Michael P Doyle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7844482/publications.pdf

Version: 2024-02-01

416 papers 26,464 citations

76 h-index 138 g-index

562 all docs 562 docs citations

times ranked

562

10157 citing authors

#	Article	IF	CITATIONS
1	Radical Cascade Multicomponent Minisci Reactions with Diazo Compounds. ACS Catalysis, 2022, 12, 1357-1363.	5.5	34
2	Strainâ€Induced Nucleophilic Ring Opening of Donor–Acceptor Cyclopropenes for Synthesis of Monosubstituted Succinic Acid Derivatives. Chemistry - A European Journal, 2021, 27, 340-347.	1.7	3
3	Formal [4 + 4]-, [4 + 3]-, and [4 + 2]-cycloaddition reactions of donor–acceptor cyclobutenes, cyclopropenes and siloxyalkynes induced by Brønsted acid catalysis. Chemical Science, 2021, 12, 4819-4824.	3.7	8
4	Catalyst-Directed Divergent Catalytic Approaches to Expand Structural and Functional Scaffold Diversity via Metallo-Enolcarbene Intermediates. ACS Catalysis, 2021, 11, 4712-4721.	5.5	18
5	Enantioselective Catalytic Cyclopropanation–Rearrangement Approach to Chiral Spiroketals. Organic Letters, 2021, 23, 3955-3959.	2.4	10
6	Ag I â€Catalyzed Reaction of Enol Diazoacetates and Imino Ethers: Synthesis of Highly Functionalized Pyrroles. Angewandte Chemie, 2021, 133, 13506-13512.	1.6	3
7	Ag ^I â€Catalyzed Reaction of Enol Diazoacetates and Imino Ethers: Synthesis of Highly Functionalized Pyrroles. Angewandte Chemie - International Edition, 2021, 60, 13394-13400.	7.2	21
8	Challenges in the Highly Selective $[3+1]$ -Cycloaddition of an Enoldiazoacetamide to Form a Donorâ \in Acceptor Cis-Cyclobutenecarboxamide. Molecules, 2021, 26, 3520.	1.7	2
9	Copper(I)â€Catalyzed Highly Enantioselective [3+3]â€Cycloaddition of βâ€Aryl/Alkyl Vinyl Diazoacetates with Nitrones. Helvetica Chimica Acta, 2021, 104, e2100081.	1.0	6
10	Generation of Diazomethyl Radicals by Hydrogen Atom Abstraction and Their Cycloaddition with Alkenes. Angewandte Chemie, 2021, 133, 18632-18636.	1.6	3
11	Generation of Diazomethyl Radicals by Hydrogen Atom Abstraction and Their Cycloaddition with Alkenes. Angewandte Chemie - International Edition, 2021, 60, 18484-18488.	7.2	17
12	Diverse Reactions of Vinyl Diazo Compounds with Quinone Oxonium Ions, Quinone Imine Ketals, and Eschenmoser's Salt. ACS Catalysis, 2021, 11, 9869-9874.	5.5	14
13	Precise Introduction of the â°'CH _{<i>n</i>} X _{3â€"<i>n</i>} (X = F, Cl, Br, I) Moiety to Target Molecules by a Radical Strategy: A Theoretical and Experimental Study. Journal of the American Chemical Society, 2021, 143, 13195-13204.	6.6	11
14	Intermolecular [5 + 1]-Cycloaddition between Vinyl Diazo Compounds and <i>tert</i> -Butyl Nitrite to 1,2,3-Triazine 1-Oxides and Their Further Transformation to Isoxazoles. Organic Letters, 2021, 23, 6542-6546.	2.4	17
15	Brønsted Acid Catalyzed Oxocarbenium-Olefin Metathesis/Rearrangements of 1 <i>H</i> Isochromene Acetals with Vinyl Diazo Compounds. Journal of the American Chemical Society, 2021, 143, 15391-15399.	6.6	14
16	Catalyst-Free Formation of Nitrile Oxides and Their Further Transformations to Diverse Heterocycles. Organic Letters, 2021, 23, 925-929.	2.4	17
17	Radical-Mediated Strategies for the Functionalization of Alkenes with Diazo Compounds. Journal of the American Chemical Society, 2020, 142, 13846-13855.	6.6	88
18	Chiral 3-Acylglutaric Acid Derivatives from Strain-Induced Nucleophilic Retro-Claisen Ring-Opening Reactions. Journal of Organic Chemistry, 2020, 85, 9475-9490.	1.7	8

#	Article	IF	CITATIONS
19	α-Amino Radical-Mediated Diverse Difunctionalization of Alkenes: Construction of C–C, C–N, and C–S Bonds. ACS Catalysis, 2020, 10, 13682-13687.	5.5	59
20	BrÃ,nsted Acid Catalyzed Friedel–Craftsâ€Type Coupling and Dedinitrogenation Reactions of Vinyldiazo Compounds. Angewandte Chemie - International Edition, 2020, 59, 13613-13617.	7.2	26
21	Brønsted Acid Catalyzed Friedel–Craftsâ€√ype Coupling and Dedinitrogenation Reactions of Vinyldiazo Compounds. Angewandte Chemie, 2020, 132, 13715-13719.	1.6	4
22	Copper($<$ scp $>$ i $<$ /scp $>$)-catalyzed highly enantioselective [3 + 3]-cycloaddition of \hat{I}^3 -alkyl enoldiazoacetates with nitrones. Organic Chemistry Frontiers, 2020, 7, 1653-1657.	2.3	15
23	Catalytic Oxidative Cleavage Reactions of Arylalkenes by <i>tert</i> -Butyl Hydroperoxide – A Mechanistic Assessment. Journal of Organic Chemistry, 2020, 85, 3728-3741.	1.7	22
24	Role of Donor–Acceptor Cyclopropenes in Metal Carbene Reactions. Conversion of ⟨i⟩E⟨/i⟩-Substituted Enoldiazoacetates to ⟨i⟩Z⟨/i⟩-Substituted Metallo-Enolcarbenes. Organometallics, 2019, 38, 4043-4050.	1.1	14
25	Catalytic Desymmetric Cycloaddition of Diaziridines with Metalloenolcarbenes: The Role of Donor–Acceptor Cyclopropenes. Angewandte Chemie - International Edition, 2019, 58, 12502-12506.	7.2	30
26	Catalytic Desymmetric Cycloaddition of Diaziridines with Metalloenolcarbenes: The Role of Donor–Acceptor Cyclopropenes. Angewandte Chemie, 2019, 131, 12632-12636.	1.6	5
27	High Stereocontrol in the Preparation of Silyl-Protected γ-Substituted Enoldiazoacetates. Synlett, 2019, 30, 1457-1461.	1.0	10
28	Synthesis of Chiral Tetrasubstituted Azetidines from Donor–Acceptor Azetines via Asymmetric Copper(I)â€Catalyzed Imidoâ€Ylide [3+1]â€Cycloaddition with Metalloâ€Enolcarbenes. Angewandte Chemie - International Edition, 2019, 58, 16188-16192.	7.2	40
29	Synthesis of Chiral Tetrasubstituted Azetidines from Donor–Acceptor Azetines via Asymmetric Copper(I)â€Catalyzed Imidoâ€Ylide [3+1]â€Cycloaddition with Metalloâ€Enolcarbenes. Angewandte Chemie, 2019, 131, 16334-16338.	1.6	12
30	Generation of Halomethyl Radicals by Halogen Atom Abstraction and Their Addition Reactions with Alkenes. Journal of the American Chemical Society, 2019, 141, 16643-16650.	6.6	91
31	Catalytic asymmetric cycloaddition reactions of enoldiazo compounds. Organic and Biomolecular Chemistry, 2019, 17, 4183-4195.	1.5	45
32	Chiral donor–acceptor azetines as powerful reactants for synthesis of amino acid derivatives. Nature Communications, 2019, 10, 5328.	5.8	19
33	Enoldiazosulfones for Highly Enantioselective [3 + 3]-Cycloaddition with Nitrones Catalyzed by Copper(I) with Chiral BOX Ligands. Organic Letters, 2019, 21, 40-44.	2.4	26
34	On the Origin of the Conformationally Non-Interconvertable Isomers of Bisphenyldirhodium(III) Caprolactamate. Journal of the Mexican Chemical Society, 2019, 53, .	0.2	0
35	Displacement of Dinitrogen by Oxygen: A Methodology for the Catalytic Conversion of Diazocarbonyl Compounds to Ketocarbonyl Compounds by 2,6-Dichloropyridine- <i>N</i> -oxide. Organic Letters, 2018, 20, 776-779.	2.4	27
36	Vinyldiazo Reagents and Metal Catalysts: A Versatile Toolkit for Heterocycle and Carbocycle Construction. ChemCatChem, 2018, 10, 488-496.	1.8	54

#	Article	IF	Citations
37	Intramolecular cycloaddition/rearrangement cascade from gold(<scp>iii</scp>)-catalysed reactions of propargyl aryldiazoesters with cinnamyl imines. Chemical Communications, 2018, 54, 12828-12831.	2.2	7
38	Catalyst Choice for Highly Enantioselective $[3 + 3]$ -Cycloaddition of Enoldiazocarbonyl Compounds. ACS Catalysis, 2018, 8, 10392-10400.	5 . 5	38
39	Selective C(sp ³)â€"H Bond Insertion in Carbene/Alkyne Metathesis Reactions. Enantioselective Construction of Dihydroindoles. ACS Catalysis, 2018, 8, 9543-9549.	5.5	48
40	Rhodium(<scp>ii</scp>)-catalysed generation of cycloprop-1-en-1-yl ketones and their rearrangement to 5-aryl-2-siloxyfurans. Chemical Communications, 2018, 54, 9513-9516.	2.2	19
41	Synthesis of $1 < i > H < /i > -Pyrrol-3(2 < i > H < /i >)-ones via Three-Component Reactions of 2,3-Diketo Esters, Amines, and Ketones. Journal of Organic Chemistry, 2018, 83, 11288-11297.$	1.7	17
42	Copperâ€Catalyzed Formal [4+2] Cycloaddition of Enoldiazoimides with Sulfur Ylides. Angewandte Chemie - International Edition, 2018, 57, 10343-10346.	7.2	22
43	Copperâ€Catalyzed Formal [4+2] Cycloaddition of Enoldiazoimides with Sulfur Ylides. Angewandte Chemie, 2018, 130, 10500-10503.	1.6	4
44	Diazo Esters as Dienophiles in Intramolecular $(4 + 2)$ Cycloadditions: Computational Explorations of Mechanism. Journal of the American Chemical Society, 2017, 139, 2766-2770.	6.6	46
45	Highly Regio-, Diastereo-, and Enantioselective Rhodium-Catalyzed Intramolecular Cyclopropanation of (<i>Z</i>)-1,3-Dienyl Aryldiazoacetates. Organic Letters, 2017, 19, 1306-1309.	2.4	16
46	Catalytic Asymmetric [3+1]â€Cycloaddition Reaction of Ylides with Electrophilic Metalloâ€enolcarbene Intermediates. Angewandte Chemie - International Edition, 2017, 56, 7479-7483.	7.2	66
47	Catalytic Asymmetric [3+1]â€Cycloaddition Reaction of Ylides with Electrophilic Metalloâ€enolcarbene Intermediates. Angewandte Chemie, 2017, 129, 7587-7591.	1.6	16
48	Diverse Pathways in Catalytic Reactions of Propargyl Aryldiazoacetates: Selectivity between Three Reaction Sites. Journal of Organic Chemistry, 2017, 82, 1584-1590.	1.7	18
49	Highly selective acylation of polyamines and aminoglycosides by 5-acyl-5-phenyl-1,5-dihydro-4H-pyrazol-4-ones. Chemical Science, 2017, 8, 7152-7159.	3.7	7
50	Catalytic Allylic Oxidation of Cyclic Enamides and 3,4-Dihydro-2 <i>H</i> -Pyrans by TBHP. Journal of Organic Chemistry, 2017, 82, 8506-8513.	1.7	2
51	Cycloaddition reactions of enoldiazo compounds. Chemical Society Reviews, 2017, 46, 5425-5443.	18.7	220
52	Catalytic Divergent [3+3]―and [3+2] ycloaddition by Discrimination Between Diazo Compounds. Angewandte Chemie, 2017, 129, 12460-12464.	1.6	14
53	Catalytic Divergent [3+3]―and [3+2] ycloaddition by Discrimination Between Diazo Compounds. Angewandte Chemie - International Edition, 2017, 56, 12292-12296.	7.2	49
54	Divergent Rhodium-Catalyzed Cyclization Reactions of Enoldiazoacetamides with Nitrosoarenes. Journal of the American Chemical Society, 2017, 139, 9839-9842.	6.6	47

#	Article	IF	CITATIONS
55	Asymmetric [3+3] Cycloaddition for Heterocycle Synthesis. Synlett, 2017, 28, 1695-1706.	1.0	12
56	Unusually large scalar coupling between geminal protons in a saturated pyrimidine. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2016, 45A, .	0.2	0
57	Dirhodium(II)â€Catalyzed Annulation of Enoldiazoacetamides with αâ€Diazoketones: An Efficient and Highly Selective Approach to Fused and Bridged Ring Systems. Angewandte Chemie - International Edition, 2016, 55, 5573-5576.	7.2	48
58	Versatile Donorâ€Acceptor Cyclopropenes in Metal Carbene Transformations. Israel Journal of Chemistry, 2016, 56, 399-408.	1.0	24
59	Innentitelbild: Dirhodium(II)â€Catalyzed Annulation of Enoldiazoacetamides with αâ€Diazoketones: An Efficient and Highly Selective Approach to Fused and Bridged Ring Systems (Angew. Chem. 18/2016). Angewandte Chemie, 2016, 128, 5436-5436.	1.6	0
60	Catalytic Asymmetric Synthesis of Cyclopentyl βâ€Amino Esters by [3+2] Cycloaddition of Enecarbamates with Electrophilic Metalloenolcarbene Intermediates. Angewandte Chemie, 2016, 128, 10262-10266.	1.6	15
61	Catalyst-Free Rearrangement of Allenyl Aryldiazoacetates into 1,5-Dihydro-4 <i>H</i> -pyrazol-4-ones. Journal of Organic Chemistry, 2016, 81, 9235-9246.	1.7	12
62	Reactivity and Selectivity in Catalytic Reactions of Enoldiazoacetamides. Assessment of Metal Carbenes as Intermediates. Organometallics, 2016, 35, 3413-3420.	1.1	42
63	Catalytic Asymmetric Synthesis of Cyclopentyl βâ€Amino Esters by [3+2] Cycloaddition of Enecarbamates with Electrophilic Metalloenolcarbene Intermediates. Angewandte Chemie - International Edition, 2016, 55, 10108-10112.	7.2	34
64	Highly Regio- and Enantioselective Formal $[3 + 2]$ -Annulation of Indoles with Electrophilic Enol Carbene Intermediates. Organic Letters, 2016, 18, 4550-4553.	2.4	60
65	Syntheses of Tetrahydropyridazine and Tetrahydro-1,2-diazepine Scaffolds through Cycloaddition Reactions of Azoalkenes with Enol Diazoacetates. Organic Letters, 2016, 18, 5884-5887.	2.4	41
66	The Selection of Catalysts for Metal Carbene Transformations. Advances in Organometallic Chemistry, 2016, 66, 1-31.	0.5	32
67	Dirhodium(II)â€Catalyzed Annulation of Enoldiazoacetamides with αâ€Diazoketones: An Efficient and Highly Selective Approach to Fused and Bridged Ring Systems. Angewandte Chemie, 2016, 128, 5663-5666.	1.6	16
68	Unprecedented Intramolecular $[4 + 2]$ -Cycloaddition between a 1,3-Diene and a Diazo Ester. Journal of the American Chemical Society, 2016, 138, 1808-1811.	6.6	30
69	Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones. Journal of the American Chemical Society, 2016, 138, 44-47.	6.6	113
70	Asymmetric synthesis of 1H-pyrrol-3(2H)-ones from 2,3-diketoesters by combination of aldol condensation with benzilic acid rearrangement. Chemical Communications, 2016, 52, 108-111.	2.2	29
71	Chiral Dirhodium(II) Catalysts for Selective Metal Carbene Reactions. Current Organic Chemistry, 2015, 20, 61-81.	0.9	57
72	Straightforward Access to the [3.2.2]Nonatriene Structural Framework via Intramolecular Cyclopropenation/Buchner Reaction/Cope Rearrangement Cascade. Organic Letters, 2015, 17, 790-793.	2.4	38

#	Article	IF	CITATIONS
73	Enantioselective cis-β-lactam synthesis by intramolecular C–H functionalization from enoldiazoacetamides and derivative donor–acceptor cyclopropenes. Chemical Science, 2015, 6, 2196-2201.	3.7	77
74	Divergent pathways of \hat{l}^2 , \hat{l}^3 -unsaturated \hat{l}^4 -diazocarbonyl compounds catalyzed by dirhodium and Lewis acids catalysts separately or in combination. Chinese Chemical Letters, 2015, 26, 227-232.	4.8	19
75	The chemistry of vicinal tricarbonyls: an expedient route to fully-substituted 3-aminopyrroles. Tetrahedron Letters, 2015, 56, 3042-3045.	0.7	16
76	Dinitrogen extrusion from enoldiazo compounds under thermal conditions: synthesis of donor–acceptor cyclopropenes. Chemical Communications, 2015, 51, 12924-12927.	2.2	47
77	Three-Component Cascade Reactions with 2,3-Diketoesters: A Novel Metal-Free Synthesis of 5-Vinyl-pyrrole and 4-Hydroxy-indole Derivatives. Organic Letters, 2015, 17, 3876-3879.	2.4	64
78	Lewis Acid/Rhodium-Catalyzed Formal [3 + 3]-Cycloaddition of Enoldiazoacetates with Donorâ€"Acceptor Cyclopropanes. Organic Letters, 2015, 17, 3568-3571.	2.4	64
79	The Future of Catalysis by Chiral Lewis Acids. Topics in Organometallic Chemistry, 2015, , 1-25.	0.7	2
80	Hg(OTf) ₂ Catalyzed Intramolecular 1,4-Addition of Donor–Acceptor Cyclopropenes to Arenes. Organic Letters, 2015, 17, 4312-4315.	2.4	19
81	Dinuclear compounds without a metal–metal bond. Dirhodium(III,III) carboxamidates. Inorganica Chimica Acta, 2015, 424, 235-240.	1.2	5
82	An efficient route to highly enantioenriched tetrahydroazulenes and \hat{l}^2 -tetralones by desymmetrization reactions of \hat{l} , \hat{l} -diaryldiazoaceto-acetates. Chemical Communications, 2015, 51, 565-568.	2.2	29
83	Recent Developments in the Synthetic Uses of Silyl-protected Enoldiazoacetates for Heterocyclic Syntheses. Australian Journal of Chemistry, 2014, 67, 365.	0.5	14
84	A survey of enoldiazo nucleophilicity in selective C–C bond forming reactions for the synthesis of natural product-like frameworks. Organic and Biomolecular Chemistry, 2014, 12, 5227-5234.	1.5	12
85	Diversifying Science, Technology, Engineering, and Mathematics (STEM): An Inquiry into Successful Approaches in Chemistry. Journal of Chemical Education, 2014, 91, 1860-1866.	1.1	29
86	Expedient access to substituted 3-amino-2-cyclopentenones by dirhodium-catalyzed [3+2]-annulation of silylated ketene imines and enoldiazoacetates. Chemical Communications, 2014, 50, 2462-2464.	2.2	21
87	Lewis Acid Catalyzed Diastereoselective 1,3-Dipolar Cycloaddition between Diazoacetoacetate Enones and Azomethine Ylides. Heterocycles, 2014, 88, 1039.	0.4	3
88	Enantioselective Carbonyl–Ene Reactions Catalyzed by Chiral Cationic Dirhodium(II,III) Carboxamidates. Journal of Organic Chemistry, 2014, 79, 12185-12190.	1.7	20
89	Dirhodium caprolactamate and tert-butyl hydro- peroxide – a universal system for selective oxidations. Mendeleev Communications, 2014, 24, 187-196.	0.6	19
90	Catalytic Conversion of Diazocarbonyl Compounds to Imines: Applications to the Synthesis of Tetrahydropyrimidines and \hat{l}^2 -Lactams. Organic Letters, 2014, 16, 740-743.	2.4	48

#	Article	IF	CITATIONS
91	Highly Enantioselective Carbonyl–Ene Reactions of 2,3â€Diketoesters: Efficient and Atomâ€Economical Process to Functionalized Chiral αâ€Hydroxyâ€Î²â€Ketoesters. Angewandte Chemie - International Edition, 2014, 53, 6468-6472.	7.2	55
92	The [3 + 3]-Cycloaddition Alternative for Heterocycle Syntheses: Catalytically Generated Metalloenolcarbenes as Dipolar Adducts. Accounts of Chemical Research, 2014, 47, 1396-1405.	7.6	319
93	Highly Enantioselective Carbonyl–Ene Reactions of 2,3â€Diketoesters: Efficient and Atomâ€Economical Process to Functionalized Chiral αâ€Hydroxyâ€Î²â€Ketoesters. Angewandte Chemie, 2014, 126, 6586-6590.	1.6	12
94	Catalytic Asymmetric Syntheses of Quinolizidines by Dirhodium-Catalyzed Dearomatization of Isoquinolinium/Pyridinium Methylides–The Role of Catalyst and Carbene Source. Journal of the American Chemical Society, 2013, 135, 12439-12447.	6.6	127
95	Mechanistic Investigation of Oxidative Mannich Reaction with <i>tert</i> Role of Transition Metal Salt. Journal of the American Chemical Society, 2013, 135, 1549-1557.	6.6	169
96	Highly Enantioselective Dearomatizing Formal [3+3]â€Cycloaddition Reactions of <i>N</i> à€Acyliminopyridinium Ylides with Electrophilic Enol Carbene Intermediates. Angewandte Chemie - International Edition, 2013, 52, 12664-12668.	7.2	83
97	Rhodium acetate-catalyzed aerobic Mukaiyama epoxidation of alkenes. Tetrahedron, 2013, 69, 10009-10013.	1.0	15
98	A donor–acceptor cyclopropene as a dipole source for a silver(i) catalyzed asymmetric catalytic [3+3]-cycloaddition with nitrones. Chemical Communications, 2013, 49, 10287.	2.2	76
99	Vinylogous Reactivity of Enol Diazoacetates with Donor–Acceptor Substituted Hydrazones. Synthesis of Substituted Pyrazole Derivatives. Journal of Organic Chemistry, 2013, 78, 1583-1588.	1.7	46
100	Dirhodium(ii)-catalyzed formal [3+2+1]-annulation of azomethine imines with two molecules of a diazo ketone. Chemical Communications, 2013, 49, 2762.	2.2	33
101	Bicyclic Pyrazolidinone Derivatives from Diastereoselective Catalytic [3 + 3]-Cycloaddition Reactions of Enoldiazoacetates with Azomethine Imines. Organic Letters, 2013, 15, 1564-1567.	2.4	88
102	Tetrahydroquinolines and Benzazepines through Catalytic Diastereoselective Formal [4 + 2]-Cycloaddition Reactions between Donor–Acceptor Cyclopropenes and Imines. Organic Letters, 2013, 15, 3278-3281.	2.4	42
103	Simple and Sustainable Iron-Catalyzed Aerobic C–H Functionalization of <i>N</i> , <i>N</i> , 2013, 135, 9475-9479.	6.6	153
104	Diazoacetoacetate Enones for the Synthesis of Diverse Natural Product-like Scaffolds. Organic Letters, 2013, 15, 3642-3645.	2.4	28
105	Highly Selective Catalyst-Dependent Competitive 1,2-Câ†'C, -Oâ†'C, and -Nâ†'C Migrations from \hat{l}^2 -Methylene- \hat{l}^2 -silyloxy- \hat{l}^2 -amido- \hat{l}^2 -diazoacetates. Journal of the American Chemical Society, 2013, 135, 1244-1247.	6.6	66
106	Templated Carbene Metathesis Reactions from the Modular Assembly of Enolâ€diazo Compounds and Propargyl Acetates. European Journal of Organic Chemistry, 2013, 2013, 6032-6037.	1.2	33
107	Degradation of azo dye with dirhodium(II) caprolactamate as heterogeneous catalyst. Water Science and Technology, 2012, 65, 2175-2182.	1.2	1
108	Tandem Sequence of Phenol Oxidation and Intramolecular Addition as a Method in Building Heterocycles. Journal of Organic Chemistry, 2012, 77, 10294-10303.	1.7	43

#	Article	IF	CITATIONS
109	C–H Functionalization. Accounts of Chemical Research, 2012, 45, 777-777.	7.6	99
110	Michael addition/pericyclization/rearrangement $\hat{a}\in$ a multicomponent strategy for the synthesis of substituted resorcinols. Organic and Biomolecular Chemistry, 2012, 10, 6388.	1.5	16
111	Unexpected Catalytic Reactions of Silyl-Protected Enol Diazoacetates with Nitrile Oxides That Form 5-Arylaminofuran-2(3 <i>H</i>)-one-4-carboxylates. Organic Letters, 2012, 14, 800-803.	2.4	35
112	Competitive [2,3]- and [1,2]-Oxonium Ylide Rearrangements. Concerted or Stepwise?. Organic Letters, 2012, 14, 1676-1679.	2.4	34
113	Highly enantioselective trapping of zwitterionic intermediates by imines. Nature Chemistry, 2012, 4, 733-738.	6.6	274
114	Development and Evaluation of a Prep Course for Chemistry Graduate Teaching Assistants at a Research University. Journal of Chemical Education, 2012, 89, 865-872.	1.1	67
115	Synthesis of Tetrahydropyridazines by a Metal–Carbeneâ€Directed Enantioselective Vinylogous NH Insertion/Lewis Acid atalyzed Diastereoselective Mannich Addition. Angewandte Chemie - International Edition, 2012, 51, 9829-9833.	7.2	103
116	Efficient synthesis of oxazoles by dirhodium(ii)-catalyzed reactions of styryl diazoacetate with oximes. Chemical Communications, 2012, 48, 11522.	2.2	33
117	Divergent Stereocontrol of Acid Catalyzed Intramolecular Aldol Reactions of 2,3,7-Triketoesters: Synthesis of Highly Functionalized Cyclopentanones. Organic Letters, 2012, 14, 3608-3611.	2.4	51
118	Substrate-Dependent Divergent Outcomes from Catalytic Reactions of Silyl-Protected Enol Diazoacetates with Nitrile Oxides: Azabicyclo[$3.1.0$]hexanes or 5-Arylaminofuran- $2(3 < i > H < /i >)$ -ones. Journal of Organic Chemistry, 2012, 77, 5313-5317.	1.7	23
119	Highly Regio―and Stereoselective Dirhodium Vinylcarbene Induced Nitrone Cycloaddition with Subsequent Cascade Carbenoid Aromatic Cycloaddition/NO Cleavage and Rearrangement. Angewandte Chemie - International Edition, 2012, 51, 5907-5910.	7.2	68
120	Rhodium(II)―and Copper(II)â€Catalyzed Reactions of Enol Diazoacetates with Nitrones: Metal Carbene versus Lewis Acid Directed Pathways. Angewandte Chemie - International Edition, 2012, 51, 5900-5903.	7.2	69
121	Control of selectivity in the generation and reactions of oxonium ylides. Chemical Communications, 2011, 47, 7623.	2.2	28
122	Does an Axial Propeller Shape on a Dirhodium(III,III) Core Affect Equatorial Ligand Chirality?. Organometallics, 2011, 30, 3619-3627.	1.1	9
123	Multifunctionalized 3-Hydroxypyrroles in a Three-Step, One-Pot Cascade Process from Methyl 3-TBSO-2-diazo-3-butenoate and Nitrones. Organic Letters, 2011, 13, 6122-6125.	2.4	60
124	Solvent Enhancement of Reaction Selectivity: A Unique Property of Cationic Chiral Dirhodium Carboxamidates. Journal of the American Chemical Society, 2011, 133, 9572-9579.	6.6	46
125	Enantiomer Recognition of Amides by Dirhodium(II) Tetrakis[methyl 2-oxopyrrolidine-5(<i>S</i>)-carboxylate]. Inorganic Chemistry, 2011, 50, 7610-7617.	1.9	15
126	Dirhodium-Catalyzed Phenol and Aniline Oxidations with T-HYDRO. Substrate Scope and Mechanism of Oxidation. Journal of Organic Chemistry, 2011, 76, 2585-2593.	1.7	51

#	Article	IF	Citations
127	Asymmeric Formal [3 + 3]-Cycloaddition Reactions of Nitrones with Electrophilic Vinylcarbene Intermediates. Journal of the American Chemical Society, 2011, 133, 16402-16405.	6.6	165
128	Intramolecular catalytic asymmetric carbon–hydrogen insertion reactions. Synthetic advantages in total synthesis in comparison with alternative approaches. Organic and Biomolecular Chemistry, 2011, 9, 4007.	1.5	87
129	Silverâ€Catalyzed Carbene Functionalization of Methane in Supercritical Carbon Dioxide. ChemCatChem, 2011, 3, 1681-1682.	1.8	6
130	Highly Enantioselective Catalytic Synthesis of Functionalized Chiral Diazoacetoacetates. Angewandte Chemie - International Edition, 2011, 50, 6392-6395.	7.2	55
131	Divergent Outcomes of Carbene Transfer Reactions from Dirhodium―and Copperâ€Based Catalysts Separately or in Combination. Angewandte Chemie - International Edition, 2011, 50, 11152-11155.	7.2	61
132	An efficient methodology to substituted furans via oxidation of functionalized \hat{l} ±-diazo- \hat{l} 2-ketoacetates. Tetrahedron Letters, 2011, 52, 2093-2096.	0.7	31
133	Catalytic Carbene Insertion into Câ^'H Bonds. Chemical Reviews, 2010, 110, 704-724.	23.0	1,573
134	The evolving nature of chemical education: challenges and opportunities. Future Medicinal Chemistry, 2010, 2, 247-249.	1.1	3
135	Pericyclic Reaction of a Zwitterionic Salt of an Enedione-diazoester. A Novel Strategy for the Synthesis of Highly Functionalized Resorcinols. Organic Letters, 2010, 12, 4304-4307.	2.4	34
136	Stereoselective Synthesis of Highly Functionalized \hat{l}_{\pm} -Diazo- \hat{l}_{\pm} -ketoalkanoates via Catalytic One-Pot Mukaiyama-Aldol Reactions. Organic Letters, 2010, 12, 796-799.	2.4	26
137	Chemoselectivity in dirhodium(II) catalyzed reactions of diazoacetoacetates prepared from \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones. Arkivoc, 2010, 2010, 10-16.	0.3	0
138	Exceptional Selectivity in Cyclopropanation Reactions Catalyzed by Chiral Cobalt(II)–Porphyrin Catalysts. Angewandte Chemie - International Edition, 2009, 48, 850-852.	7.2	152
139	Allylic Oxidations Catalyzed by Dirhodium Caprolactamate via Aqueous <i>tert</i> -Butyl Hydroperoxide: The Role of the <i>tert</i> -Butylperoxy Radical. Journal of Organic Chemistry, 2009, 74, 730-738.	1.7	107
140	Barriers to enantiocontrol in Lewis acid catalyzed hetero-Diels–Alder reactions. Chemical Communications, 2009, , 5612.	2.2	11
141	Conformational isomers of extraordinary stability: carboxamidate-bridged dimetalloorganic compounds. Chemical Communications, 2009, , 3005.	2.2	4
142	Hetero-bis (if -aryl) dirhodium (III) caprolactamates. Electronic communication between aryl groups through dirhodium (III). Dalton Transactions, 2009, , 2871.	1.6	10
143	The New Chemical Biology of Nitrite Reactions with Hemoglobin: R-State Catalysis, Oxidative Denitrosylation, and Nitrite Reductase/Anhydrase. Accounts of Chemical Research, 2009, 42, 157-167.	7.6	167
144	Lewis Acid Catalyzed Indole Synthesis via Intramolecular Nucleophilic Attack of Phenyldiazoacetates to Iminium Ions. Journal of Organic Chemistry, 2009, 74, 9222-9224.	1.7	49

#	Article	IF	Citations
145	Cationic Chiral Dirhodium Carboxamidates Are Activated for Lewis Acid Catalysis. Angewandte Chemie - International Edition, 2008, 47, 1439-1442.	7.2	68
146	Diphenylglycoluril as a novel ligand architecture for dirhodium(II) carboxamidates. Inorganica Chimica Acta, 2008, 361, 3309-3314.	1,2	11
147	Construction of Highly Functionalized Diazoacetoacetates via Catalytic Mukaiyamaâ^'Michael Reactions. Organic Letters, 2008, 10, 1605-1608.	2.4	55
148	Synthesis of bis (if -aryl) dirhodium (iii) caprolactamates by oxidative arylation with arylboronic acids. Chemical Communications, 2008, , 2671.	2.2	10
149	Propargylic Oxidations Catalyzed by Dirhodium Caprolactamate in Water: Efficient Access to $\hat{l}\pm,\hat{l}^2$ -Acetylenic Ketones. Journal of Organic Chemistry, 2008, 73, 4317-4319.	1.7	64
150	Removal of Metalâ^'Metal Bonding in a Dimetallic Paddlewheel Complex: Molecular and Electronic Structure of Bis(phenyl) Dirhodium(III) Carboxamidate Compounds. Organometallics, 2008, 27, 5836-5845.	1,1	28
151	The Influence of Ligands on Dirhodium(II) on Reactivity and Selectivity in Metal Carbene Reactions. Progress in Inorganic Chemistry, 2007, , 113-168.	3.0	63
152	Oxidation of secondary amines catalyzed by dirhodium caprolactamate. Chemical Communications, 2007, , 745.	2.2	135
153	Bis(phenyl)dirhodium(III) Caprolactamate:Â A Dinuclear Paddlewheel Complex with No Metalâ^'Metal Bond. Journal of the American Chemical Society, 2007, 129, 3504-3505.	6.6	28
154	Optimal TBHP Allylic Oxidation of \hat{i} 'sup>5-Steroids Catalyzed by Dirhodium Caprolactamate. Organic Letters, 2007, 9, 5349-5352.	2.4	67
155	The Oxidative Mannich Reaction Catalyzed by Dirhodium Caprolactamate. Journal of the American Chemical Society, 2006, 128, 5648-5649.	6.6	180
156	Polyether Macrocycles from Intramolecular Cyclopropanation and Ylide Formation. Effect of Catalyst and Coordination. Journal of Organic Chemistry, 2006, 71, 8183-8189.	1.7	25
157	Vinyldiazolactone as a Vinylcarbene Precursor:Â Highly Selective Câ^'H Insertion and Cyclopropanation Reactions. Journal of the American Chemical Society, 2006, 128, 16038-16039.	6.6	75
158	Perspective on Dirhodium Carboxamidates as Catalysts. Journal of Organic Chemistry, 2006, 71, 9253-9260.	1.7	235
159	Identification and Characterization of Isomeric Intermediates in a Catalyst Formation Reaction by Means of Speciation Analysis Using HPLCâ^'ICPMS and HPLCâ^'ESI-MS. Analytical Chemistry, 2006, 78, 1282-1289.	3.2	12
160	Constructing chiral diazoacetoacetates by enantioselective catalytic Mukaiyama aldol reactions. Tetrahedron: Asymmetry, 2006, 17, 574-577.	1.8	28
161	Substrateversus Catalyst Control of Stereoselectivity in the Cyclopropanation of a Carbon-Carbon Double Bond Linked to the Reactant Diazoacetate through a Chiral Linker. Advanced Synthesis and Catalysis, 2006, 348, 449-455.	2.1	14
162	Observations of Rhodium-Containing Reaction Intermediates using HPLC with ICP-MS and ESI-MS Detection. Advanced Synthesis and Catalysis, 2006, 348, 821-825.	2.1	23

#	Article	IF	CITATIONS
163	Stereoselectivity in Metal Carbene Addition to a Carbon-Carbon Triple Bond Tied to the Reactant Diazoacetate Through a Chiral Linker. Advanced Synthesis and Catalysis, 2006, 348, 2403-2409.	2.1	16
164	Making Ends Meet: Catalytic Cycloaddition. Advanced Synthesis and Catalysis, 2006, 348, 2269-2269.	2.1	1
165	Chiral Dirhodium(II) Carboxamidate-Catalyzed [2+2]-Cycloaddition of TMS-Ketene and Ethyl Glyoxylate. Advanced Synthesis and Catalysis, 2005, 347, 87-92.	2.1	48
166	Chiral Dirhodium(II) Carboxamidates for Asymmetric Cyclopropanation and Carbon-Hydrogen Insertion Reactions., 2005,, 341-355.		18
167	Dirhodium(II) Caprolactamate: An Exceptional Catalyst for Allylic Oxidation ChemInform, 2005, 36, no.	0.1	0
168	Stereoselective Synthesis of Bicyclic Pyrrolidines by a Rhodium-Catalyzed Cascade Process ChemInform, 2005, 36, no.	0.1	0
169	Chiral Dirhodium(II) Carboxamidates for Catalytic Asymmetric Synthesis. ChemInform, 2005, 36, no.	0.1	1
170	Efficient Aziridination of Olefins Catalyzed by Mixed-Valent Dirhodium(II,III) Caprolactamate ChemInform, 2005, 36, no.	0.1	0
171	Stereoselectivity in metal carbene and Lewis acid-catalyzed reactions from diastereomeric dirhodium(II) carboxamidates: Menthyl N-acetyl-2-oxoimidazolidine-4(S)-carboxylates. Journal of Organometallic Chemistry, 2005, 690, 5525-5532.	0.8	6
172	Chiral Dirhodium(II) Catalysts and Their Applications. , 2005, , 591-632.		31
173	Efficient Aziridination of Olefins Catalyzed by Mixed-Valent Dirhodium(II,III) Caprolactamate. Organic Letters, 2005, 7, 2787-2790.	2.4	108
174	Synthetic Carbene and Nitrene Chemistry. , 2005, , 561-592.		14
175	A readily prepared neutral heterobimetallic titanium(iv)–rhodium(i) catalyst for intramolecular hydroacylation. Chemical Communications, 2005, , 3307.	2.2	28
176	Catalytic Addition Methods for the Synthesis of Functionalized Diazoacetoacetates and Application to the Construction of Highly Substituted Cyclobutanones. Organic Letters, 2005, 7, 5171-5174.	2.4	48
177	Amplification of Asymmetric Induction in Sequential Reactions of Bis-diazoacetates Catalyzed by Chiral Dirhodium(II) Carboxamidates. Organic Letters, 2005, 7, 5035-5038.	2.4	27
178	Benzylic Oxidation Catalyzed by Dirhodium(II,III) Caprolactamate. Organic Letters, 2005, 7, 5167-5170.	2.4	195
179	"Matched/Mismatched―Diastereomeric Dirhodium(II) Carboxamidate Catalyst Pairs. Structureâ''Selectivity Correlations in Diazo Decomposition and Hetero-Dielsâ''Alder Reactions. Journal of Organic Chemistry, 2005, 70, 5291-5301.	1.7	40
180	Influence of the Diene in the Hetero-Diels-Alder Reaction Catalyzed by Dirhodium(II) Carboxamidates. Synlett, 2004, 2004, 2425-2428.	1.0	6

#	Article	IF	Citations
181	Asymmetric Catalysis Special Feature Part I: Asymmetric hetero-Diels-Alder reaction catalyzed by dirhodium(II) carboxamidates. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5391-5395.	3.3	61
182	No scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radical Biology and Medicine, 2004, 36, 685-697.	1.3	271
183	Stereoselective Synthesis of Bicyclic Pyrrolidines by a Rhodium-Catalyzed Cascade Process. Angewandte Chemie - International Edition, 2004, 43, 6713-6716.	7.2	30
184	A Novel Three-Component Reaction Catalyzed by Dirhodium(II) Acetate: Decomposition of Phenyldiazoacetate with Arylamine and Imine for Highly Diastereoselective Synthesis of $1,2$ -Diamines ChemInform, 2004, 35, no.	0.1	0
185	A Facile Three-Component One-Pot Synthesis of Structurally Constrained Tetrahydrofurans that Are t-RNA Synthetase Inhibitor Analogues ChemInform, 2004, 35, no.	0.1	0
186	Divergence of Carbonyl Ylide Reactions as a Function of Diazocarbonyl Compound and Aldehyde Substituent: Dioxolanes, Dioxolenes, and Epoxides ChemInform, 2004, 35, no.	0.1	0
187	Divergence of Carbonyl Ylide Reactions as a Function of Diazocarbonyl Compound and Aldehyde Substituent:Â Dioxolanes, Dioxolenes, and Epoxides. Journal of Organic Chemistry, 2004, 69, 5269-5274.	1.7	73
188	Dirhodium(II) Caprolactamate:Â An Exceptional Catalyst for Allylic Oxidation. Journal of the American Chemical Society, 2004, 126, 13622-13623.	6.6	215
189	A Facile Three-Component One-Pot Synthesis of Structurally Constrained Tetrahydrofurans That Are t-RNA Synthetase Inhibitor Analogues. Journal of Organic Chemistry, 2004, 69, 4856-4859.	1.7	50
190	Chiral Dirhodium(II) Carboxamidates for Catalytic Asymmetric Synthesis. ACS Symposium Series, 2004, , 1-13.	0.5	2
191	Influences of Catalyst Configuration and Catalyst Loading on Selectivities in Reactions of Diazoacetamides. Barrier to Equilibrium between Diastereomeric Conformations. Organic Letters, 2003, 5, 407-410.	2.4	34
192	Synthesis of dirhodium(II) tetrakis[methyl 1-(3-phenylpropanoyl)-2-oxaimidazolidine-4(S)-carboxylate], Rh2(4S-MPPIM)4. Tetrahedron: Asymmetry, 2003, 14, 3601-3604.	1.8	11
193	Comparative enantiocontrol with allyl phenyldiazoacetates in asymmetric catalytic intramolecular cyclopropanation. Chirality, 2003, 15, 369-373.	1.3	14
194	A short stereoselective synthesis of (+)- and (â^')-2-oxabicyclo[3.3.0]oct-6-en-3-one by intramolecular carbonâ€"hydrogen insertion catalyzed by chiral dirhodium(II) carboxamidates. Tetrahedron: Asymmetry, 2003, 14, 925-928.	1.8	29
195	Steric balance within chiral dirhodium(II) carboxamidate catalysts enhances stereoselectivity. Journal of Molecular Catalysis A, 2003, 196, 93-100.	4.8	11
196	Highly Selective Catalyst-Directed Pathways to Dihydropyrroles from Vinyldiazoacetates and Imines. Journal of the American Chemical Society, 2003, 125, 4692-4693.	6.6	126
197	A Novel Three-Component Reaction Catalyzed by Dirhodium(II) Acetate:  Decomposition of Phenyldiazoacetate with Arylamine and Imine for Highly Diastereoselective Synthesis of 1,2-Diamines. Organic Letters, 2003, 5, 3923-3926.	2.4	94
198	Catalysts with Mixed Ligands on Immobilized Supports. Electronic and Steric Advantages. Organic Letters, 2003, 5, 561-563.	2.4	61

#	Article	IF	CITATIONS
199	Influences of Catalyst Configuration and Catalyst Loading on Selectivities in Reactions of Diazoacetamides. Barrier to Equilibrium Between Diastereomeric Conformations. Organic Letters, 2003, 5, 2371-2371.	2.4	3
200	Enantioselectivity for catalytic cyclopropanation with diazomalonates. Arkivoc, 2003, 2003, 15-22.	0.3	31
201	Preparation and Catalytic Properties of Immobilized Chiral Dirhodium(II) Carboxamidates. Organometallics, 2002, 21, 1747-1749.	1.1	47
202	In Search of High Stereocontrol for the Construction ofcis-Disubstituted Cyclopropane Compounds. Total Synthesis of a Cyclopropane-Configured Urea-PETT Analogue That Is a HIV-1 Reverse Transcriptase Inhibitor. Organic Letters, 2002, 4, 901-904.	2.4	51
203	Effective and Highly Stereoselective Coupling with Vinyldiazomethanes To Form Symmetrical Trienes. Journal of Organic Chemistry, 2002, 67, 602-604.	1.7	70
204	Academic Excellence - The Role of Research. 2002 George C. Pimentel Award. Journal of Chemical Education, 2002, 79, 1038.	1.1	6
205	Total Synthesis of (S)-(+)-Imperanene. Effective Use of Regio- and Enantioselective Intramolecular Carbonâ^'Hydrogen Insertion Reactions Catalyzed by Chiral Dirhodium(II) Carboxamidates. Journal of Organic Chemistry, 2002, 67, 2954-2959.	1.7	56
206	Enantioselective carbon-hydrogen insertion is an effective and efficient methodology for the synthesis of (r)-(-)-baclofen. Chirality, 2002, 14, 169-172.	1.3	38
207	Chiral catalyst enhancement of diastereocontrol for Oî—,H insertion reactions of styryl- and phenyldiazoacetate esters of pantolactone. Tetrahedron Letters, 2002, 43, 5929-5931.	0.7	46
208	In Search of High Stereocontrol for the Construction of cisâ€Disubstituted Cyclopropane Compounds. Total Synthesis of a Cyclopropaneâ€Configured Ureaâ€PETT Analogue that Is a HIVâ€1 Reverse Transcriptase Inhibitor ChemInform, 2002, 33, 73-73.	0.1	0
209	Attempted synthesis of casbene by intramolecular cyclopropanation. Arkivoc, 2002, 2002, 180-185.	0.3	11
210	Epoxides and Aziridines from Diazoacetates via Ylide Intermediates. Organic Letters, 2001, 3, 933-935.	2.4	162
211	Highly Stereoselective Syntheses of Five- and Seven-Membered Ring Heterocycles from Ylides Generated by Catalytic Reactions of Styryldiazoacetates with Aldehydes and Imines. Organic Letters, 2001, 3, 3741-3744.	2.4	74
212	High Selectivity from Configurational Match/Mismatch in Carbonâ-'Hydrogen Insertion Reactions of Steroidal Diazoacetates Catalyzed by Chiral Dirhodium(II) Carboxamidates. Journal of Organic Chemistry, 2001, 66, 8112-8119.	1.7	40
213	A New Class of Chiral Lewis Acid Catalysts for Highly Enantioselective Hetero-Diels-Alder Reactions:Â Exceptionally High Turnover Numbers from Dirhodium(II) Carboxamidates. Journal of the American Chemical Society, 2001, 123, 5366-5367.	6.6	104
214	Catalyst selection for metal carbene transformations. Journal of Organometallic Chemistry, 2001, 617-618, 98-104.	0.8	53
215	Cyclopropanation versus carbon–hydrogen insertion. The influences of substrate and catalyst on selectivity. Tetrahedron Letters, 2001, 42, 3155-3158.	0.7	48
216	Macrocycle Formation from Catalytic Metal Carbene Transformations. Synlett, 2001, 2001, 1364-1370.	1.0	33

#	Article	IF	Citations
217	Enantioselective \hat{I}^2 -Lactone Formation from Phenyldiazoacetates via Catalytic Intramolecular Carbon-Hydrogen Insertion. Synlett, 2001, 2001, 0967-0969.	1.0	28
218	Enantiocontrol in Macrocycle Formation from Catalytic Metal Carbene Transformations. Chinese Journal of Chemistry, 2001, 19, 22-29.	2.6	4
219	Reactivities and selectivities in macrocyclic addition reactions with diazoacetates using copper(I) and rhodium(II) catalysts. Tetrahedron Letters, 2000, 41, 6265-6269.	0.7	33
220	Dirhodium(II) Tetrakis[methyl 2-oxaazetidine-4-carboxylate]:  A Chiral Dirhodium(II) Carboxamidate of Exceptional Reactivity and Selectivity. Organic Letters, 2000, 2, 1145-1147.	2.4	142
221	Selectivity in Reactions of Allyl Diazoacetates as a Function of Catalyst and Ring Size from Î ³ -Lactones to Macrocyclic Lactones. Journal of Organic Chemistry, 2000, 65, 8839-8847.	1.7	61
222	A New Approach to Macrocyclization via Alkene Formation in Catalytic Diazo Decomposition. Synthesis of Patulolides A and B. Organic Letters, 2000, 2, 1777-1779.	2.4	61
223	Optimization of enantiocontrol in cis-selective cyclopropanation reactions catalyzed by dirhodium(ii) tetrakis[alkyl 2-oxaazetidine-4(S)-carboxylates]. Chemical Communications, 2000, , 867-868.	2.2	42
224	Enantiocontrolled Macrocycle Formation by Catalytic Intramolecular Cyclopropanation. Journal of the American Chemical Society, 2000, 122, 5718-5728.	6.6	63
225	Glutaraldehyde Modification of Recombinant Human Hemoglobin Alters Its Hemodynamic Properties. Journal of Biological Chemistry, 1999, 274, 2583-2591.	1.6	49
226	Macrocyclic Cyclopropenes by Highly Enantioselective Intramolecular Addition of Metal Carbenes to Alkynes. Angewandte Chemie - International Edition, 1999, 38, 700-702.	7.2	54
227	Chemoselectivity and enantiocontrol in catalytic intramolecular metal carbene reactions of diazo acetates linked to reactive functional groups by naphthalene-1,8-dimethanol. Chemical Communications, 1999, , 1691-1692.	2.2	45
228	Enantioselective Syntheses of 2-Deoxyxylono-1,4-lactone and 2-Deoxyribono-1,4-lactone from 1,3-Dioxan-5-yl Diazoacetates. Journal of Organic Chemistry, 1999, 64, 8907-8915.	1.7	47
229	Catalytic Intramolecular Addition of Metal Carbenes to Remote Furans. Organic Letters, 1999, 1, 1327-1329.	2.4	35
230	Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nature Biotechnology, 1998, 16, 672-676.	9.4	431
231	New aspects of catalytic asymmetric cyclopropanation. Tetrahedron, 1998, 54, 7919-7946.	1.0	304
232	Enantiocontrol in the Generation and Diastereoselective Reactions of Catalytically Generated Oxonium and Iodonium Ylides. Metal-Stabilized Ylides as Reaction Intermediates. Journal of the American Chemical Society, 1998, 120, 7653-7654.	6.6	90
233	ChemPrep Institute for Scientific Information:Â 3501 Market Street, Philadelphia, PA 19104. Telephone:Â 1-800-336-4474. Fax:Â 215-386-6362. http://www.lsinet.Com. List Price for 1985â^1997 databases:Â \$11Â750 the American Chemical Society. 1998, 120, 5353-5353.	(1) _{6.6} ETQ	ղ1 ₀ 1 0.7843
234	Recent Advances in Asymmetric Catalytic Metal Carbene Transformations. Chemical Reviews, 1998, 98, 911-936.	23.0	1,272

#	Article	IF	CITATIONS
235	Stereoselective Synthesis of Substituted 5-Hydroxy-1,3-dioxanes. Synthesis, 1998, 1998, 879-882.	1.2	31
236	Synthesis, Structure and Reactivity of a Novel Series of Diastereomeric Dirhodium(II) Tetracarboxamidates. Catalysts for Asymmetric Diazoacetate Transformations. Australian Journal of Chemistry, 1998, 51, 1.	0.5	8
237	Comparative evaluation of enantiocontrol for intramolecular cyclopropanation of diazoacetates with chiral Cul, RhII and RuII catalysts. Chemical Communications, 1997, , 211-212.	2.2	66
238	KR OnDisc Encyclopedia of Physical Science and Technology, 2E CD-ROM Academic Press, Inc.:Â 525 B Street, Suite 1900, San Diego, California 92101-4495. Tel:Ä 619-699-6410. \$2995.00. ISBN 0-12-000200-0. 1995. Journal of the American Chemical Society, 1997, 119, 2964-2964.	6.6	3
239	Recent advances in stereoselective synthesis involving diazocarbonyl intermediates. Chemical Communications, 1997, , 983.	2.2	66
240	Stereocontrol in Intermolecular Dirhodium(II)-Catalyzed Carbonyl Ylide Formation and Reactions. Dioxolanes and Dihydrofurans. Journal of Organic Chemistry, 1997, 62, 7210-7215.	1.7	113
241	Macrocycle Formation by Catalytic Intramolecular Cyclopropanation. A New General Methodology for the Synthesis of Macrolides. Journal of the American Chemical Society, 1997, 119, 8826-8837.	6.6	56
242	(4,0)-Dirhodium(II) tetrakis[methyl 1-acetyl-2-oxoimidazolidine-4(S)-carboxylate]. Implications for the mechanism of ligand exchange reactions. Inorganica Chimica Acta, 1997, 266, 13-18.	1.2	23
243	Asymmetric catalysis, part 108 copper catalysts with optically active ligands in the enantioselective Meerwein arylation of activated olefins. Journal of Organometallic Chemistry, 1997, 541, 89-95.	0.8	33
244	Highly enantioselective oxonium ylide formation and Stevens rearrangement catalyzed by chiral dirhodium(II) carboxamidates. Tetrahedron Letters, 1997, 38, 4367-4370.	0.7	64
245	Macrocyclic oxonium ylide formation and internal [2,3]-sigmatropic rearrangement. Catalyst influence on selectivity. Tetrahedron Letters, 1997, 38, 5265-5268.	0.7	36
246	Intramolecular Regioselective Insertion into Unactivated Prochiral Carbonâ^Hydrogen Bonds with Diazoacetates of Primary Alcohols Catalyzed by Chiral Dirhodium(II) Carboxamidates. Highly Enantioselective Total Synthesis of Natural Lignan Lactones. Journal of Organic Chemistry, 1996, 61, 9146-9155.	1.7	135
247	Highly Enantioselective Intramolecular Cyclopropanation Reactions of N-Allylic-N-methyldiazoacetamides Catalyzed by Chiral Dirhodium(II) Carboxamidates. Journal of Organic Chemistry, 1996, 61, 2179-2184.	1.7	80
248	Synthesis and Structures of (2,2-cis)-Dirhodium(II) Tetrakis[methyl 1-acyl-2-oxoimidazolidine-4(S)-carboxylates]. Chiral Catalysts for Highly Stereoselective Metal Carbene Transformations. Inorganic Chemistry, 1996, 35, 6064-6073.	1.9	72
249	Formation of Macrocycles by Catalytic Intramolecular Aromatic Cycloaddition of Metal Carbenes to Remote Arenes. Journal of the American Chemical Society, 1996, 118, 7865-7866.	6.6	36
250	Chiral Catalyst Controlled Diastereoselection and Regioselection in Intramolecular Carbonâ°'Hydrogen Insertion Reactions of Diazoacetates. Journal of the American Chemical Society, 1996, 118, 8837-8846.	6.6	127
251	Formation of Macrocyclic Lactones by Enantioselective Intramolecular Cyclopropanation of Diazoacetates Catalyzed by Chiral Cul and Rhll Compounds. Angewandte Chemie International Edition in English, 1996, 35, 1334-1336.	4.4	86
252	Synthesis of pyrrolizidine bases by highly diastereoselective and regioselective catalytic carbon-hydrogen insertion reactions of chiral pyrrolidinediazoacetamides. Tetrahedron Letters, 1996, 37, 1371-1374.	0.7	51

#	Article	IF	CITATIONS
253	Chiral catalysts for enantioselective intermolecular cyclopropanation reactions with methyl phenyldiazoacetate. Origin of the solvent effect in reactions catalyzed by homochiral dirhodium(II) prolinates. Tetrahedron Letters, 1996, 37, 4129-4132.	0.7	105
254	Asymmetric rhodium carbenoid insertion into the Siî—,H bond. Tetrahedron Letters, 1996, 37, 7631-7634.	0.7	72
255	A Facile Route to Some Useful Homochiral Alkyl Imidazolidin-2-one-4(S)-carboxylates. Synthetic Communications, 1996, 26, 2165-2175.	1.1	3
256	Dirhodium(II) Tetrakis[alkyl 2-oxaazetidine-4(S)-carboxylates]. A New Set of Effective Chiral Catalysts for Asymmetric Intermolecular Cyclopropanation Reactions with Diazoacetates. Synlett, 1996, 1996, 697-698.	1.0	68
257	Enantioselectivity and cis/trans-Selectivity in Dirhodium(II)-Catalyzed addition of diazoacetates to olefins. Helvetica Chimica Acta, 1995, 78, 459-470.	1.0	42
258	Enantioselective catalytic intramolecular cyclopropanation of allylic \hat{l} ±-diazopropionates optimized with dirhodium(II) tetrakis [methyl 2-oxazolidinone-4(S or R)-carboxylate]. Tetrahedron: Asymmetry, 1995, 6, 2157-2160.	1.8	29
259	Enhancement of enantiocontrol/diastereocontrol in catalytic intramolecular cyclopropanation and carbon-hydrogen insertion reactions of diazoacetates with Rh2(4S-MPPIM)4. Tetrahedron Letters, 1995, 36, 7579-7582.	0.7	80
260	Enantioselective Intramolecular Cyclopropanations of Allylic and Homoallylic Diazoacetates and Diazoacetamides Using Chiral Dirhodium(II) Carboxamide Catalysts. Journal of the American Chemical Society, 1995, 117, 5763-5775.	6.6	227
261	Highly Enantioselective Route to \hat{l}^2 -Lactams via Intramolecular C-H Insertion Reactions of Diazoacetylazacycloalkanes Catalyzed by Chiral Dirhodium(II) Carboxamidates. Synlett, 1995, 1995, 1075-1076.	1.0	63
262	Optimization of Enantiocontrol for Carbon-Hydrogen Insertion with Chiral Dirhodium(II) Carboxamidates. Synthesis of Natural Dibenzylbutyrolactone Lignans from 3-Aryl-1-propyl Diazoacetates in High Optical Purity. Journal of Organic Chemistry, 1995, 60, 6654-6655.	1.7	61
263	Spirolactones from Dirhodium(II)-Catalyzed Diazo Decomposition with Regioselective Carbon-Hydrogen Insertion. Journal of Organic Chemistry, 1995, 60, 3035-3038.	1.7	51
264	Macrocyclic Lactones from Dirhodium(II)-Catalyzed Intramolecular Cyclopropanation and Carbon-Hydrogen Insertion. Journal of the American Chemical Society, 1995, 117, 7281-7282.	6.6	72
265	Highly selective enantiomer differentiation in intramolecular cyclopropanation reactions of racemic secondary allylic diazoacetates Journal of the American Chemical Society, 1995, 117, 11021-11022.	6.6	88
266	Transition Metal Carbene Complexes: Cyclopropanation. , 1995, , 387-420.		47
267	Transition Metal Carbene Complexes: Diazodecomposition, Ylide, and Insertion., 1995,, 421-468.		27
268	A new catalytic transformation of diazo esters: hydride abstraction in dirhodium(II)-catalysed reactions. Journal of the Chemical Society Perkin Transactions $1, 1995, 619$.	0.9	40
269	Enhanced enantiocontrol in catalytic metal carbene transformations with dirhodium (II) tetrakis[methyl 2â€oxooxazolidinâ€4(S)â€carboxylate], Rh ₂ (4Sâ€MEOX) ₄ . Recueil Des Travaux Chimiques Des Pays-Bas, 1995, 114, 163-170.	0.0	67
270	HIGHLY EFFICIENT OLEFIN ISOMERIZATION CATALYZED BY METAL HYDRIDES DERIVES FROM DIRHODIUM(II) CARBOXYLATES AND CATECHOLBORANE. Main Group Metal Chemistry, 1994, 17, .	0.6	1

#	Article	IF	Citations
271	Regioselective Hydroformylation of Alkenes Catalyzed by Di(n-carboxylato)rhodium(I) Complexes. Synlett, 1994, 1994, 615-616.	1.0	21
272	Enantioselective intramolecular cyclopropanation of N-allylic- and N-homoallylic diazoacetamides catalyzed by chiral dirhodium(II) catalysts. Tetrahedron, 1994, 50, 4519-4528.	1.0	19
273	Synthesis of 2-deoxyxylolactone from glycerol derivatives via highly enantioselective carbon-hydrogen insertion reactions. Tetrahedron Letters, 1994, 35, 3853-3856.	0.7	46
274	Enantioselective intramolecular cyclopropanation of N-allylic- and N-homoallylic diazoacetamides catalyzed by chiral dirhodium(II) catalysts. Tetrahedron, 1994, 50, 1665-1674.	1.0	36
275	Dirhodium(II) tetrakis[N,N-dimethyl-2-pyrrolidone-5(S)-carboxamide]. Structural effects on enantioselection in metal carbene transformations. Inorganica Chimica Acta, 1994, 220, 193-199.	1.2	22
276	Stereoselective synthesis of disubstituted 3(2H)-furanones via catalytic intramolecular C-H insertion reactions of \hat{l} ±-diazo- \hat{l} 2-keto esters including asymmetric induction. Tetrahedron Letters, 1994, 35, 7269-7272.	0.7	34
277	Asymmetric syntheses with catalytic enantioselective metal carbene transformations. Russian Chemical Bulletin, 1994, 43, 1770-1782.	0.4	18
278	Effective Uses of Dirhodium(II) Tetrakis[methyl 2-oxopyrrolidine-5(R or S)-carboxylate] for Highly Enantioselective Intermolecular Cyclopropenation Reactions. Journal of the American Chemical Society, 1994, 116, 8492-8498.	6.6	137
279	Diastereocontrol for Highly Enantioselective Carbon-Hydrogen Insertion Reactions of Cycloalkyl Diazoacetates. Journal of the American Chemical Society, 1994, 116, 4507-4508.	6.6	123
280	Highly Regioselective and Stereoselective Silylformylation of Alkynes Under Mild Conditions Promoted by Dirhodium(II) Perfluorobutyrate. Organometallics, 1994, 13, 1081-1088.	1.1	74
281	Tetrakis[(4S)-4-phenyloxazolidin-2-one]dirhodium(II) and Its Catalytic Applications for Metal Carbene Transformations. Helvetica Chimica Acta, 1993, 76, 2227-2235.	1.0	53
282	\hat{l}^2 -Lactam formation via rhodium(II) catalyzed carbon-hydrogen insertion reactions of \hat{l} ±-diazo amides. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 2409-2414.	1.0	25
283	Dirhodium(II) Tetraacetate Catalysed Hydroboration of Alkenes. Mendeleev Communications, 1993, 3, 81-82.	0.6	12
284	Electronic and steric control in carbon-hydrogen insertion reactions of diazoacetoacetates catalyzed by dirhodium(II) carboxylates and carboxamides. Journal of the American Chemical Society, 1993, 115, 958-964.	6.6	280
285	Dirhodium(II) tetrakis(carboxamidates) with chiral ligands. Structure and selectivity in catalytic metal-carbene transformations. Journal of the American Chemical Society, 1993, 115, 9968-9978.	6.6	241
286	Ligand effects on dirhodium(II) carbene reactivities. Highly effective switching between competitive carbenoid transformations. Journal of the American Chemical Society, 1993, 115, 8669-8680.	6.6	276
287	Replacing mineral acids in the laboratory: Nafion-catalyzed dehydration and esterification. Journal of Chemical Education, 1993, 70, 493.	1.1	16
288	Highly efficient regioselective silylcarbonylation of alkynes catalyzed by dirhodium(II) perfluorobutyrate. Organometallics, 1993, 12, 11-12.	1.1	59

#	Article	IF	Citations
289	Diastereoselectivity Enhancement in Cyclopropanation and Cyclopropenation Reactions of Chiral Diazoacetate Esters Catalyzed by Chiral Dirhodium(II) Carboxamides. Synlett, 1993, 1993, 151-153.	1.0	38
290	Chiral Rhodium(II) Carboxamides. ACS Symposium Series, 1993, , 40-57.	0.5	4
291	Control of chemoselectivity in catalytic carbenoid reactions. Dirhodium(II) ligand effects on relative reactivities. Journal of the American Chemical Society, 1992, 114, 1874-1876.	6.6	120
292	Addition/elimination in the rhodium(II) perfluorobutyrate catalyzed hydrosilylation of 1-alkenes. Rhodium hydride promoted isomerization and hydrogenation. Organometallics, 1992, 11, 549-555.	1.1	67
293	High enantioselectivity for intermolecular cyclopropenation of alkynes by diazo esters catalyzed by chiral dirhodium(II) carboxamides. Journal of the American Chemical Society, 1992, 114, 2755-2757.	6.6	111
294	Enantioselective metal carbene transformations with polyethylene-bound soluble recoverable dirhodium(II) 2-pyrrolidone-5(S)-carboxylates. Journal of Organic Chemistry, 1992, 57, 6103-6105.	1.7	90
295	A new rhodium(II) phosphate catalyst for diazocarbonyl reactions including asymmetric synthesis. Tetrahedron Letters, 1992, 33, 5983-5986.	0.7	132
296	Enantiocontrol and regiocontrol in lactam syntheses by intramolecular carbon-hydrogen insertion reactions of diazoacetamides catalyzed by chiral rhodium(II) carboxamides. Tetrahedron Letters, 1992, 33, 7819-7822.	0.7	83
297	High enantioselectivity in the intramolecular cyclopropanation of allyl diazoacetates using a novel rhodium(II) catalyst. Journal of the American Chemical Society, 1991, 113, 1423-1424.	6.6	191
298	Rhodium(II) perfluorobutyrate catalyzed hydrosilylation of 1-alkynes. Trans addition and rearrangement to allylsilanes. Organometallics, 1991, 10, 1225-1226.	1.1	74
299	Asymmetric synthesis of lactones with high enantioselectivity by intramolecular carbon-hydrogen insertion reactions of alkyl diazoacetates catalyzed by chiral rhodium(II) carboxamides. Journal of the American Chemical Society, 1991, 113, 8982-8984.	6.6	136
300	Synthesis of nitrogen-containing polycycles via rhodium(II)-induced cyclization-cycloaddition and insertion reactions of N-(diazoacetoacetyl)amides. Conformational control of reaction selectivity. Journal of Organic Chemistry, 1991, 56, 820-829.	1.7	134
301	Degradation of uric acid during autocatalytic oxidation of oxyhemoglobin induced by sodium nitrite. Free Radical Biology and Medicine, 1991, 11, 373-377.	1.3	12
302	Chiral catalysts for enantioselective carbenoid cyclopropanation reactions. Recueil Des Travaux Chimiques Des Pays-Bas, 1991, 110, 305-316.	0.0	122
303	Exceptionally high trans (anti) stereoselectivity in catalytic cyclopropanation reactions. Journal of the American Chemical Society, 1990, 112, 1906-1912.	6.6	210
304	Chiral rhodium(II) carboxamides. A new class of catalysts for enantioselective cyclopropanation reactions. Tetrahedron Letters, 1990, 31, 6613-6616.	0.7	127
305	Rh(II)-Catalyzed Isomerizations of Cyclopropenes Evidence for Rh(II)-Complexed Vinylcarbene Intermediates. Helvetica Chimica Acta, 1990, 73, 1233-1241.	1.0	83
306	Rhodium(II) perfluorobutyrate catalyzed silane alcoholysis. A highly selective route to silyl ethers. Journal of Organic Chemistry, 1990, 55, 6082-6086.	1.7	82

#	Article	IF	CITATIONS
307	Synthesis of allenes by [2,3]-sigmatropic rearrangement of prop-2-yn-1-yl oxonium ylides formed in rhodium(II) carboxylate catalysed reactions of diazo compounds. Journal of the Chemical Society Chemical Communications, 1990, , 46.	2.0	38
308	Conformational and electronic preferences in rhodium(II) carboxylate and rhodium(II) carboxamide catalyzed carbon-hydrogen insertion reactions of N,N-disubstituted diazoacetoacetamides. Tetrahedron Letters, 1989, 30, 5397-5400.	0.7	84
309	Highly selective \hat{I}^3 -lactone syntheses by intramolecular carbenoid carbon-hydrogen insertion in rhodium(II) carboxylate and rhodium(II) carboxamide catalyzed reactions of diazo esters. Tetrahedron Letters, 1989, 30, 7001-7004.	0.7	66
310	Diazirines in carbenoid reactions catalyzed by rhodium(II) carboxylates. Tetrahedron Letters, 1989, 30, 3049-3052.	0.7	25
311	Activation parameters for the reaction of phenylchloro carbene with pyridine, tri-butyltin hydride, and triethylsilane; evidence against the need to invoke reversibly formed complexes in the reaction of this carbene with olefins. Tetrahedron Letters, 1989, 30, 1335-1338.	0.7	33
312	Formation and characterization of 3-O-arenediazoascorbic acids. New stable diazo ethers. Journal of Organic Chemistry, 1989, 54, 3785-3789.	1.7	40
313	Reactivity and selectivity in intermolecular insertion reactions of chlorophenylcarbene. Tetrahedron Letters, 1988, 29, 5863-5866.	0.7	34
314	Facile catalytic methods for intermolecular generation of allylic oxonium ylides and their stereoselective [2,3]- sigmatropic rearrangement. Tetrahedron Letters, 1988, 29, 5119-5122.	0.7	66
315	Cycloheptatriene syntheses through rhodium(II) acetate-catalyzed intramolecular addition reactions of N-benzyldiazoacetamides. Tetrahedron Letters, 1988, 29, 2639-2642.	0.7	40
316	Addition of arylchlorocarbenes to .alpha.,.betaunsaturated esters. Absolute rates, substituent effects, and variable reactivities. Journal of the American Chemical Society, 1988, 110, 7143-7152.	6.6	49
317	Oxidation and reduction of hemoproteins by trioxodinitrate(II). The role of nitrosyl hydride and nitrite. Journal of the American Chemical Society, 1988, 110, 593-599.	6.6	208
318	Rhodium(II) acetate and Nafion-H catalyzed decomposition of N-aryldiazoamides. Efficient synthesis of 2(3H)-indolinones. Journal of Organic Chemistry, 1988, 53, 1017-1022.	1.7	114
319	Reduction of arenediazonium salts by hydroquinone. Kinetics and mechanism for the electron-transfer step. Journal of Organic Chemistry, 1988, 53, 3255-3261.	1.7	39
320	Construction of .betalactams by highly selective intramolecular carbon-hydrogen insertion from rhodium(II) carboxylate catalyzed reactions of diazoacetamides. Journal of Organic Chemistry, 1988, 53, 3384-3386.	1.7	91
321	A new and general synthesis of .alphasilyl carbonyl compounds by silicon-hydrogen insertion from transition metal-catalyzed reactions of diazo esters and diazo ketones. Journal of Organic Chemistry, 1988, 53, 6158-6160.	1.7	106
322	Electron transfer between hemoglobin and arenediazonium salts. Mechanism of heme aryl-iron complex formation. Inorganic Chemistry, 1987, 26, 3387-3392.	1.9	13
323	Outer-sphere one-electron reductions of arenediazonium salts. Journal of the American Chemical Society, 1987, 109, 1536-1540.	6.6	38
324	Unsymmetrical alkenes by carbene coupling from diazirine decomposition in the presence of diazo compounds. Journal of Organic Chemistry, 1987, 52, 1619-1621.	1.7	26

#	Article	IF	Citations
325	Olefin coordination with rhodium(II) perfluoroalkanoates in solution. Inorganic Chemistry, 1987, 26, 3070-3072.	1.9	37
326	Catalysis of olefin isomerization by tight ion pairs. Journal of Organic Chemistry, 1987, 52, 323-324.	1.7	17
327	Enhancement of stereoselectivity in catalytic cyclopropanation reactions. Tetrahedron Letters, 1987, 28, 833-836.	0.7	46
328	Catalytic methods for metal carbene transformations. Chemical Reviews, 1986, 86, 919-939.	23.0	952
329	Electrophilic metal carbenes as reaction intermediates in catalytic reactions. Accounts of Chemical Research, 1986, 19, 348-356.	7.6	244
330	Formation of a dipolar adduct in the reaction of arylchlorocarbenes with diethyl maleate. Tetrahedron Letters, 1986, 27, 4395-4398.	0.7	11
331	Synthesis and catalytic reactions of chiral N-(diazoacetyl)oxazolidones. Journal of Organic Chemistry, 1985, 50, 1663-1666.	1.7	81
332	Procatalysts for carbenoid transformations. Journal of the Chemical Society Chemical Communications, 1985, .	2.0	17
333	Autocatalytic oxidation of hemoglobin induced by nitrite: Activation and chemical inhibition. Journal of Free Radicals in Biology & Medicine, 1985, 1, 145-153.	2.1	74
334	Electron transfer in the heme pocket of hemoglobin. Journal of the American Chemical Society, 1985, 107, 6136-6137.	6.6	9
335	Oxidation of hemoglobin by arenediazonium salts. The influence of dioxygen. Inorganica Chimica Acta, 1984, 92, 123-129.	1.2	3
336	Rhodium(II) acetate catalyzed hydrocarbon oxidations by molecular oxygen. Journal of Molecular Catalysis, 1984, 26, 259-266.	1.2	20
337	Nucleophilic character of an electrophilic carbene. Synthesis of cyclopropanes by thermal decomposition of 3-chloro-3-phenyldiazirine. Tetrahedron Letters, 1984, 25, 901-904.	0.7	13
338	Influence of olefin coordination on cyclopropanation selectivity. Tetrahedron Letters, 1984, 25, 4087-4090.	0.7	38
339	Olefin coordination with rhodium(II) trifluoroacetate. Inorganic Chemistry, 1984, 23, 3684-3685.	1.9	38
340	Research as chemical education. Journal of Chemical Education, 1984, 61, 854.	1.1	0
341	Stereoselectivity of catalytic cyclopropanation reactions. Catalyst dependence in reactions of ethyl diazoacetate with alkenes. Organometallics, 1984, 3, 44-52.	1.1	125
342	Catalytic role of copper triflate in Lewis acid promoted reactions of diazo compounds. Journal of Organic Chemistry, 1984, 49, 1196-1199.	1.7	26

#	Article	IF	CITATIONS
343	Rearrangements of ylides generated from reactions of diazo compounds with allyl acetals and thioketals by catalytic methods. Heteroatom acceleration of the [2,3]-sigmatropic rearrangement. Journal of Organic Chemistry, 1984, 49, 1917-1925.	1.7	148
344	Correlations between catalytic reactions of diazo compounds and stoichiometric reactions of transition-metal carbenes with alkenes. Mechanism of the cyclopropanation reaction. Organometallics, 1984, 3, 53-61.	1.1	179
345	Nitric oxide dissociation from trioxodinitrate(II) in aqueous solution. Journal of the American Chemical Society, 1984, 106, 3678-3679.	6.6	50
346	Effective methods for the syntheses of 2â€pyrazolines and pyrazoles from diazocarbonyl compounds. Journal of Heterocyclic Chemistry, 1983, 20, 943-946.	1.4	24
347	Oxidation of oxymyoglobin by nitric oxide through dissociation from cobalt nitrosyls. Journal of Inorganic Biochemistry, 1983, 19, 329-338.	1.5	24
348	Regioselectivity in nickel(II)-mediated oxidations of diols. Journal of Organic Chemistry, 1983, 48, 476-480.	1.7	21
349	Homologation of acetals of .alpha.,.betaunsaturated carbonyl compounds with diazoesters. Synthesis of acetals of .beta.,.gammaunsaturated carbonyl compounds. Journal of Organic Chemistry, 1983, 48, 5146-5148.	1.7	16
350	Chemical and electrochemical oxidation of O,O,O-trisubstituted phosphorothioates and triphenylphosphine sulfide. Journal of Organic Chemistry, 1983, 48, 1176-1179.	1.7	10
351	Hydrolysis, nitrosyl exchange, and synthesis of alkyl nitrites. Journal of Organic Chemistry, 1983, 48, 3379-3382.	1.7	87
352	Cyclopropanation of .alpha.,.betaunsaturated carbonyl compounds and nitriles with diazo compounds. The nature of the involvement of transition-metal promoters. Journal of Organic Chemistry, 1982, 47, 4059-4068.	1.7	73
353	Rearrangements of oxocyclopropanecarboxylate esters to vinyl ethers. Disparate behavior of transition-metal catalysts. Journal of Organic Chemistry, 1982, 47, 5326-5339.	1.7	66
354	Mechanism of nitrosyl transfer. Dissociation of nitric oxide from cobalt nitrosyls. Journal of the American Chemical Society, 1982, 104, 3392-3397.	6.6	24
355	Involvement of peroxide and superoxide in the oxidation of hemoglobin by nitrite. Biochemical and Biophysical Research Communications, 1982, 105, 127-132.	1.0	59
356	Regioselectivity in catalytic cyclopropanation reactions. Tetrahedron Letters, 1982, 23, 2261-2264.	0.7	44
357	Transition-metal-catalyzed rearrangements of oxocyclopropanes to vinyl ethers. Activation by vicinal carboalkoxy substituents. Journal of the American Chemical Society, 1981, 103, 5917-5919.	6.6	43
358	Regioselective oxidations of primary alcohols in 1,4-diols. Journal of Organic Chemistry, 1981, 46, 4806-4808.	1.7	22
359	Highly effective catalytic methods for ylide generation from diazo compounds. Mechanism of the rhodium- and copper-catalyzed reactions with allylic compounds. Journal of Organic Chemistry, 1981, 46, 5094-5102.	1.7	214
360	Formation and reactions of dithiodicarbenium salts. Journal of the American Chemical Society, 1981, 103, 7096-7101.	6.6	26

#	Article	IF	CITATIONS
361	Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. Journal of Inorganic Biochemistry, 1981, 14, 351-358.	1.5	583
362	Exceptionally effective catalysis of cyclopropanation reactions by the hexarhodium carbonyl cluster. Tetrahedron Letters, 1981, 22, 1783-1786.	0.7	34
363	Correlation between catalytic cyclopropanation and ylide generation. Journal of Organometallic Chemistry, 1981, 216, C64-C68.	0.8	47
364	Efficient Alternative Catalysts and Methods for the Synthesis of Cyclopropanes from Olefins and Diazo Compounds. Synthesis, 1981, 1981, 787-789.	1.2	74
365	Steric selectivity in oxidations of diols. Tetrahedron Letters, 1980, 21, 2794-2798.	0.7	14
366	Selective Oxidations of Alcohols by Bromine in Combination with Nickel(II) Benzoate. Synthetic Communications, 1980, 10, 881-888.	1.1	11
367	Lewis acid promoted reactions of diazocarbonyl compounds. 3. Synthesis of oxazoles from nitriles through intermediate .betaimidatoalkenediazonium salts. Journal of Organic Chemistry, 1980, 45, 3657-3664.	1.7	77
368	Molybdenum hexacarbonyl catalyzed cyclopropanation of .alpha.,.betaunsaturated esters and nitriles and diazocarbonyl compounds. Journal of Organic Chemistry, 1980, 45, 1538-1539.	1.7	29
369	Alkyl nitrite-metal halide deamination reactions. 7. Synthetic coupling of electrophilic bromination with substitutive deamination for selective synthesis of multiply brominated aromatic compounds from arylamines. Journal of Organic Chemistry, 1980, 45, 2570-2575.	1.7	37
370	Reactions of the nitrosonium ion. 11. Fluoride transfer from complex fluoride anions to carbenium ions in the nitrosative decomposition of aliphatic azides. Journal of Organic Chemistry, 1979, 44, 2923-2929.	1.7	25
371	Nickel(II) bromide-catalyzed oxidations of primary and secondary alcohols to carbonyl compounds by benzoyl peroxide. Journal of Organic Chemistry, 1979, 44, 2955-2956.	1.7	30
372	Alkyl nitrite-metal halide deamination reactions. 6. Direct synthesis of arenediazonium tetrafluoroborate salts from aromatic amines, tert-butyl nitrite, and boron trifluoride etherate in anhydrous media. Journal of Organic Chemistry, 1979, 44, 1572-1574.	1.7	209
373	Silane reductions in acidic media. 10. Ionic hydrogenation of cycloalkenes. Stereoselectivity and mechanism. Journal of Organic Chemistry, 1978, 43, 693-696.	1.7	33
374	Alkyl nitrite-metal halide deamination reactions. 5. In situ generation of nitrosyl halides. Effective product control from nitrosyl chloride diazotization of primary aliphatic amines in N,N-dimethylformamide. Journal of Organic Chemistry, 1978, 43, 4120-4125.	1.7	13
375	Lewis acid promoted reactions of n-(1-phenylcyclopropyl)alkanoyl chlorides. Ring-size effects in competitive intramolecular acylation of phenyl and cyclopropyl substituents. Journal of Organic Chemistry, 1978, 43, 4459-4461.	1.7	6
376	Reversible oxidation of 1,3-dithiolan-2-thione. Journal of the Chemical Society Chemical Communications, 1977, , 643.	2.0	8
377	Reactions of the nitrosonium ion. 10. Decarboxylations of azodicarboxylates by nitrosonium and nitronium salts. Decarboxylative oxidation and substitution reactions. Journal of the American Chemical Society, 1977, 99, 494-498.	6.6	2
378	Silane reductions in acidic media. 9. The effect of Lewis acids on stereoselectivities in ketone reductions. The principle of complexation-induced conformational perturbation. Energy minimization in the transition states for hydride transfer. Journal of Organic Chemistry, 1977, 42, 1922-1928.	1.7	19

#	Article	IF	Citations
379	Reductive deamination of arylamines by alkyl nitrites in N,N-dimethylformamide. A direct conversion of arylamines to aromatic hydrocarbons. Journal of Organic Chemistry, 1977, 42, 3494-3498.	1.7	124
380	Alkyl nitrite-metal halide deamination reactions. 2. Substitutive deamination of arylamines by alkyl nitrites and copper(II) halides. A direct and remarkably efficient conversion of arylamines to aryl halides. Journal of Organic Chemistry, 1977, 42, 2426-2431.	1.7	230
381	Alkyl nitrite-metal halide deamination reactions. 3. Arylation of olefinic compounds in the deamination of arylamines by alkyl nitrites and copper(II) halides. A convenient and effective variation of the Meerwein arylation reaction. Journal of Organic Chemistry, 1977, 42, 2431-2436.	1.7	71
382	The disproportionation of trityl benzyl ethers. Kinetic analysis of the trityl salt catalyzed reaction. Evidence for the involvement of ion pairs in the hydrogen transfer step. Journal of the American Chemical Society, 1976, 98, 163-166.	6.6	15
383	Oxidative deamination of primary amines by copper halide nitrosyls. The formation of geminal dihalides. Journal of the American Chemical Society, 1976, 98, 1627-1629.	6.6	26
384	Oxidative deamination of primary amines: selective synthesis of geminal dihalides. Journal of the Chemical Society Chemical Communications, 1976, , 433.	2.0	11
385	Silane reductions in acidic media. Journal of Organometallic Chemistry, 1976, 117, 129-140.	0.8	105
386	Silane reductions in acidic media. VII. Aluminum chloride catalyzed hydrogen-halogen exchange between organosilanes and alkyl halides. An efficient hydrocarbon synthesis. Journal of Organic Chemistry, 1976, 41, 1393-1396.	1.7	59
387	Reactions of the nitrosonium ion. VII. Syntheses of dihydroisoquinolines and oxazoles from azides in nitrile solvents. Journal of Heterocyclic Chemistry, 1975, 12, 263-265.	1.4	11
388	Internal Lewis acid catalyzed ring-expansion reactions of cyclopropylalkanoyl chlorides. Tetrahedron Letters, 1975, 16, 3031-3034.	0.7	2
389	The nature of fluoride transfer from complex fluoride anions to carbenium ions. Tetrahedron Letters, 1975, 16, 4201-4204.	0.7	11
390	Silane reductions in acidic media. IV. Reductions of alkyl-substituted cyclohexanones by mono-, di-, and trialkylsilanes. Stereochemistry of alcohol and ether formation. Journal of Organic Chemistry, 1975, 40, 3821-3829.	1.7	38
391	Silane reductions in acidic media. V. Reductions of alkyl-substituted cyclohexanones by di- and tri-tert-butylsilanes. Steric hindrance to nucleophilic attack at silicon in the trifluoroacetolysis of silyl alkyl ethers. Journal of Organic Chemistry, 1975, 40, 3829-3834.	1.7	27
392	Hindered organosilicon compounds. Synthesis and properties of di-tert-butyl-, di-tert-butylmethyl-, and tri-tert-butylsilanes. Journal of the American Chemical Society, 1975, 97, 3777-3782.	6.6	41
393	Silane reductions in acidic media. VI. Mechanism of organosilane reductions of carbonyl compounds. Transition state geometries of hydride transfer reactions. Journal of Organic Chemistry, 1975, 40, 3835-3838.	1.7	37
394	Cyclic ether formation in oxidations of primary alcohols by cerium(IV). Reactions of 5-phenyl-1-pentanol, 4-phenyl-1-butanol, and 3-phenyl-1-propanol with ceric ammonium nitrate. Journal of Organic Chemistry, 1975, 40, 1454-1456.	1.7	20
395	Reactions of the nitrosonium ion. VIII. Reactions of nitrosonium tetrafluoroborate and benzhydryl tetrafluoroborate with benzhydryl azides. Mechanism of aldehyde and ketone formation. Journal of the American Chemical Society, 1975, 97, 5554-5558.	6.6	4
396	Nitrosative cleavage of benzalazine and related aldehyde azines. Production, decomposition and trapping of iminodiazonium ions. Tetrahedron Letters, 1974, 15, 1455-1458.	0.7	4

#	Article	IF	CITATIONS
397	Silane reductions in acidic media. III. Reductions of aldehydes and ketones to alcohols and alcohol derivatives. General syntheses of alcohols, symmetrical ethers, carboxylate esters and acetamides. Journal of Organic Chemistry, 1974, 39, 2740-2747.	1.7	64
398	A spectrometric study of the oxidation of alcohols by cerium(IV). Journal of Chemical Education, 1974, 51, 131.	1.1	12
399	Reactions of the nitrosonium ion. V. Nitrosative cleavage of the carbon-nitrogen double bond. Attempted exchange of oxygen for nitrogen. Journal of Organic Chemistry, 1973, 38, 1663-1667.	1.7	14
400	Silane reductions in acidic media. II. Reductions of aryl aldehydes and ketones by trialkylsilanes in trifluoroacetic acid. Selective method for converting the carbonyl group to methylene. Journal of Organic Chemistry, 1973, 38, 2675-2681.	1.7	205
401	Disproportionation of trityl alkyl ethers. Synthesis of aldehydes and ketones in a cationic chain reaction involving hydride transfer. Journal of Organic Chemistry, 1973, 38, 625-626.	1.7	24
402	Reaction between azide and nitronium ions. Formation and decomposition of nitryl azide. Journal of the American Chemical Society, 1973, 95, 952-953.	6.6	37
403	A new approach to organic laboratory projects. Journal of Chemical Education, 1973, 50, 358.	1.1	1
404	Free-radical rearrangements in the thermal decomposition of tert-butylperoxy 3-(1-phenylcyclopropyl)propanoate, 4-(1-phenylcyclopropyl)butanoate, and 5-(1-phenylcyclopropyl)pentanoate. Journal of the American Chemical Society, 1973, 95, 5988-6000.	6.6	17
405	Reactions of the nitrosonium ion. IV. Nitrosative cleavage of the carbon-nitrogen double bond. Reaction of N-arylimines and ketimines with nitrosonium salts. Journal of Organic Chemistry, 1972, 37, 1597-1601.	1.7	18
406	Reactions of the nitrosonium ion. III. Reaction of alkyl azides with nitrosonium compounds. Effect of solvent, quenching agent, and nitrosonium compound. Journal of the American Chemical Society, 1972, 94, 3901-3906.	6.6	3
407	Reactions of the nitrosonium ion. II. Reactions of triphenylmethyl, benzhydryl, and benzyl azides with nitrosonium compounds. Journal of the American Chemical Society, 1972, 94, 3896-3901.	6.6	17
408	Silane reductions in acidic media. I. Reduction of aldehydes and ketones in alcoholic acidic media. General synthesis of ethers. Journal of the American Chemical Society, 1972, 94, 3659-3661.	6.6	89
409	Reactions of the nitrosonium ion. I. Reaction of alkyl azides with nitrosonium salts. A new method for the production of carbonium ions. Journal of the American Chemical Society, 1970, 92, 4999-5001.	6.6	9
410	Cycloheptanone via a Lewis acid-catalyzed cyclization of 6-heptenoyl chloride to .betachlorocycloheptanone. Journal of Organic Chemistry, 1969, 34, 3679-3681.	1.7	4
411	Acetolysis of 4-bromobutyl-1,1-d2 p-nitrobenzenesulfonate. Evidence for 1,4-bromine participation and the existence of a 5-membered cyclic bromonium ion during acetolysis Tetrahedron Letters, 1968, 9, 3127-3130.	0.7	1
412	Nucleophilic reactivity of the carbon-carbon double bond. VI. The use of urea as a base in acetolysis reactions. Journal of Organic Chemistry, 1967, 32, 150-153.	1.7	8
413	Medium effects. I. Solvolysis of 5-hexenyl p-nitrobenzenesulfonate in acetic acid-nonhydroxylic solvent (20:80) mixtures. Journal of the American Chemical Society, 1967, 89, 4867-4872.	6.6	11
414	Thermal decomposition of tert-butylperoxy 6-bromohexanoate. Lack of evidence for radical displacement on carbon and 1,5-bridged bromine radicals. Journal of Organic Chemistry, 1967, 32, 146-150.	1.7	2

#	Article	lF	CITATIONS
415	Failure of the principle of hard and soft acids and bases to explain the amount of cyclization of various hex-5-enyl derivatives during acetolysis. Chemical Communications / Chemical Society, London, 1967, , 1021.	0.1	0
416	Application of α-Amino Radicals as the Reaction Activators. Synthesis, 0, 54, .	1.2	7