continuous treatment of hydrothermal liquefaction wastewater in an anaerobic biofilm reactor: Potential role of granular activated carbon. Journal of Cleaner Production, 2020, 276, 122836.	9.3	26
51	Pretreatment of pig manure liquid digestate for microalgae cultivation via innovative flocculation-biological contact oxidation approach. Science of the Total Environment, 2019, 694, 133720.	8.0	24
52	Improve the biodegradability of post-hydrothermal liquefaction wastewater with ozone: conversion of phenols and N-heterocyclic compounds. Water Science and Technology, 2018, 2017, 248-255.	2.5	23
53	Performance Evaluation of Mesophilic Anaerobic Digestion of Chicken Manure with Algal Digestate. Energies, 2018, 11, 1829.	3.1	22
54	Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage. Microbial Ecology, 2015, 70, 710-723.	2.8	21

#	Article	IF	Citations
55	Product and Economic Analysis of Direct Liquefaction of Swine Manure. Bioenergy Research, 2011, 4, 324-333.	3.9	20
56	Biocrude Oil from Algal Bloom Microalgae: A Novel Integration of Biological and Thermochemical Techniques. Environmental Science & Environmental Scien	10.0	20
57	Towards transportation fuel production from food waste: Potential of biocrude oil distillates for gasoline, diesel, and jet fuel. Fuel, 2021, 301, 121028.	6.4	20
58	Effect of biomass origins and composition on stability of hydrothermal biocrude oil. Fuel, 2021, 302, 121138.	6.4	20
59	Establishment and performance of a plug-flow continuous hydrothermal reactor for biocrude oil production. Fuel, 2020, 280, 118605.	6.4	19
60	Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process. Environmental Technology (United Kingdom), 2018, 39, 74-82.	2.2	18
61	Analysis of particle-borne odorants emitted from concentrated animal feeding operations. Science of the Total Environment, 2014, 490, 322-333.	8.0	16
62	Effect of Aging in Nitrogen and Air on the Properties of Biocrude Produced by Hydrothermal Liquefaction of <i>Spirulina</i> . Energy & Samp; Fuels, 2019, 33, 9870-9878.	5.1	16
63	Enhancing energy recovery via two stage co-fermentation of hydrothermal liquefaction aqueous phase and crude glycerol. Energy Conversion and Management, 2021, 231, 113855.	9.2	16
64	Hydrothermal liquefaction accelerates the toxicity and solubility of arsenic in biowaste. Journal of Hazardous Materials, 2021, 418, 126341.	12.4	16
65	An innovative multistage anaerobic hythane reactor (MAHR): Metabolic flux, thermodynamics and microbial functions. Water Research, 2020, 169, 115216.	11.3	15
66	Development of a mobile, pilot scale hydrothermal liquefaction reactor: Food waste conversion product analysis and techno-economic assessment. Energy Conversion and Management: X, 2021, 10, 100076.	1.6	15
67	Hydroponic Lettuce Production Using Treated Post-Hydrothermal Liquefaction Wastewater (PHW). Sustainability, 2019, 11, 3605.	3.2	14
68	Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology. Environmental Technology (United) Tj ETQq0 0 0 rg	BT ⊉ Ωverlo	ck1 3 0 Tf 50 2
69	Anaerobic digestion of aqueous phase from hydrothermal liquefaction of Spirulina using biostimulated sludge. Bioresource Technology, 2020, 312, 123552.	9.6	12
70	Sampling Efficiency of the Tsi Aerodynamic Particle Sizer. Instrumentation Science and Technology, 1998, 26, 363-373.	1.8	11
71	Comparing three methods for photosynthetic bacteria separation and recycling during wastewater treatment. Desalination and Water Treatment, 2016, 57, 12467-12477.	1.0	11
72	Reduce recalcitrance of cornstalk using post-hydrothermal liquefaction wastewater pretreatment. Bioresource Technology, 2019, 279, 57-66.	9.6	11

#	Article	IF	Citations
73	Investigation of combustion and spray of biowaste based fuel and diesel blends. Fuel, 2020, 268, 117382.	6.4	11
74	Airborne exposure patterns from a passenger source in aircraft cabins. HVAC and R Research, 2013, 19, 962-973.	0.6	10
75	3D real-time volumetric particle tracking velocimetry – A promising tool for studies of airflow around high-rise buildings. Building and Environment, 2020, 178, 106930.	6.9	10
76	Diesel blends produced via emulsification of hydrothermal liquefaction biocrude from food waste. Fuel, 2022, 324, 124817.	6.4	10
77	Spray and combustion characteristics of pure hydrothermal liquefaction biofuel and mixture blends with diesel. Fuel, 2021, 294, 120498.	6.4	9
78	Zeolite-amended microalgal-bacterial system in a membrane photobioreactor for promoting system stability, biomass production, and wastewater treatment efficiency to realize Environmental-Enhancing Energy paradigm. Journal of Applied Phycology, 2019, 31, 335-344.	2.8	8
79	Characterization and bioremediation potential of byproducts from hydrothermal liquefaction of food wastes. Bioresource Technology Reports, 2020, 12, 100555.	2.7	8
80	Renewable diesel blendstocks and bioprivileged chemicals distilled from algal biocrude oil converted <i>via</i> hydrothermal liquefaction. Sustainable Energy and Fuels, 2020, 4, 5165-5178.	4.9	8
81	Fate and transport of estrogenic compounds in an integrated swine manure treatment systems combining algal-bacterial bioreactor and hydrothermal processes for improved water quality. Environmental Science and Pollution Research, 2019, 26, 16800-16813.	5.3	7
82	In Situ hydrochar regulates Cu fate and speciation: Insights into transformation mechanism. Journal of Hazardous Materials, 2021, 410, 124616.	12.4	5
83	Testing the plasticâ€wrapped composting system to dispose of swine mortalities during an animal disease outbreak. Journal of Environmental Quality, 2021, 50, 899-910.	2.0	4
84	Experimental and Numerical Model Investigations of Oxygen-Enriched Characteristics in Air-Conditioned Rooms. Applied Sciences (Switzerland), 2021, 11, 4733.	2.5	4
85	Hydrothermal conversion of anaerobic wastewater fed microalgae: effects of reaction temperature on products distribution and biocrude properties. IET Renewable Power Generation, 2019, 13, 2215-2220.	3.1	4
86	The application of an absorbent-amended microalgal-bacterial system for enhancing hydrothermal liquefaction wastewater treatment and resource recovery. Journal of Applied Phycology, 2021, 33, 79-90.	2.8	3
87	A GPU-accelerated particle-detection algorithm for real-time volumetric particle-tracking velocimetry under non-uniform illumination. Measurement Science and Technology, 2021, 32, 105304.	2.6	3
88	Laboratory testing of flat oval transitions to determine loss coefficients (RP-1606). Science and Technology for the Built Environment, 2015, 21, 386-395.	1.7	2
89	Water Footprint Assessment of Eggs in a Parent-Stock Layer Breeder Farm. Water (Switzerland), 2019, 11, 2546.	2.7	2
90	Construction of a Novel Closed-Loop Livestock Waste Valorization Paradigm: Bridging Manure and Ammonia Gas via Phosphate-Doped Hydrochar. ACS ES&T Engineering, 2022, 2, 1732-1744.	7.6	2

#	Article	IF	CITATIONS
91	Hydrothermal processes for simultaneous bioenergy recovery and destruction of bioactive microconstituents from biosolids. Proceedings of the Water Environment Federation, 2017, 2017, 329-359.	0.0	1