Michael P Doyle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7844482/publications.pdf

Version: 2024-02-01

416 papers 26,464 citations

76 h-index 138 g-index

562 all docs 562 docs citations

times ranked

562

10157 citing authors

#	Article	IF	CITATIONS
1	Catalytic Carbene Insertion into Câ^'H Bonds. Chemical Reviews, 2010, 110, 704-724.	23.0	1,573
2	Recent Advances in Asymmetric Catalytic Metal Carbene Transformations. Chemical Reviews, 1998, 98, 911-936.	23.0	1,272
3	Catalytic methods for metal carbene transformations. Chemical Reviews, 1986, 86, 919-939.	23.0	952
4	Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. Journal of Inorganic Biochemistry, 1981, 14, 351-358.	1.5	583
5	Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nature Biotechnology, 1998, 16, 672-676.	9.4	431
6	The [3 + 3]-Cycloaddition Alternative for Heterocycle Syntheses: Catalytically Generated Metalloenolcarbenes as Dipolar Adducts. Accounts of Chemical Research, 2014, 47, 1396-1405.	7.6	319
7	New aspects of catalytic asymmetric cyclopropanation. Tetrahedron, 1998, 54, 7919-7946.	1.0	304
8	Electronic and steric control in carbon-hydrogen insertion reactions of diazoacetoacetates catalyzed by dirhodium(II) carboxylates and carboxamides. Journal of the American Chemical Society, 1993, 115, 958-964.	6.6	280
9	Ligand effects on dirhodium(II) carbene reactivities. Highly effective switching between competitive carbenoid transformations. Journal of the American Chemical Society, 1993, 115, 8669-8680.	6.6	276
10	Highly enantioselective trapping of zwitterionic intermediates by imines. Nature Chemistry, 2012, 4, 733-738.	6.6	274
11	No scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radical Biology and Medicine, 2004, 36, 685-697.	1.3	271
12	Electrophilic metal carbenes as reaction intermediates in catalytic reactions. Accounts of Chemical Research, 1986, 19, 348-356.	7.6	244
13	Dirhodium(II) tetrakis(carboxamidates) with chiral ligands. Structure and selectivity in catalytic metal-carbene transformations. Journal of the American Chemical Society, 1993, 115, 9968-9978.	6.6	241
14	Perspective on Dirhodium Carboxamidates as Catalysts. Journal of Organic Chemistry, 2006, 71, 9253-9260.	1.7	235
15	Alkyl nitrite-metal halide deamination reactions. 2. Substitutive deamination of arylamines by alkyl nitrites and copper(II) halides. A direct and remarkably efficient conversion of arylamines to aryl halides. Journal of Organic Chemistry, 1977, 42, 2426-2431.	1.7	230
16	Enantioselective Intramolecular Cyclopropanations of Allylic and Homoallylic Diazoacetates and Diazoacetamides Using Chiral Dirhodium(II) Carboxamide Catalysts. Journal of the American Chemical Society, 1995, 117, 5763-5775.	6.6	227
17	Cycloaddition reactions of enoldiazo compounds. Chemical Society Reviews, 2017, 46, 5425-5443.	18.7	220
18	Dirhodium(II) Caprolactamate:Â An Exceptional Catalyst for Allylic Oxidation. Journal of the American Chemical Society, 2004, 126, 13622-13623.	6.6	215

#	Article	IF	CITATIONS
19	Highly effective catalytic methods for ylide generation from diazo compounds. Mechanism of the rhodium- and copper-catalyzed reactions with allylic compounds. Journal of Organic Chemistry, 1981, 46, 5094-5102.	1.7	214
20	Exceptionally high trans (anti) stereoselectivity in catalytic cyclopropanation reactions. Journal of the American Chemical Society, 1990, 112, 1906-1912.	6.6	210
21	Alkyl nitrite-metal halide deamination reactions. 6. Direct synthesis of arenediazonium tetrafluoroborate salts from aromatic amines, tert-butyl nitrite, and boron trifluoride etherate in anhydrous media. Journal of Organic Chemistry, 1979, 44, 1572-1574.	1.7	209
22	Oxidation and reduction of hemoproteins by trioxodinitrate(II). The role of nitrosyl hydride and nitrite. Journal of the American Chemical Society, 1988, 110, 593-599.	6.6	208
23	Silane reductions in acidic media. II. Reductions of aryl aldehydes and ketones by trialkylsilanes in trifluoroacetic acid. Selective method for converting the carbonyl group to methylene. Journal of Organic Chemistry, 1973, 38, 2675-2681.	1.7	205
24	Benzylic Oxidation Catalyzed by Dirhodium(II,III) Caprolactamate. Organic Letters, 2005, 7, 5167-5170.	2.4	195
25	High enantioselectivity in the intramolecular cyclopropanation of allyl diazoacetates using a novel rhodium(II) catalyst. Journal of the American Chemical Society, 1991, 113, 1423-1424.	6.6	191
26	The Oxidative Mannich Reaction Catalyzed by Dirhodium Caprolactamate. Journal of the American Chemical Society, 2006, 128, 5648-5649.	6.6	180
27	Correlations between catalytic reactions of diazo compounds and stoichiometric reactions of transition-metal carbenes with alkenes. Mechanism of the cyclopropanation reaction. Organometallics, 1984, 3, 53-61.	1.1	179
28	Mechanistic Investigation of Oxidative Mannich Reaction with <i>tert</i> -Butyl Hydroperoxide. The Role of Transition Metal Salt. Journal of the American Chemical Society, 2013, 135, 1549-1557.	6.6	169
29	The New Chemical Biology of Nitrite Reactions with Hemoglobin: R-State Catalysis, Oxidative Denitrosylation, and Nitrite Reductase/Anhydrase. Accounts of Chemical Research, 2009, 42, 157-167.	7.6	167
30	Asymmeric Formal $[3 + 3]$ -Cycloaddition Reactions of Nitrones with Electrophilic Vinylcarbene Intermediates. Journal of the American Chemical Society, 2011, 133, 16402-16405.	6.6	165
31	Epoxides and Aziridines from Diazoacetates via Ylide Intermediates. Organic Letters, 2001, 3, 933-935.	2.4	162
32	Simple and Sustainable Iron-Catalyzed Aerobic C–H Functionalization of <i>N</i> , <i>N</i> ,Ci>N,C	6.6	153
33	Exceptional Selectivity in Cyclopropanation Reactions Catalyzed by Chiral Cobalt(II)–Porphyrin Catalysts. Angewandte Chemie - International Edition, 2009, 48, 850-852.	7.2	152
34	Rearrangements of ylides generated from reactions of diazo compounds with allyl acetals and thioketals by catalytic methods. Heteroatom acceleration of the [2,3]-sigmatropic rearrangement. Journal of Organic Chemistry, 1984, 49, 1917-1925.	1.7	148
35	Dirhodium(II) Tetrakis[methyl 2-oxaazetidine-4-carboxylate]:  A Chiral Dirhodium(II) Carboxamidate of Exceptional Reactivity and Selectivity. Organic Letters, 2000, 2, 1145-1147.	2.4	142
36	Effective Uses of Dirhodium(II) Tetrakis[methyl 2-oxopyrrolidine-5(R or S)-carboxylate] for Highly Enantioselective Intermolecular Cyclopropenation Reactions. Journal of the American Chemical Society, 1994, 116, 8492-8498.	6.6	137

#	Article	IF	CITATIONS
37	Asymmetric synthesis of lactones with high enantioselectivity by intramolecular carbon-hydrogen insertion reactions of alkyl diazoacetates catalyzed by chiral rhodium(II) carboxamides. Journal of the American Chemical Society, 1991, 113, 8982-8984.	6.6	136
38	Intramolecular Regioselective Insertion into Unactivated Prochiral Carbonâ'Hydrogen Bonds with Diazoacetates of Primary Alcohols Catalyzed by Chiral Dirhodium(II) Carboxamidates. Highly Enantioselective Total Synthesis of Natural Lignan Lactones. Journal of Organic Chemistry, 1996, 61, 9146-9155.	1.7	135
39	Oxidation of secondary amines catalyzed by dirhodium caprolactamate. Chemical Communications, 2007, , 745.	2.2	135
40	Synthesis of nitrogen-containing polycycles via rhodium(II)-induced cyclization-cycloaddition and insertion reactions of N-(diazoacetoacetyl)amides. Conformational control of reaction selectivity. Journal of Organic Chemistry, 1991, 56, 820-829.	1.7	134
41	A new rhodium(II) phosphate catalyst for diazocarbonyl reactions including asymmetric synthesis. Tetrahedron Letters, 1992, 33, 5983-5986.	0.7	132
42	Chiral rhodium(II) carboxamides. A new class of catalysts for enantioselective cyclopropanation reactions. Tetrahedron Letters, 1990, 31, 6613-6616.	0.7	127
43	Chiral Catalyst Controlled Diastereoselection and Regioselection in Intramolecular Carbonâ^'Hydrogen Insertion Reactions of Diazoacetates. Journal of the American Chemical Society, 1996, 118, 8837-8846.	6.6	127
44	Catalytic Asymmetric Syntheses of Quinolizidines by Dirhodium-Catalyzed Dearomatization of Isoquinolinium/Pyridinium Methylidesâ€"The Role of Catalyst and Carbene Source. Journal of the American Chemical Society, 2013, 135, 12439-12447.	6.6	127
45	Highly Selective Catalyst-Directed Pathways to Dihydropyrroles from Vinyldiazoacetates and Imines. Journal of the American Chemical Society, 2003, 125, 4692-4693.	6.6	126
46	Stereoselectivity of catalytic cyclopropanation reactions. Catalyst dependence in reactions of ethyl diazoacetate with alkenes. Organometallics, 1984, 3, 44-52.	1.1	125
47	Reductive deamination of arylamines by alkyl nitrites in N,N-dimethylformamide. A direct conversion of arylamines to aromatic hydrocarbons. Journal of Organic Chemistry, 1977, 42, 3494-3498.	1.7	124
48	Diastereocontrol for Highly Enantioselective Carbon-Hydrogen Insertion Reactions of Cycloalkyl Diazoacetates. Journal of the American Chemical Society, 1994, 116, 4507-4508.	6.6	123
49	Chiral catalysts for enantioselective carbenoid cyclopropanation reactions. Recueil Des Travaux Chimiques Des Pays-Bas, 1991, 110, 305-316.	0.0	122
50	Control of chemoselectivity in catalytic carbenoid reactions. Dirhodium(II) ligand effects on relative reactivities. Journal of the American Chemical Society, 1992, 114, 1874-1876.	6.6	120
51	Rhodium(II) acetate and Nafion-H catalyzed decomposition of N-aryldiazoamides. Efficient synthesis of 2(3H)-indolinones. Journal of Organic Chemistry, 1988, 53, 1017-1022.	1.7	114
52	Stereocontrol in Intermolecular Dirhodium(II)-Catalyzed Carbonyl Ylide Formation and Reactions. Dioxolanes and Dihydrofurans. Journal of Organic Chemistry, 1997, 62, 7210-7215.	1.7	113
53	Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones. Journal of the American Chemical Society, 2016, 138, 44-47.	6.6	113
54	High enantioselectivity for intermolecular cyclopropenation of alkynes by diazo esters catalyzed by chiral dirhodium(II) carboxamides. Journal of the American Chemical Society, 1992, 114, 2755-2757.	6.6	111

#	Article	IF	CITATIONS
55	Efficient Aziridination of Olefins Catalyzed by Mixed-Valent Dirhodium(II,III) Caprolactamate. Organic Letters, 2005, 7, 2787-2790.	2.4	108
56	Allylic Oxidations Catalyzed by Dirhodium Caprolactamate via Aqueous <i>tert</i> Butyl Hydroperoxide: The Role of the <i>tert</i> Butylperoxy Radical. Journal of Organic Chemistry, 2009, 74, 730-738.	1.7	107
57	A new and general synthesis of .alphasilyl carbonyl compounds by silicon-hydrogen insertion from transition metal-catalyzed reactions of diazo esters and diazo ketones. Journal of Organic Chemistry, 1988, 53, 6158-6160.	1.7	106
58	Silane reductions in acidic media. Journal of Organometallic Chemistry, 1976, 117, 129-140.	0.8	105
59	Chiral catalysts for enantioselective intermolecular cyclopropanation reactions with methyl phenyldiazoacetate. Origin of the solvent effect in reactions catalyzed by homochiral dirhodium(II) prolinates. Tetrahedron Letters, 1996, 37, 4129-4132.	0.7	105
60	A New Class of Chiral Lewis Acid Catalysts for Highly Enantioselective Hetero-Diels-Alder Reactions:Â Exceptionally High Turnover Numbers from Dirhodium(II) Carboxamidates. Journal of the American Chemical Society, 2001, 123, 5366-5367.	6.6	104
61	Synthesis of Tetrahydropyridazines by a Metal–Carbeneâ€Directed Enantioselective Vinylogous NH Insertion/Lewis Acidâ€Catalyzed Diastereoselective Mannich Addition. Angewandte Chemie - International Edition, 2012, 51, 9829-9833.	7.2	103
62	C–H Functionalization. Accounts of Chemical Research, 2012, 45, 777-777.	7.6	99
63	A Novel Three-Component Reaction Catalyzed by Dirhodium(II) Acetate:  Decomposition of Phenyldiazoacetate with Arylamine and Imine for Highly Diastereoselective Synthesis of 1,2-Diamines. Organic Letters, 2003, 5, 3923-3926.	2.4	94
64	Construction of .betalactams by highly selective intramolecular carbon-hydrogen insertion from rhodium(II) carboxylate catalyzed reactions of diazoacetamides. Journal of Organic Chemistry, 1988, 53, 3384-3386.	1.7	91
65	Generation of Halomethyl Radicals by Halogen Atom Abstraction and Their Addition Reactions with Alkenes. Journal of the American Chemical Society, 2019, 141, 16643-16650.	6.6	91
66	Enantioselective metal carbene transformations with polyethylene-bound soluble recoverable dirhodium(II) 2-pyrrolidone-5(S)-carboxylates. Journal of Organic Chemistry, 1992, 57, 6103-6105.	1.7	90
67	Enantiocontrol in the Generation and Diastereoselective Reactions of Catalytically Generated Oxonium and Iodonium Ylides. Metal-Stabilized Ylides as Reaction Intermediates. Journal of the American Chemical Society, 1998, 120, 7653-7654.	6.6	90
68	Silane reductions in acidic media. I. Reduction of aldehydes and ketones in alcoholic acidic media. General synthesis of ethers. Journal of the American Chemical Society, 1972, 94, 3659-3661.	6.6	89
69	Highly selective enantiomer differentiation in intramolecular cyclopropanation reactions of racemic secondary allylic diazoacetates Journal of the American Chemical Society, 1995, 117, 11021-11022.	6.6	88
70	Bicyclic Pyrazolidinone Derivatives from Diastereoselective Catalytic $[3 + 3]$ -Cycloaddition Reactions of Enoldiazoacetates with Azomethine Imines. Organic Letters, 2013, 15, 1564-1567.	2.4	88
71	Radical-Mediated Strategies for the Functionalization of Alkenes with Diazo Compounds. Journal of the American Chemical Society, 2020, 142, 13846-13855.	6.6	88
72	Hydrolysis, nitrosyl exchange, and synthesis of alkyl nitrites. Journal of Organic Chemistry, 1983, 48, 3379-3382.	1.7	87

#	Article	IF	CITATIONS
73	Intramolecular catalytic asymmetric carbon–hydrogen insertion reactions. Synthetic advantages in total synthesis in comparison with alternative approaches. Organic and Biomolecular Chemistry, 2011, 9, 4007.	1.5	87
74	Formation of Macrocyclic Lactones by Enantioselective Intramolecular Cyclopropanation of Diazoacetates Catalyzed by Chiral Cul and Rhll Compounds. Angewandte Chemie International Edition in English, 1996, 35, 1334-1336.	4.4	86
75	Conformational and electronic preferences in rhodium(II) carboxylate and rhodium(II) carboxamide catalyzed carbon-hydrogen insertion reactions of N,N-disubstituted diazoacetoacetamides. Tetrahedron Letters, 1989, 30, 5397-5400.	0.7	84
76	Rh(II)-Catalyzed Isomerizations of Cyclopropenes Evidence for Rh(II)-Complexed Vinylcarbene Intermediates. Helvetica Chimica Acta, 1990, 73, 1233-1241.	1.0	83
77	Enantiocontrol and regiocontrol in lactam syntheses by intramolecular carbon-hydrogen insertion reactions of diazoacetamides catalyzed by chiral rhodium(II) carboxamides. Tetrahedron Letters, 1992, 33, 7819-7822.	0.7	83
78	Highly Enantioselective Dearomatizing Formal [3+3]â€Cycloaddition Reactions of ⟨i⟩N⟨ i⟩â€Acyliminopyridinium Ylides with Electrophilic Enol Carbene Intermediates. Angewandte Chemie - International Edition, 2013, 52, 12664-12668.	7.2	83
79	Rhodium(II) perfluorobutyrate catalyzed silane alcoholysis. A highly selective route to silyl ethers. Journal of Organic Chemistry, 1990, 55, 6082-6086.	1.7	82
80	Synthesis and catalytic reactions of chiral N-(diazoacetyl)oxazolidones. Journal of Organic Chemistry, 1985, 50, 1663-1666.	1.7	81
81	Enhancement of enantiocontrol/diastereocontrol in catalytic intramolecular cyclopropanation and carbon-hydrogen insertion reactions of diazoacetates with Rh2(4S-MPPIM)4. Tetrahedron Letters, 1995, 36, 7579-7582.	0.7	80
82	Highly Enantioselective Intramolecular Cyclopropanation Reactions of N-Allylic-N-methyldiazoacetamides Catalyzed by Chiral Dirhodium(II) Carboxamidates. Journal of Organic Chemistry, 1996, 61, 2179-2184.	1.7	80
83	Lewis acid promoted reactions of diazocarbonyl compounds. 3. Synthesis of oxazoles from nitriles through intermediate .betaimidatoalkenediazonium salts. Journal of Organic Chemistry, 1980, 45, 3657-3664.	1.7	77
84	Enantioselective cis-β-lactam synthesis by intramolecular C–H functionalization from enoldiazoacetamides and derivative donor–acceptor cyclopropenes. Chemical Science, 2015, 6, 2196-2201.	3.7	77
85	A donor–acceptor cyclopropene as a dipole source for a silver(i) catalyzed asymmetric catalytic [3+3]-cycloaddition with nitrones. Chemical Communications, 2013, 49, 10287.	2.2	76
86	Vinyldiazolactone as a Vinylcarbene Precursor:Â Highly Selective Câ^'H Insertion and Cyclopropanation Reactions. Journal of the American Chemical Society, 2006, 128, 16038-16039.	6.6	75
87	Efficient Alternative Catalysts and Methods for the Synthesis of Cyclopropanes from Olefins and Diazo Compounds. Synthesis, 1981, 1981, 787-789.	1.2	74
88	Autocatalytic oxidation of hemoglobin induced by nitrite: Activation and chemical inhibition. Journal of Free Radicals in Biology & Medicine, 1985, 1, 145-153.	2.1	74
89	Rhodium(II) perfluorobutyrate catalyzed hydrosilylation of 1-alkynes. Trans addition and rearrangement to allylsilanes. Organometallics, 1991, 10, 1225-1226.	1.1	74
90	Highly Regioselective and Stereoselective Silylformylation of Alkynes Under Mild Conditions Promoted by Dirhodium(II) Perfluorobutyrate. Organometallics, 1994, 13, 1081-1088.	1.1	74

#	Article	IF	CITATIONS
91	Highly Stereoselective Syntheses of Five- and Seven-Membered Ring Heterocycles from Ylides Generated by Catalytic Reactions of Styryldiazoacetates with Aldehydes and Imines. Organic Letters, 2001, 3, 3741-3744.	2.4	74
92	Cyclopropanation of .alpha.,.betaunsaturated carbonyl compounds and nitriles with diazo compounds. The nature of the involvement of transition-metal promoters. Journal of Organic Chemistry, 1982, 47, 4059-4068.	1.7	73
93	Divergence of Carbonyl Ylide Reactions as a Function of Diazocarbonyl Compound and Aldehyde Substituent:Â Dioxolanes, Dioxolenes, and Epoxides. Journal of Organic Chemistry, 2004, 69, 5269-5274.	1.7	73
94	Macrocyclic Lactones from Dirhodium(II)-Catalyzed Intramolecular Cyclopropanation and Carbon-Hydrogen Insertion. Journal of the American Chemical Society, 1995, 117, 7281-7282.	6.6	72
95	Synthesis and Structures of (2,2-cis)-Dirhodium(II) Tetrakis[methyl 1-acyl-2-oxoimidazolidine-4(S)-carboxylates]. Chiral Catalysts for Highly Stereoselective Metal Carbene Transformations. Inorganic Chemistry, 1996, 35, 6064-6073.	1.9	72
96	Asymmetric rhodium carbenoid insertion into the Siî—,H bond. Tetrahedron Letters, 1996, 37, 7631-7634.	0.7	72
97	Alkyl nitrite-metal halide deamination reactions. 3. Arylation of olefinic compounds in the deamination of arylamines by alkyl nitrites and copper(II) halides. A convenient and effective variation of the Meerwein arylation reaction. Journal of Organic Chemistry, 1977, 42, 2431-2436.	1.7	71
98	Effective and Highly Stereoselective Coupling with Vinyldiazomethanes To Form Symmetrical Trienes. Journal of Organic Chemistry, 2002, 67, 602-604.	1.7	70
99	Rhodium(II)―and Copper(II)â€Catalyzed Reactions of Enol Diazoacetates with Nitrones: Metal Carbene versus Lewis Acid Directed Pathways. Angewandte Chemie - International Edition, 2012, 51, 5900-5903.	7.2	69
100	Dirhodium(II) Tetrakis[alkyl 2-oxaazetidine-4(S)-carboxylates]. A New Set of Effective Chiral Catalysts for Asymmetric Intermolecular Cyclopropanation Reactions with Diazoacetates. Synlett, 1996, 1996, 697-698.	1.0	68
101	Cationic Chiral Dirhodium Carboxamidates Are Activated for Lewis Acid Catalysis. Angewandte Chemie - International Edition, 2008, 47, 1439-1442.	7.2	68
102	Highly Regio―and Stereoselective Dirhodium Vinylcarbene Induced Nitrone Cycloaddition with Subsequent Cascade Carbenoid Aromatic Cycloaddition/NO Cleavage and Rearrangement. Angewandte Chemie - International Edition, 2012, 51, 5907-5910.	7.2	68
103	Addition/elimination in the rhodium(II) perfluorobutyrate catalyzed hydrosilylation of 1-alkenes. Rhodium hydride promoted isomerization and hydrogenation. Organometallics, 1992, 11, 549-555.	1.1	67
104	Optimal TBHP Allylic Oxidation of î" ⁵ -Steroids Catalyzed by Dirhodium Caprolactamate. Organic Letters, 2007, 9, 5349-5352.	2.4	67
105	Enhanced enantiocontrol in catalytic metal carbene transformations with dirhodium (II) tetrakis[methyl 2â€oxooxazolidinâ€4(S)â€carboxylate], Rh ₂ (4Sâ€MEOX) ₄ . Recueil Des Travaux Chimiques Des Pays-Bas, 1995, 114, 163-170.	0.0	67
106	Development and Evaluation of a Prep Course for Chemistry Graduate Teaching Assistants at a Research University. Journal of Chemical Education, 2012, 89, 865-872.	1.1	67
107	Rearrangements of oxocyclopropanecarboxylate esters to vinyl ethers. Disparate behavior of transition-metal catalysts. Journal of Organic Chemistry, 1982, 47, 5326-5339.	1.7	66
108	Facile catalytic methods for intermolecular generation of allylic oxonium ylides and their stereoselective [2,3]- sigmatropic rearrangement. Tetrahedron Letters, 1988, 29, 5119-5122.	0.7	66

#	Article	IF	CITATIONS
109	Highly selective \hat{I}^3 -lactone syntheses by intramolecular carbenoid carbon-hydrogen insertion in rhodium(II) carboxylate and rhodium(II) carboxamide catalyzed reactions of diazo esters. Tetrahedron Letters, 1989, 30, 7001-7004.	0.7	66
110	Comparative evaluation of enantiocontrol for intramolecular cyclopropanation of diazoacetates with chiral Cul, RhII and RuII catalysts. Chemical Communications, 1997, , 211-212.	2.2	66
111	Recent advances in stereoselective synthesis involving diazocarbonyl intermediates. Chemical Communications, 1997, , 983.	2.2	66
112	Highly Selective Catalyst-Dependent Competitive 1,2-Câ†'C, -Oâ†'C, and -Nâ†'C Migrations from β-Methylene-β-silyloxy-β-amido-α-diazoacetates. Journal of the American Chemical Society, 2013, 135, 1244-1247.	6.6	66
113	Catalytic Asymmetric [3+1]â€Cycloaddition Reaction of Ylides with Electrophilic Metalloâ€enolcarbene Intermediates. Angewandte Chemie - International Edition, 2017, 56, 7479-7483.	7.2	66
114	Silane reductions in acidic media. III. Reductions of aldehydes and ketones to alcohols and alcohol derivatives. General syntheses of alcohols, symmetrical ethers, carboxylate esters and acetamides. Journal of Organic Chemistry, 1974, 39, 2740-2747.	1.7	64
115	Highly enantioselective oxonium ylide formation and Stevens rearrangement catalyzed by chiral dirhodium(II) carboxamidates. Tetrahedron Letters, 1997, 38, 4367-4370.	0.7	64
116	Propargylic Oxidations Catalyzed by Dirhodium Caprolactamate in Water: Efficient Access to $\hat{l}\pm,\hat{l}^2$ -Acetylenic Ketones. Journal of Organic Chemistry, 2008, 73, 4317-4319.	1.7	64
117	Three-Component Cascade Reactions with 2,3-Diketoesters: A Novel Metal-Free Synthesis of 5-Vinyl-pyrrole and 4-Hydroxy-indole Derivatives. Organic Letters, 2015, 17, 3876-3879.	2.4	64
118	Lewis Acid/Rhodium-Catalyzed Formal [3 + 3]-Cycloaddition of Enoldiazoacetates with Donorâ€"Acceptor Cyclopropanes. Organic Letters, 2015, 17, 3568-3571.	2.4	64
119	Highly Enantioselective Route to \hat{l}^2 -Lactams via Intramolecular C-H Insertion Reactions of Diazoacetylazacycloalkanes Catalyzed by Chiral Dirhodium(II) Carboxamidates. Synlett, 1995, 1995, 1075-1076.	1.0	63
120	Enantiocontrolled Macrocycle Formation by Catalytic Intramolecular Cyclopropanation. Journal of the American Chemical Society, 2000, 122, 5718-5728.	6.6	63
121	The Influence of Ligands on Dirhodium(II) on Reactivity and Selectivity in Metal Carbene Reactions. Progress in Inorganic Chemistry, 2007, , 113-168.	3.0	63
122	Optimization of Enantiocontrol for Carbon-Hydrogen Insertion with Chiral Dirhodium(II) Carboxamidates. Synthesis of Natural Dibenzylbutyrolactone Lignans from 3-Aryl-1-propyl Diazoacetates in High Optical Purity. Journal of Organic Chemistry, 1995, 60, 6654-6655.	1.7	61
123	Selectivity in Reactions of Allyl Diazoacetates as a Function of Catalyst and Ring Size from Î ³ -Lactones to Macrocyclic Lactones. Journal of Organic Chemistry, 2000, 65, 8839-8847.	1.7	61
124	A New Approach to Macrocyclization via Alkene Formation in Catalytic Diazo Decomposition. Synthesis of Patulolides A and B. Organic Letters, 2000, 2, 1777-1779.	2.4	61
125	Catalysts with Mixed Ligands on Immobilized Supports. Electronic and Steric Advantages. Organic Letters, 2003, 5, 561-563.	2.4	61
126	Asymmetric Catalysis Special Feature Part I: Asymmetric hetero-Diels-Alder reaction catalyzed by dirhodium(II) carboxamidates. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5391-5395.	3.3	61

#	Article	IF	CITATIONS
127	Divergent Outcomes of Carbene Transfer Reactions from Dirhodium―and Copperâ€Based Catalysts Separately or in Combination. Angewandte Chemie - International Edition, 2011, 50, 11152-11155.	7.2	61
128	Multifunctionalized 3-Hydroxypyrroles in a Three-Step, One-Pot Cascade Process from Methyl 3-TBSO-2-diazo-3-butenoate and Nitrones. Organic Letters, 2011, 13, 6122-6125.	2.4	60
129	Highly Regio- and Enantioselective Formal [3 + 2]-Annulation of Indoles with Electrophilic Enol Carbene Intermediates. Organic Letters, 2016, 18, 4550-4553.	2.4	60
130	Silane reductions in acidic media. VII. Aluminum chloride catalyzed hydrogen-halogen exchange between organosilanes and alkyl halides. An efficient hydrocarbon synthesis. Journal of Organic Chemistry, 1976, 41, 1393-1396.	1.7	59
131	Involvement of peroxide and superoxide in the oxidation of hemoglobin by nitrite. Biochemical and Biophysical Research Communications, 1982, 105, 127-132.	1.0	59
132	Highly efficient regioselective silylcarbonylation of alkynes catalyzed by dirhodium(II) perfluorobutyrate. Organometallics, 1993, 12, 11-12.	1.1	59
133	α-Amino Radical-Mediated Diverse Difunctionalization of Alkenes: Construction of C–C, C–N, and C–S Bonds. ACS Catalysis, 2020, 10, 13682-13687.	5.5	59
134	Chiral Dirhodium(II) Catalysts for Selective Metal Carbene Reactions. Current Organic Chemistry, 2015, 20, 61-81.	0.9	57
135	Macrocycle Formation by Catalytic Intramolecular Cyclopropanation. A New General Methodology for the Synthesis of Macrolides. Journal of the American Chemical Society, 1997, 119, 8826-8837.	6.6	56
136	Total Synthesis of (S)-(+)-Imperanene. Effective Use of Regio- and Enantioselective Intramolecular Carbonâ°'Hydrogen Insertion Reactions Catalyzed by Chiral Dirhodium(II) Carboxamidates. Journal of Organic Chemistry, 2002, 67, 2954-2959.	1.7	56
137	Construction of Highly Functionalized Diazoacetoacetates via Catalytic Mukaiyamaâ^'Michael Reactions. Organic Letters, 2008, 10, 1605-1608.	2.4	55
138	Highly Enantioselective Catalytic Synthesis of Functionalized Chiral Diazoacetoacetates. Angewandte Chemie - International Edition, 2011, 50, 6392-6395.	7.2	55
139	Highly Enantioselective Carbonyl–Ene Reactions of 2,3â€Diketoesters: Efficient and Atomâ€Economical Process to Functionalized Chiral αâ€Hydroxyâ€Î²â€Ketoesters. Angewandte Chemie - International Edition, 2014, 53, 6468-6472.	7.2	55
140	Macrocyclic Cyclopropenes by Highly Enantioselective Intramolecular Addition of Metal Carbenes to Alkynes. Angewandte Chemie - International Edition, 1999, 38, 700-702.	7.2	54
141	Vinyldiazo Reagents and Metal Catalysts: A Versatile Toolkit for Heterocycle and Carbocycle Construction. ChemCatChem, 2018, 10, 488-496.	1.8	54
142	Tetrakis[(4S)-4-phenyloxazolidin-2-one]dirhodium(II) and Its Catalytic Applications for Metal Carbene Transformations. Helvetica Chimica Acta, 1993, 76, 2227-2235.	1.0	53
143	Catalyst selection for metal carbene transformations. Journal of Organometallic Chemistry, 2001, 617-618, 98-104.	0.8	53
144	Spirolactones from Dirhodium(II)-Catalyzed Diazo Decomposition with Regioselective Carbon-Hydrogen Insertion. Journal of Organic Chemistry, 1995, 60, 3035-3038.	1.7	51

#	Article	IF	CITATIONS
145	Synthesis of pyrrolizidine bases by highly diastereoselective and regioselective catalytic carbon-hydrogen insertion reactions of chiral pyrrolidinediazoacetamides. Tetrahedron Letters, 1996, 37, 1371-1374.	0.7	51
146	In Search of High Stereocontrol for the Construction ofcis-Disubstituted Cyclopropane Compounds. Total Synthesis of a Cyclopropane-Configured Urea-PETT Analogue That Is a HIV-1 Reverse Transcriptase Inhibitor. Organic Letters, 2002, 4, 901-904.	2.4	51
147	Dirhodium-Catalyzed Phenol and Aniline Oxidations with T-HYDRO. Substrate Scope and Mechanism of Oxidation. Journal of Organic Chemistry, 2011, 76, 2585-2593.	1.7	51
148	Divergent Stereocontrol of Acid Catalyzed Intramolecular Aldol Reactions of 2,3,7-Triketoesters: Synthesis of Highly Functionalized Cyclopentanones. Organic Letters, 2012, 14, 3608-3611.	2.4	51
149	Nitric oxide dissociation from trioxodinitrate(II) in aqueous solution. Journal of the American Chemical Society, 1984, 106, 3678-3679.	6.6	50
150	A Facile Three-Component One-Pot Synthesis of Structurally Constrained Tetrahydrofurans That Are t-RNA Synthetase Inhibitor Analogues. Journal of Organic Chemistry, 2004, 69, 4856-4859.	1.7	50
151	Addition of arylchlorocarbenes to .alpha.,.betaunsaturated esters. Absolute rates, substituent effects, and variable reactivities. Journal of the American Chemical Society, 1988, 110, 7143-7152.	6.6	49
152	Glutaraldehyde Modification of Recombinant Human Hemoglobin Alters Its Hemodynamic Properties. Journal of Biological Chemistry, 1999, 274, 2583-2591.	1.6	49
153	Lewis Acid Catalyzed Indole Synthesis via Intramolecular Nucleophilic Attack of Phenyldiazoacetates to Iminium Ions. Journal of Organic Chemistry, 2009, 74, 9222-9224.	1.7	49
154	Catalytic Divergent [3+3]―and [3+2]â€Cycloaddition by Discrimination Between Diazo Compounds. Angewandte Chemie - International Edition, 2017, 56, 12292-12296.	7.2	49
155	Cyclopropanation versus carbon–hydrogen insertion. The influences of substrate and catalyst on selectivity. Tetrahedron Letters, 2001, 42, 3155-3158.	0.7	48
156	Chiral Dirhodium(II) Carboxamidate-Catalyzed [2+2]-Cycloaddition of TMS-Ketene and Ethyl Glyoxylate. Advanced Synthesis and Catalysis, 2005, 347, 87-92.	2.1	48
157	Catalytic Addition Methods for the Synthesis of Functionalized Diazoacetoacetates and Application to the Construction of Highly Substituted Cyclobutanones. Organic Letters, 2005, 7, 5171-5174.	2.4	48
158	Catalytic Conversion of Diazocarbonyl Compounds to Imines: Applications to the Synthesis of Tetrahydropyrimidines and \hat{l}^2 -Lactams. Organic Letters, 2014, 16, 740-743.	2.4	48
159	Dirhodium(II)â€Catalyzed Annulation of Enoldiazoacetamides with αâ€Diazoketones: An Efficient and Highly Selective Approach to Fused and Bridged Ring Systems. Angewandte Chemie - International Edition, 2016, 55, 5573-5576.	7.2	48
160	Selective C(sp ³)â€"H Bond Insertion in Carbene/Alkyne Metathesis Reactions. Enantioselective Construction of Dihydroindoles. ACS Catalysis, 2018, 8, 9543-9549.	5.5	48
161	Correlation between catalytic cyclopropanation and ylide generation. Journal of Organometallic Chemistry, 1981, 216, C64-C68.	0.8	47
162	Transition Metal Carbene Complexes: Cyclopropanation. , 1995, , 387-420.		47

#	Article	IF	CITATIONS
163	Enantioselective Syntheses of 2-Deoxyxylono-1,4-lactone and 2-Deoxyribono-1,4-lactone from 1,3-Dioxan-5-yl Diazoacetates. Journal of Organic Chemistry, 1999, 64, 8907-8915.	1.7	47
164	Preparation and Catalytic Properties of Immobilized Chiral Dirhodium(II) Carboxamidates. Organometallics, 2002, 21, 1747-1749.	1.1	47
165	Dinitrogen extrusion from enoldiazo compounds under thermal conditions: synthesis of donor–acceptor cyclopropenes. Chemical Communications, 2015, 51, 12924-12927.	2.2	47
166	Divergent Rhodium-Catalyzed Cyclization Reactions of Enoldiazoacetamides with Nitrosoarenes. Journal of the American Chemical Society, 2017, 139, 9839-9842.	6.6	47
167	Enhancement of stereoselectivity in catalytic cyclopropanation reactions. Tetrahedron Letters, 1987, 28, 833-836.	0.7	46
168	Synthesis of 2-deoxyxylolactone from glycerol derivatives via highly enantioselective carbon-hydrogen insertion reactions. Tetrahedron Letters, 1994, 35, 3853-3856.	0.7	46
169	Chiral catalyst enhancement of diastereocontrol for Oî—,H insertion reactions of styryl- and phenyldiazoacetate esters of pantolactone. Tetrahedron Letters, 2002, 43, 5929-5931.	0.7	46
170	Solvent Enhancement of Reaction Selectivity: A Unique Property of Cationic Chiral Dirhodium Carboxamidates. Journal of the American Chemical Society, 2011, 133, 9572-9579.	6.6	46
171	Vinylogous Reactivity of Enol Diazoacetates with Donor–Acceptor Substituted Hydrazones. Synthesis of Substituted Pyrazole Derivatives. Journal of Organic Chemistry, 2013, 78, 1583-1588.	1.7	46
172	Diazo Esters as Dienophiles in Intramolecular $(4 + 2)$ Cycloadditions: Computational Explorations of Mechanism. Journal of the American Chemical Society, 2017, 139, 2766-2770.	6.6	46
173	Chemoselectivity and enantiocontrol in catalytic intramolecular metal carbene reactions of diazo acetates linked to reactive functional groups by naphthalene-1,8-dimethanol. Chemical Communications, 1999, , 1691-1692.	2.2	45
174	Catalytic asymmetric cycloaddition reactions of enoldiazo compounds. Organic and Biomolecular Chemistry, 2019, 17, 4183-4195.	1.5	45
175	Regioselectivity in catalytic cyclopropanation reactions. Tetrahedron Letters, 1982, 23, 2261-2264.	0.7	44
176	Transition-metal-catalyzed rearrangements of oxocyclopropanes to vinyl ethers. Activation by vicinal carboalkoxy substituents. Journal of the American Chemical Society, 1981, 103, 5917-5919.	6.6	43
177	Tandem Sequence of Phenol Oxidation and Intramolecular Addition as a Method in Building Heterocycles. Journal of Organic Chemistry, 2012, 77, 10294-10303.	1.7	43
178	Enantioselectivity andcis/trans-Selectivity in Dirhodium(II)-Catalyzed addition of diazoacetates to olefins. Helvetica Chimica Acta, 1995, 78, 459-470.	1.0	42
179	Optimization of enantiocontrol in cis-selective cyclopropanation reactions catalyzed by dirhodium(ii) tetrakis[alkyl 2-oxaazetidine-4(S)-carboxylates]. Chemical Communications, 2000, , 867-868.	2.2	42
180	Tetrahydroquinolines and Benzazepines through Catalytic Diastereoselective Formal [4 + 2]-Cycloaddition Reactions between Donor–Acceptor Cyclopropenes and Imines. Organic Letters, 2013, 15, 3278-3281.	2.4	42

#	Article	IF	Citations
181	Reactivity and Selectivity in Catalytic Reactions of Enoldiazoacetamides. Assessment of Metal Carbenes as Intermediates. Organometallics, 2016, 35, 3413-3420.	1.1	42
182	Hindered organosilicon compounds. Synthesis and properties of di-tert-butyl-, di-tert-butylmethyl-, and tri-tert-butylsilanes. Journal of the American Chemical Society, 1975, 97, 3777-3782.	6.6	41
183	Syntheses of Tetrahydropyridazine and Tetrahydro-1,2-diazepine Scaffolds through Cycloaddition Reactions of Azoalkenes with Enol Diazoacetates. Organic Letters, 2016, 18, 5884-5887.	2.4	41
184	Cycloheptatriene syntheses through rhodium(II) acetate-catalyzed intramolecular addition reactions of N-benzyldiazoacetamides. Tetrahedron Letters, 1988, 29, 2639-2642.	0.7	40
185	Formation and characterization of 3-O-arenediazoascorbic acids. New stable diazo ethers. Journal of Organic Chemistry, 1989, 54, 3785-3789.	1.7	40
186	A new catalytic transformation of diazo esters: hydride abstraction in dirhodium(II)-catalysed reactions. Journal of the Chemical Society Perkin Transactions 1, 1995, , 619.	0.9	40
187	High Selectivity from Configurational Match/Mismatch in Carbonâ^'Hydrogen Insertion Reactions of Steroidal Diazoacetates Catalyzed by Chiral Dirhodium(II) Carboxamidates. Journal of Organic Chemistry, 2001, 66, 8112-8119.	1.7	40
188	"Matched/Mismatched―Diastereomeric Dirhodium(II) Carboxamidate Catalyst Pairs. Structureâ°'Selectivity Correlations in Diazo Decomposition and Hetero-Dielsâ°'Alder Reactions. Journal of Organic Chemistry, 2005, 70, 5291-5301.	1.7	40
189	Synthesis of Chiral Tetrasubstituted Azetidines from Donor–Acceptor Azetines via Asymmetric Copper(I)â€Catalyzed Imidoâ€Ylide [3+1]â€Cycloaddition with Metalloâ€Enolcarbenes. Angewandte Chemie - International Edition, 2019, 58, 16188-16192.	7.2	40
190	Reduction of arenediazonium salts by hydroquinone. Kinetics and mechanism for the electron-transfer step. Journal of Organic Chemistry, 1988, 53, 3255-3261.	1.7	39
191	Silane reductions in acidic media. IV. Reductions of alkyl-substituted cyclohexanones by mono-, di-, and trialkylsilanes. Stereochemistry of alcohol and ether formation. Journal of Organic Chemistry, 1975, 40, 3821-3829.	1.7	38
192	Influence of olefin coordination on cyclopropanation selectivity. Tetrahedron Letters, 1984, 25, 4087-4090.	0.7	38
193	Olefin coordination with rhodium(II) trifluoroacetate. Inorganic Chemistry, 1984, 23, 3684-3685.	1.9	38
194	Outer-sphere one-electron reductions of arenediazonium salts. Journal of the American Chemical Society, 1987, 109, 1536-1540.	6.6	38
195	Synthesis of allenes by $[2,3]$ -sigmatropic rearrangement of prop-2-yn-1-yl oxonium ylides formed in rhodium(II) carboxylate catalysed reactions of diazo compounds. Journal of the Chemical Society Chemical Communications, 1990, , 46.	2.0	38
196	Diastereoselectivity Enhancement in Cyclopropanation and Cyclopropenation Reactions of Chiral Diazoacetate Esters Catalyzed by Chiral Dirhodium(II) Carboxamides. Synlett, 1993, 1993, 151-153.	1.0	38
197	Enantioselective carbonhydrogen insertion is an effective and efficient methodology for the synthesis of (r)-(-)-baclofen. Chirality, 2002, 14, 169-172.	1.3	38
198	Straightforward Access to the [3.2.2]Nonatriene Structural Framework via Intramolecular Cyclopropenation/Buchner Reaction/Cope Rearrangement Cascade. Organic Letters, 2015, 17, 790-793.	2.4	38

#	Article	IF	CITATIONS
199	Catalyst Choice for Highly Enantioselective [3 + 3]-Cycloaddition of Enoldiazocarbonyl Compounds. ACS Catalysis, 2018, 8, 10392-10400.	5.5	38
200	Reaction between azide and nitronium ions. Formation and decomposition of nitryl azide. Journal of the American Chemical Society, 1973, 95, 952-953.	6.6	37
201	Silane reductions in acidic media. VI. Mechanism of organosilane reductions of carbonyl compounds. Transition state geometries of hydride transfer reactions. Journal of Organic Chemistry, 1975, 40, 3835-3838.	1.7	37
202	Alkyl nitrite-metal halide deamination reactions. 7. Synthetic coupling of electrophilic bromination with substitutive deamination for selective synthesis of multiply brominated aromatic compounds from arylamines. Journal of Organic Chemistry, 1980, 45, 2570-2575.	1.7	37
203	Olefin coordination with rhodium(II) perfluoroalkanoates in solution. Inorganic Chemistry, 1987, 26, 3070-3072.	1.9	37
204	Enantioselective intramolecular cyclopropanation of N-allylic- and N-homoallylic diazoacetamides catalyzed by chiral dirhodium(II) catalysts. Tetrahedron, 1994, 50, 1665-1674.	1.0	36
205	Formation of Macrocycles by Catalytic Intramolecular Aromatic Cycloaddition of Metal Carbenes to Remote Arenes. Journal of the American Chemical Society, 1996, 118, 7865-7866.	6.6	36
206	Macrocyclic oxonium ylide formation and internal [2,3]-sigmatropic rearrangement. Catalyst influence on selectivity. Tetrahedron Letters, 1997, 38, 5265-5268.	0.7	36
207	Catalytic Intramolecular Addition of Metal Carbenes to Remote Furans. Organic Letters, 1999, 1, 1327-1329.	2.4	35
208	Unexpected Catalytic Reactions of Silyl-Protected Enol Diazoacetates with Nitrile Oxides That Form 5-Arylaminofuran-2(3 <i>H</i>)-one-4-carboxylates. Organic Letters, 2012, 14, 800-803.	2.4	35
209	Exceptionally effective catalysis of cyclopropanation reactions by the hexarhodium carbonyl cluster. Tetrahedron Letters, 1981, 22, 1783-1786.	0.7	34
210	Reactivity and selectivity in intermolecular insertion reactions of chlorophenylcarbene. Tetrahedron Letters, 1988, 29, 5863-5866.	0.7	34
211	Stereoselective synthesis of disubstituted 3(2H)-furanones via catalytic intramolecular C-H insertion reactions of \hat{l}_{\pm} -diazo- \hat{l}_{\pm} -keto esters including asymmetric induction. Tetrahedron Letters, 1994, 35, 7269-7272.	0.7	34
212	Influences of Catalyst Configuration and Catalyst Loading on Selectivities in Reactions of Diazoacetamides. Barrier to Equilibrium between Diastereomeric Conformations. Organic Letters, 2003, 5, 407-410.	2.4	34
213	Pericyclic Reaction of a Zwitterionic Salt of an Enedione-diazoester. A Novel Strategy for the Synthesis of Highly Functionalized Resorcinols. Organic Letters, 2010, 12, 4304-4307.	2.4	34
214	Competitive [2,3]- and [1,2]-Oxonium Ylide Rearrangements. Concerted or Stepwise?. Organic Letters, 2012, 14, 1676-1679.	2.4	34
215	Catalytic Asymmetric Synthesis of Cyclopentyl βâ€Amino Esters by [3+2] Cycloaddition of Enecarbamates with Electrophilic Metalloenolcarbene Intermediates. Angewandte Chemie - International Edition, 2016, 55, 10108-10112.	7.2	34
216	Radical Cascade Multicomponent Minisci Reactions with Diazo Compounds. ACS Catalysis, 2022, 12, 1357-1363.	5.5	34

#	Article	IF	CITATIONS
217	Silane reductions in acidic media. 10. Ionic hydrogenation of cycloalkenes. Stereoselectivity and mechanism. Journal of Organic Chemistry, 1978, 43, 693-696.	1.7	33
218	Activation parameters for the reaction of phenylchloro carbene with pyridine, tri-butyltin hydride, and triethylsilane; evidence against the need to invoke reversibly formed complexes in the reaction of this carbene with olefins. Tetrahedron Letters, 1989, 30, 1335-1338.	0.7	33
219	Asymmetric catalysis, part 108 copper catalysts with optically active ligands in the enantioselective Meerwein arylation of activated olefins. Journal of Organometallic Chemistry, 1997, 541, 89-95.	0.8	33
220	Reactivities and selectivities in macrocyclic addition reactions with diazoacetates using copper(I) and rhodium(II) catalysts. Tetrahedron Letters, 2000, 41, 6265-6269.	0.7	33
221	Macrocycle Formation from Catalytic Metal Carbene Transformations. Synlett, 2001, 2001, 1364-1370.	1.0	33
222	Efficient synthesis of oxazoles by dirhodium(ii)-catalyzed reactions of styryl diazoacetate with oximes. Chemical Communications, 2012, 48, 11522.	2.2	33
223	Dirhodium(ii)-catalyzed formal [3+2+1]-annulation of azomethine imines with two molecules of a diazo ketone. Chemical Communications, 2013, 49, 2762.	2.2	33
224	Templated Carbene Metathesis Reactions from the Modular Assembly of Enolâ€diazo Compounds and Propargyl Acetates. European Journal of Organic Chemistry, 2013, 2013, 6032-6037.	1.2	33
225	The Selection of Catalysts for Metal Carbene Transformations. Advances in Organometallic Chemistry, 2016, 66, 1-31.	0.5	32
226	Stereoselective Synthesis of Substituted 5-Hydroxy-1,3-dioxanes. Synthesis, 1998, 1998, 879-882.	1.2	31
227	Chiral Dirhodium(II) Catalysts and Their Applications. , 2005, , 591-632.		31
228	An efficient methodology to substituted furans via oxidation of functionalized \hat{l} ±-diazo- \hat{l} 2-ketoacetates. Tetrahedron Letters, 2011, 52, 2093-2096.	0.7	31
229	Enantioselectivity for catalytic cyclopropanation with diazomalonates. Arkivoc, 2003, 2003, 15-22.	0.3	31
230	Nickel(II) bromide-catalyzed oxidations of primary and secondary alcohols to carbonyl compounds by benzoyl peroxide. Journal of Organic Chemistry, 1979, 44, 2955-2956.	1.7	30
231	Stereoselective Synthesis of Bicyclic Pyrrolidines by a Rhodium-Catalyzed Cascade Process. Angewandte Chemie - International Edition, 2004, 43, 6713-6716.	7.2	30
232	Unprecedented Intramolecular $[4+2]$ -Cycloaddition between a 1,3-Diene and a Diazo Ester. Journal of the American Chemical Society, 2016, 138, 1808-1811.	6.6	30
233	Catalytic Desymmetric Cycloaddition of Diaziridines with Metalloenolcarbenes: The Role of Donor–Acceptor Cyclopropenes. Angewandte Chemie - International Edition, 2019, 58, 12502-12506.	7.2	30
234	Molybdenum hexacarbonyl catalyzed cyclopropanation of .alpha.,.betaunsaturated esters and nitriles and diazocarbonyl compounds. Journal of Organic Chemistry, 1980, 45, 1538-1539.	1.7	29

#	Article	IF	CITATIONS
235	Enantioselective catalytic intramolecular cyclopropanation of allylic î±-diazopropionates optimized with dirhodium(II) tetrakis[methyl 2-oxazolidinone-4(S or R)-carboxylate]. Tetrahedron: Asymmetry, 1995, 6, 2157-2160.	1.8	29
236	A short stereoselective synthesis of (+)- and (â^')-2-oxabicyclo[3.3.0]oct-6-en-3-one by intramolecular carbonâ€"hydrogen insertion catalyzed by chiral dirhodium(II) carboxamidates. Tetrahedron: Asymmetry, 2003, 14, 925-928.	1.8	29
237	Diversifying Science, Technology, Engineering, and Mathematics (STEM): An Inquiry into Successful Approaches in Chemistry. Journal of Chemical Education, 2014, 91, 1860-1866.	1.1	29
238	An efficient route to highly enantioenriched tetrahydroazulenes and \hat{l}^2 -tetralones by desymmetrization reactions of \hat{l}', \hat{l}' -diaryldiazoaceto-acetates. Chemical Communications, 2015, 51, 565-568.	2.2	29
239	Asymmetric synthesis of 1H-pyrrol-3(2H)-ones from 2,3-diketoesters by combination of aldol condensation with benzilic acid rearrangement. Chemical Communications, 2016, 52, 108-111.	2.2	29
240	Enantioselective \hat{I}^2 -Lactone Formation from Phenyldiazoacetates via Catalytic Intramolecular Carbon-Hydrogen Insertion. Synlett, 2001, 2001, 0967-0969.	1.0	28
241	A readily prepared neutral heterobimetallic titanium(iv)–rhodium(i) catalyst for intramolecular hydroacylation. Chemical Communications, 2005, , 3307.	2.2	28
242	Constructing chiral diazoacetoacetates by enantioselective catalytic Mukaiyama aldol reactions. Tetrahedron: Asymmetry, 2006, 17, 574-577.	1.8	28
243	Bis(phenyl)dirhodium(III) Caprolactamate:Â A Dinuclear Paddlewheel Complex with No Metalâ^'Metal Bond. Journal of the American Chemical Society, 2007, 129, 3504-3505.	6.6	28
244	Removal of Metalâ^'Metal Bonding in a Dimetallic Paddlewheel Complex: Molecular and Electronic Structure of Bis(phenyl) Dirhodium(III) Carboxamidate Compounds. Organometallics, 2008, 27, 5836-5845.	1.1	28
245	Control of selectivity in the generation and reactions of oxonium ylides. Chemical Communications, 2011, 47, 7623.	2.2	28
246	Diazoacetoacetate Enones for the Synthesis of Diverse Natural Product-like Scaffolds. Organic Letters, 2013, 15, 3642-3645.	2.4	28
247	Silane reductions in acidic media. V. Reductions of alkyl-substituted cyclohexanones by di- and tri-tert-butylsilanes. Steric hindrance to nucleophilic attack at silicon in the trifluoroacetolysis of silyl alkyl ethers. Journal of Organic Chemistry, 1975, 40, 3829-3834.	1.7	27
248	Transition Metal Carbene Complexes: Diazodecomposition, Ylide, and Insertion., 1995,, 421-468.		27
249	Amplification of Asymmetric Induction in Sequential Reactions of Bis-diazoacetates Catalyzed by Chiral Dirhodium(II) Carboxamidates. Organic Letters, 2005, 7, 5035-5038.	2.4	27
250	Displacement of Dinitrogen by Oxygen: A Methodology for the Catalytic Conversion of Diazocarbonyl Compounds to Ketocarbonyl Compounds by 2,6-Dichloropyridine- <i>N</i> -oxide. Organic Letters, 2018, 20, 776-779.	2.4	27
251	Oxidative deamination of primary amines by copper halide nitrosyls. The formation of geminal dihalides. Journal of the American Chemical Society, 1976, 98, 1627-1629.	6.6	26
252	Formation and reactions of dithiodicarbenium salts. Journal of the American Chemical Society, 1981, 103, 7096-7101.	6.6	26

#	Article	IF	Citations
253	Catalytic role of copper triflate in Lewis acid promoted reactions of diazo compounds. Journal of Organic Chemistry, 1984, 49, 1196-1199.	1.7	26
254	Unsymmetrical alkenes by carbene coupling from diazirine decomposition in the presence of diazo compounds. Journal of Organic Chemistry, 1987, 52, 1619-1621.	1.7	26
255	Stereoselective Synthesis of Highly Functionalized \hat{l}_{\pm} -Diazo- \hat{l}^2 -ketoalkanoates via Catalytic One-Pot Mukaiyama-Aldol Reactions. Organic Letters, 2010, 12, 796-799.	2.4	26
256	Enoldiazosulfones for Highly Enantioselective [3 + 3]-Cycloaddition with Nitrones Catalyzed by Copper(I) with Chiral BOX Ligands. Organic Letters, 2019, 21, 40-44.	2.4	26
257	Brønsted Acid Catalyzed Friedel–Craftsâ€₹ype Coupling and Dedinitrogenation Reactions of Vinyldiazo Compounds. Angewandte Chemie - International Edition, 2020, 59, 13613-13617.	7.2	26
258	Reactions of the nitrosonium ion. 11. Fluoride transfer from complex fluoride anions to carbenium ions in the nitrosative decomposition of aliphatic azides. Journal of Organic Chemistry, 1979, 44, 2923-2929.	1.7	25
259	Diazirines in carbenoid reactions catalyzed by rhodium(II) carboxylates. Tetrahedron Letters, 1989, 30, 3049-3052.	0.7	25
260	\hat{l}^2 -Lactam formation via rhodium(II) catalyzed carbon-hydrogen insertion reactions of \hat{l} ±-diazo amides. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 2409-2414.	1.0	25
261	Polyether Macrocycles from Intramolecular Cyclopropanation and Ylide Formation. Effect of Catalyst and Coordination. Journal of Organic Chemistry, 2006, 71, 8183-8189.	1.7	25
262	Disproportionation of trityl alkyl ethers. Synthesis of aldehydes and ketones in a cationic chain reaction involving hydride transfer. Journal of Organic Chemistry, 1973, 38, 625-626.	1.7	24
263	Mechanism of nitrosyl transfer. Dissociation of nitric oxide from cobalt nitrosyls. Journal of the American Chemical Society, 1982, 104, 3392-3397.	6.6	24
264	Effective methods for the syntheses of 2â€pyrazolines and pyrazoles from diazocarbonyl compounds. Journal of Heterocyclic Chemistry, 1983, 20, 943-946.	1.4	24
265	Oxidation of oxymyoglobin by nitric oxide through dissociation from cobalt nitrosyls. Journal of Inorganic Biochemistry, 1983, 19, 329-338.	1.5	24
266	Versatile Donorâ€Acceptor Cyclopropenes in Metal Carbene Transformations. Israel Journal of Chemistry, 2016, 56, 399-408.	1.0	24
267	(4,0)-Dirhodium(II) tetrakis[methyl 1-acetyl-2-oxoimidazolidine-4(S)-carboxylate]. Implications for the mechanism of ligand exchange reactions. Inorganica Chimica Acta, 1997, 266, 13-18.	1.2	23
268	Observations of Rhodium-Containing Reaction Intermediates using HPLC with ICP-MS and ESI-MS Detection. Advanced Synthesis and Catalysis, 2006, 348, 821-825.	2.1	23
269	Substrate-Dependent Divergent Outcomes from Catalytic Reactions of Silyl-Protected Enol Diazoacetates with Nitrile Oxides: Azabicyclo [3.1.0] hexanes or 5-Arylaminofuran-2(3 $<$ i>H $<$ li>)-ones. Journal of Organic Chemistry, 2012, 77, 5313-5317.	1.7	23
270	Regioselective oxidations of primary alcohols in 1,4-diols. Journal of Organic Chemistry, 1981, 46, 4806-4808.	1.7	22

#	Article	IF	CITATIONS
271	Dirhodium(II) tetrakis[N,N-dimethyl-2-pyrrolidone-5(S)-carboxamide]. Structural effects on enantioselection in metal carbene transformations. Inorganica Chimica Acta, 1994, 220, 193-199.	1.2	22
272	Copperâ€Catalyzed Formal [4+2] Cycloaddition of Enoldiazoimides with Sulfur Ylides. Angewandte Chemie - International Edition, 2018, 57, 10343-10346.	7.2	22
273	Catalytic Oxidative Cleavage Reactions of Arylalkenes by <i>tert</i> -Butyl Hydroperoxide – A Mechanistic Assessment. Journal of Organic Chemistry, 2020, 85, 3728-3741.	1.7	22
274	Regioselectivity in nickel(II)-mediated oxidations of diols. Journal of Organic Chemistry, 1983, 48, 476-480.	1.7	21
275	Regioselective Hydroformylation of Alkenes Catalyzed by Di(n-carboxylato)rhodium(I) Complexes. Synlett, 1994, 1994, 615-616.	1.0	21
276	Expedient access to substituted 3-amino-2-cyclopentenones by dirhodium-catalyzed [3+2]-annulation of silylated ketene imines and enoldiazoacetates. Chemical Communications, 2014, 50, 2462-2464.	2.2	21
277	Ag ^I â€Catalyzed Reaction of Enol Diazoacetates and Imino Ethers: Synthesis of Highly Functionalized Pyrroles. Angewandte Chemie - International Edition, 2021, 60, 13394-13400.	7.2	21
278	Cyclic ether formation in oxidations of primary alcohols by cerium(IV). Reactions of 5-phenyl-1-pentanol, 4-phenyl-1-butanol, and 3-phenyl-1-propanol with ceric ammonium nitrate. Journal of Organic Chemistry, 1975, 40, 1454-1456.	1.7	20
279	Rhodium(II) acetate catalyzed hydrocarbon oxidations by molecular oxygen. Journal of Molecular Catalysis, 1984, 26, 259-266.	1.2	20
280	Enantioselective Carbonyl–Ene Reactions Catalyzed by Chiral Cationic Dirhodium(II,III) Carboxamidates. Journal of Organic Chemistry, 2014, 79, 12185-12190.	1.7	20
281	Silane reductions in acidic media. 9. The effect of Lewis acids on stereoselectivities in ketone reductions. The principle of complexation-induced conformational perturbation. Energy minimization in the transition states for hydride transfer. Journal of Organic Chemistry, 1977, 42, 1922-1928.	1.7	19
282	Enantioselective intramolecular cyclopropanation of N-allylic- and N-homoallylic diazoacetamides catalyzed by chiral dirhodium(II) catalysts. Tetrahedron, 1994, 50, 4519-4528.	1.0	19
283	Dirhodium caprolactamate and tert-butyl hydro- peroxide $\hat{a} \in \hat{a}$ a universal system for selective oxidations. Mendeleev Communications, 2014, 24, 187-196.	0.6	19
284	Divergent pathways of \hat{l}^2 , \hat{l}^3 -unsaturated \hat{l}_\pm -diazocarbonyl compounds catalyzed by dirhodium and Lewis acids catalysts separately or in combination. Chinese Chemical Letters, 2015, 26, 227-232.	4.8	19
285	Hg(OTf) ₂ Catalyzed Intramolecular 1,4-Addition of Donor–Acceptor Cyclopropenes to Arenes. Organic Letters, 2015, 17, 4312-4315.	2.4	19
286	Rhodium(<scp>ii</scp>)-catalysed generation of cycloprop-1-en-1-yl ketones and their rearrangement to 5-aryl-2-siloxyfurans. Chemical Communications, 2018, 54, 9513-9516.	2.2	19
287	Chiral donor–acceptor azetines as powerful reactants for synthesis of amino acid derivatives. Nature Communications, 2019, 10, 5328.	5.8	19
288	Reactions of the nitrosonium ion. IV. Nitrosative cleavage of the carbon-nitrogen double bond. Reaction of N-arylimines and ketimines with nitrosonium salts. Journal of Organic Chemistry, 1972, 37, 1597-1601.	1.7	18

#	Article	IF	CITATIONS
289	Asymmetric syntheses with catalytic enantioselective metal carbene transformations. Russian Chemical Bulletin, 1994, 43, 1770-1782.	0.4	18
290	Chiral Dirhodium(II) Carboxamidates for Asymmetric Cyclopropanation and Carbon-Hydrogen Insertion Reactions., 2005,, 341-355.		18
291	Diverse Pathways in Catalytic Reactions of Propargyl Aryldiazoacetates: Selectivity between Three Reaction Sites. Journal of Organic Chemistry, 2017, 82, 1584-1590.	1.7	18
292	Catalyst-Directed Divergent Catalytic Approaches to Expand Structural and Functional Scaffold Diversity via Metallo-Enolcarbene Intermediates. ACS Catalysis, 2021, 11, 4712-4721.	5.5	18
293	Reactions of the nitrosonium ion. II. Reactions of triphenylmethyl, benzhydryl, and benzyl azides with nitrosonium compounds. Journal of the American Chemical Society, 1972, 94, 3896-3901.	6.6	17
294	Free-radical rearrangements in the thermal decomposition of tert-butylperoxy 3-(1-phenylcyclopropyl)propanoate, 4-(1-phenylcyclopropyl)butanoate, and 5-(1-phenylcyclopropyl)pentanoate. Journal of the American Chemical Society, 1973, 95, 5988-6000.	6.6	17
295	Procatalysts for carbenoid transformations. Journal of the Chemical Society Chemical Communications, 1985, .	2.0	17
296	Catalysis of olefin isomerization by tight ion pairs. Journal of Organic Chemistry, 1987, 52, 323-324.	1.7	17
297	Synthesis of 1 <i>H</i> -Pyrrol-3(2 <i>H</i>)-ones via Three-Component Reactions of 2,3-Diketo Esters, Amines, and Ketones. Journal of Organic Chemistry, 2018, 83, 11288-11297.	1.7	17
298	Generation of Diazomethyl Radicals by Hydrogen Atom Abstraction and Their Cycloaddition with Alkenes. Angewandte Chemie - International Edition, 2021, 60, 18484-18488.	7.2	17
299	Intermolecular [5 + 1]-Cycloaddition between Vinyl Diazo Compounds and <i>tert</i> -Butyl Nitrite to 1,2,3-Triazine 1-Oxides and Their Further Transformation to Isoxazoles. Organic Letters, 2021, 23, 6542-6546.	2.4	17
300	Catalyst-Free Formation of Nitrile Oxides and Their Further Transformations to Diverse Heterocycles. Organic Letters, 2021, 23, 925-929.	2.4	17
301	Homologation of acetals of .alpha.,.betaunsaturated carbonyl compounds with diazoesters. Synthesis of acetals of .beta.,.gammaunsaturated carbonyl compounds. Journal of Organic Chemistry, 1983, 48, 5146-5148.	1.7	16
302	Replacing mineral acids in the laboratory: Nafion-catalyzed dehydration and esterification. Journal of Chemical Education, 1993, 70, 493.	1.1	16
303	Stereoselectivity in Metal Carbene Addition to a Carbon-Carbon Triple Bond Tied to the Reactant Diazoacetate Through a Chiral Linker. Advanced Synthesis and Catalysis, 2006, 348, 2403-2409.	2.1	16
304	Michael addition/pericyclization/rearrangement – a multicomponent strategy for the synthesis of substituted resorcinols. Organic and Biomolecular Chemistry, 2012, 10, 6388.	1.5	16
305	The chemistry of vicinal tricarbonyls: an expedient route to fully-substituted 3-aminopyrroles. Tetrahedron Letters, 2015, 56, 3042-3045.	0.7	16
306	Dirhodium(II)â€Catalyzed Annulation of Enoldiazoacetamides with αâ€Diazoketones: An Efficient and Highly Selective Approach to Fused and Bridged Ring Systems. Angewandte Chemie, 2016, 128, 5663-5666.	1.6	16

#	Article	IF	CITATIONS
307	Highly Regio-, Diastereo-, and Enantioselective Rhodium-Catalyzed Intramolecular Cyclopropanation of (<i>Z</i>)-1,3-Dienyl Aryldiazoacetates. Organic Letters, 2017, 19, 1306-1309.	2.4	16
308	Catalytic Asymmetric [3+1]â€Cycloaddition Reaction of Ylides with Electrophilic Metalloâ€enolcarbene Intermediates. Angewandte Chemie, 2017, 129, 7587-7591.	1.6	16
309	The disproportionation of trityl benzyl ethers. Kinetic analysis of the trityl salt catalyzed reaction. Evidence for the involvement of ion pairs in the hydrogen transfer step. Journal of the American Chemical Society, 1976, 98, 163-166.	6.6	15
310	Enantiomer Recognition of Amides by Dirhodium(II) Tetrakis[methyl 2-oxopyrrolidine-5(<i>S</i>)-carboxylate]. Inorganic Chemistry, 2011, 50, 7610-7617.	1.9	15
311	Rhodium acetate-catalyzed aerobic Mukaiyama epoxidation of alkenes. Tetrahedron, 2013, 69, 10009-10013.	1.0	15
312	Catalytic Asymmetric Synthesis of Cyclopentyl βâ€Amino Esters by [3+2] Cycloaddition of Enecarbamates with Electrophilic Metalloenolcarbene Intermediates. Angewandte Chemie, 2016, 128, 10262-10266.	1.6	15
313	Copper($\langle scp \rangle i < scp \rangle$)-catalyzed highly enantioselective [3 + 3]-cycloaddition of \hat{I}^3 -alkyl enoldiazoacetates with nitrones. Organic Chemistry Frontiers, 2020, 7, 1653-1657.	2.3	15
314	Reactions of the nitrosonium ion. V. Nitrosative cleavage of the carbon-nitrogen double bond. Attempted exchange of oxygen for nitrogen. Journal of Organic Chemistry, 1973, 38, 1663-1667.	1.7	14
315	Steric selectivity in oxidations of diols. Tetrahedron Letters, 1980, 21, 2794-2798.	0.7	14
316	Comparative enantiocontrol with allyl phenyldiazoacetates in asymmetric catalytic intramolecular cyclopropanation. Chirality, 2003, 15, 369-373.	1.3	14
317	Synthetic Carbene and Nitrene Chemistry. , 2005, , 561-592.		14
318	Substrateversus Catalyst Control of Stereoselectivity in the Cyclopropanation of a Carbon-Carbon Double Bond Linked to the Reactant Diazoacetate through a Chiral Linker. Advanced Synthesis and Catalysis, 2006, 348, 449-455.	2.1	14
319	Recent Developments in the Synthetic Uses of Silyl-protected Enoldiazoacetates for Heterocyclic Syntheses. Australian Journal of Chemistry, 2014, 67, 365.	0.5	14
320	Catalytic Divergent [3+3]―and [3+2]â€Cycloaddition by Discrimination Between Diazo Compounds. Angewandte Chemie, 2017, 129, 12460-12464.	1.6	14
321	Role of Donor–Acceptor Cyclopropenes in Metal Carbene Reactions. Conversion of ⟨i⟩E⟨ i⟩-Substituted Enoldiazoacetates to ⟨i⟩Z⟨ i⟩-Substituted Metallo-Enolcarbenes. Organometallics, 2019, 38, 4043-4050.	1.1	14
322	Diverse Reactions of Vinyl Diazo Compounds with Quinone Oxonium Ions, Quinone Imine Ketals, and Eschenmoser's Salt. ACS Catalysis, 2021, 11, 9869-9874.	5.5	14
323	Brønsted Acid Catalyzed Oxocarbenium-Olefin Metathesis/Rearrangements of 1 <i>H</i> Isochromene Acetals with Vinyl Diazo Compounds. Journal of the American Chemical Society, 2021, 143, 15391-15399.	6.6	14
324	Alkyl nitrite-metal halide deamination reactions. 5. In situ generation of nitrosyl halides. Effective product control from nitrosyl chloride diazotization of primary aliphatic amines in N,N-dimethylformamide. Journal of Organic Chemistry, 1978, 43, 4120-4125.	1.7	13

#	Article	IF	Citations
325	Nucleophilic character of an electrophilic carbene. Synthesis of cyclopropanes by thermal decomposition of 3-chloro-3-phenyldiazirine. Tetrahedron Letters, 1984, 25, 901-904.	0.7	13
326	Electron transfer between hemoglobin and arenediazonium salts. Mechanism of heme aryl-iron complex formation. Inorganic Chemistry, 1987, 26, 3387-3392.	1.9	13
327	A spectrometric study of the oxidation of alcohols by cerium(IV). Journal of Chemical Education, 1974, 51, 131.	1.1	12
328	Degradation of uric acid during autocatalytic oxidation of oxyhemoglobin induced by sodium nitrite. Free Radical Biology and Medicine, 1991, 11, 373-377.	1.3	12
329	Dirhodium(II) Tetraacetate Catalysed Hydroboration of Alkenes. Mendeleev Communications, 1993, 3, 81-82.	0.6	12
330	Identification and Characterization of Isomeric Intermediates in a Catalyst Formation Reaction by Means of Speciation Analysis Using HPLCâ ^{^1} ICPMS and HPLCâ ^{^2} ESI-MS. Analytical Chemistry, 2006, 78, 1282-1289.	3.2	12
331	A survey of enoldiazo nucleophilicity in selective C–C bond forming reactions for the synthesis of natural product-like frameworks. Organic and Biomolecular Chemistry, 2014, 12, 5227-5234.	1.5	12
332	Highly Enantioselective Carbonyl–Ene Reactions of 2,3â€Diketoesters: Efficient and Atomâ€Economical Process to Functionalized Chiral αâ€Hydroxyâ€Î²â€Ketoesters. Angewandte Chemie, 2014, 126, 6586-6590.	1.6	12
333	Catalyst-Free Rearrangement of Allenyl Aryldiazoacetates into 1,5-Dihydro-4 <i>H</i> -pyrazol-4-ones. Journal of Organic Chemistry, 2016, 81, 9235-9246.	1.7	12
334	Asymmetric [3+3] Cycloaddition for Heterocycle Synthesis. Synlett, 2017, 28, 1695-1706.	1.0	12
335	Synthesis of Chiral Tetrasubstituted Azetidines from Donor–Acceptor Azetines via Asymmetric Copper(I)â€Catalyzed Imidoâ€Ylide [3+1]â€Cycloaddition with Metalloâ€Enolcarbenes. Angewandte Chemie, 2019, 131, 16334-16338.	1.6	12
336	Medium effects. I. Solvolysis of 5-hexenyl p-nitrobenzenesulfonate in acetic acid-nonhydroxylic solvent (20:80) mixtures. Journal of the American Chemical Society, 1967, 89, 4867-4872.	6.6	11
337	Reactions of the nitrosonium ion. VII. Syntheses of dihydroisoquinolines and oxazoles from azides in nitrile solvents. Journal of Heterocyclic Chemistry, 1975, 12, 263-265.	1.4	11
338	The nature of fluoride transfer from complex fluoride anions to carbenium ions. Tetrahedron Letters, 1975, 16, 4201-4204.	0.7	11
339	Oxidative deamination of primary amines: selective synthesis of geminal dihalides. Journal of the Chemical Society Chemical Communications, 1976, , 433.	2.0	11
340	Selective Oxidations of Alcohols by Bromine in Combination with Nickel(II) Benzoate. Synthetic Communications, 1980, 10, 881-888.	1.1	11
341	Formation of a dipolar adduct in the reaction of arylchlorocarbenes with diethyl maleate. Tetrahedron Letters, 1986, 27, 4395-4398.	0.7	11
342	Synthesis of dirhodium(II) tetrakis[methyl 1-(3-phenylpropanoyl)-2-oxaimidazolidine-4(S)-carboxylate], Rh2(4S-MPPIM)4. Tetrahedron: Asymmetry, 2003, 14, 3601-3604.	1.8	11

#	Article	IF	Citations
343	Steric balance within chiral dirhodium(II) carboxamidate catalysts enhances stereoselectivity. Journal of Molecular Catalysis A, 2003, 196, 93-100.	4.8	11
344	Diphenylglycoluril as a novel ligand architecture for dirhodium(II) carboxamidates. Inorganica Chimica Acta, 2008, 361, 3309-3314.	1.2	11
345	Barriers to enantiocontrol in Lewis acid catalyzed hetero-Diels–Alder reactions. Chemical Communications, 2009, , 5612.	2.2	11
346	Precise Introduction of the â^'CH _{<i>n</i>} X _{3â€"<i>n</i>} (X = F, Cl, Br, I) Moiety to Target Molecules by a Radical Strategy: A Theoretical and Experimental Study. Journal of the American Chemical Society, 2021, 143, 13195-13204.	6.6	11
347	Attempted synthesis of casbene by intramolecular cyclopropanation. Arkivoc, 2002, 2002, 180-185.	0.3	11
348	Chemical and electrochemical oxidation of O,O,O-trisubstituted phosphorothioates and triphenylphosphine sulfide. Journal of Organic Chemistry, 1983, 48, 1176-1179.	1.7	10
349	Synthesis of bis (\ddot{l} -aryl) dirhodium (iii) caprolactamates by oxidative arylation with arylboronic acids. Chemical Communications, 2008, , 2671.	2.2	10
350	Hetero-bis (\ddot{l} f-aryl) dirhodium (III) caprolactamates. Electronic communication between aryl groups through dirhodium (III). Dalton Transactions, 2009, , 2871.	1.6	10
351	High Stereocontrol in the Preparation of Silyl-Protected γ-Substituted Enoldiazoacetates. Synlett, 2019, 30, 1457-1461.	1.0	10
352	Enantioselective Catalytic Cyclopropanation–Rearrangement Approach to Chiral Spiroketals. Organic Letters, 2021, 23, 3955-3959.	2.4	10
353	Reactions of the nitrosonium ion. I. Reaction of alkyl azides with nitrosonium salts. A new method for the production of carbonium ions. Journal of the American Chemical Society, 1970, 92, 4999-5001.	6.6	9
354	Electron transfer in the heme pocket of hemoglobin. Journal of the American Chemical Society, 1985, 107, 6136-6137.	6.6	9
355	Does an Axial Propeller Shape on a Dirhodium(III,III) Core Affect Equatorial Ligand Chirality?. Organometallics, 2011, 30, 3619-3627.	1.1	9
356	Nucleophilic reactivity of the carbon-carbon double bond. VI. The use of urea as a base in acetolysis reactions. Journal of Organic Chemistry, 1967, 32, 150-153.	1.7	8
357	Reversible oxidation of 1,3-dithiolan-2-thione. Journal of the Chemical Society Chemical Communications, 1977, , 643.	2.0	8
358	Chiral 3-Acylglutaric Acid Derivatives from Strain-Induced Nucleophilic Retro-Claisen Ring-Opening Reactions. Journal of Organic Chemistry, 2020, 85, 9475-9490.	1.7	8
359	Formal [4 + 4]-, [4 + 3]-, and [4 + 2]-cycloaddition reactions of donor–acceptor cyclobutenes, cyclopropenes and siloxyalkynes induced by Brnsted acid catalysis. Chemical Science, 2021, 12, 4819-4824.	3.7	8
360	Synthesis, Structure and Reactivity of a Novel Series of Diastereomeric Dirhodium(II) Tetracarboxamidates. Catalysts for Asymmetric Diazoacetate Transformations. Australian Journal of Chemistry, 1998, 51, 1.	0.5	8

#	Article	IF	CITATIONS
361	Highly selective acylation of polyamines and aminoglycosides by 5-acyl-5-phenyl-1,5-dihydro-4H-pyrazol-4-ones. Chemical Science, 2017, 8, 7152-7159.	3.7	7
362	Intramolecular cycloaddition/rearrangement cascade from gold(<scp>iii</scp>)-catalysed reactions of propargyl aryldiazoesters with cinnamyl imines. Chemical Communications, 2018, 54, 12828-12831.	2.2	7
363	Application of \hat{l}_{\pm} -Amino Radicals as the Reaction Activators. Synthesis, 0, 54, .	1.2	7
364	Lewis acid promoted reactions of n-(1-phenylcyclopropyl)alkanoyl chlorides. Ring-size effects in competitive intramolecular acylation of phenyl and cyclopropyl substituents. Journal of Organic Chemistry, 1978, 43, 4459-4461.	1.7	6
365	Academic Excellence - The Role of Research. 2002 George C. Pimentel Award. Journal of Chemical Education, 2002, 79, 1038.	1.1	6
366	Influence of the Diene in the Hetero-Diels-Alder Reaction Catalyzed by Dirhodium(II) Carboxamidates. Synlett, 2004, 2004, 2425-2428.	1.0	6
367	Stereoselectivity in metal carbene and Lewis acid-catalyzed reactions from diastereomeric dirhodium(II) carboxamidates: Menthyl N-acetyl-2-oxoimidazolidine-4(S)-carboxylates. Journal of Organometallic Chemistry, 2005, 690, 5525-5532.	0.8	6
368	Silverâ€Catalyzed Carbene Functionalization of Methane in Supercritical Carbon Dioxide. ChemCatChem, 2011, 3, 1681-1682.	1.8	6
369	Copper(I)â€Catalyzed Highly Enantioselective [3+3]â€Cycloaddition of βâ€Aryl/Alkyl Vinyl Diazoacetates with Nitrones. Helvetica Chimica Acta, 2021, 104, e2100081.	1.0	6
370	Dinuclear compounds without a metal–metal bond. Dirhodium(III,III) carboxamidates. Inorganica Chimica Acta, 2015, 424, 235-240.	1.2	5
371	Catalytic Desymmetric Cycloaddition of Diaziridines with Metalloenolcarbenes: The Role of Donor–Acceptor Cyclopropenes. Angewandte Chemie, 2019, 131, 12632-12636.	1.6	5
372	Cycloheptanone via a Lewis acid-catalyzed cyclization of 6-heptenoyl chloride to .betachlorocycloheptanone. Journal of Organic Chemistry, 1969, 34, 3679-3681.	1.7	4
373	Nitrosative cleavage of benzalazine and related aldehyde azines. Production, decomposition and trapping of iminodiazonium ions. Tetrahedron Letters, 1974, 15, 1455-1458.	0.7	4
374	Reactions of the nitrosonium ion. VIII. Reactions of nitrosonium tetrafluoroborate and benzhydryl tetrafluoroborate with benzhydryl azides. Mechanism of aldehyde and ketone formation. Journal of the American Chemical Society, 1975, 97, 5554-5558.	6.6	4
375	Chiral Rhodium(II) Carboxamides. ACS Symposium Series, 1993, , 40-57.	0.5	4
376	Conformational isomers of extraordinary stability: carboxamidate-bridged dimetalloorganic compounds. Chemical Communications, 2009, , 3005.	2.2	4
377	Enantiocontrol in Macrocycle Formation from Catalytic Metal Carbene Transformations. Chinese Journal of Chemistry, 2001, 19, 22-29.	2.6	4
378	Copperâ€Catalyzed Formal [4+2] Cycloaddition of Enoldiazoimides with Sulfur Ylides. Angewandte Chemie, 2018, 130, 10500-10503.	1.6	4

#	Article	IF	CITATIONS
379	Brønsted Acid Catalyzed Friedel–Craftsâ€Type Coupling and Dedinitrogenation Reactions of Vinyldiazo Compounds. Angewandte Chemie, 2020, 132, 13715-13719.	1.6	4
380	Reactions of the nitrosonium ion. III. Reaction of alkyl azides with nitrosonium compounds. Effect of solvent, quenching agent, and nitrosonium compound. Journal of the American Chemical Society, 1972, 94, 3901-3906.	6.6	3
381	Oxidation of hemoglobin by arenediazonium salts. The influence of dioxygen. Inorganica Chimica Acta, 1984, 92, 123-129.	1.2	3
382	A Facile Route to Some Useful Homochiral Alkyl Imidazolidin-2-one-4(S)-carboxylates. Synthetic Communications, 1996, 26, 2165-2175.	1.1	3
383	KR OnDisc Encyclopedia of Physical Science and Technology, 2E CD-ROM Academic Press, Inc.:Â 525 B Street, Suite 1900, San Diego, California 92101-4495. Tel:Â 619-699-6410. \$2995.00. ISBN 0-12-000200-0. 1995. Journal of the American Chemical Society, 1997, 119, 2964-2964.	6.6	3
384	Influences of Catalyst Configuration and Catalyst Loading on Selectivities in Reactions of Diazoacetamides. Barrier to Equilibrium Between Diastereomeric Conformations. Organic Letters, 2003, 5, 2371-2371.	2.4	3
385	The evolving nature of chemical education: challenges and opportunities. Future Medicinal Chemistry, 2010, 2, 247-249.	1.1	3
386	Lewis Acid Catalyzed Diastereoselective 1,3-Dipolar Cycloaddition between Diazoacetoacetate Enones and Azomethine Ylides. Heterocycles, 2014, 88, 1039.	0.4	3
387	Strainâ€Induced Nucleophilic Ring Opening of Donor–Acceptor Cyclopropenes for Synthesis of Monosubstituted Succinic Acid Derivatives. Chemistry - A European Journal, 2021, 27, 340-347.	1.7	3
388	Ag I â€Catalyzed Reaction of Enol Diazoacetates and Imino Ethers: Synthesis of Highly Functionalized Pyrroles. Angewandte Chemie, 2021, 133, 13506-13512.	1.6	3
389	Generation of Diazomethyl Radicals by Hydrogen Atom Abstraction and Their Cycloaddition with Alkenes. Angewandte Chemie, 2021, 133, 18632-18636.	1.6	3
390	Thermal decomposition of tert-butylperoxy 6-bromohexanoate. Lack of evidence for radical displacement on carbon and 1,5-bridged bromine radicals. Journal of Organic Chemistry, 1967, 32, 146-150.	1.7	2
391	Internal Lewis acid catalyzed ring-expansion reactions of cyclopropylalkanoyl chlorides. Tetrahedron Letters, 1975, 16, 3031-3034.	0.7	2
392	Reactions of the nitrosonium ion. 10. Decarboxylations of azodicarboxylates by nitrosonium and nitronium salts. Decarboxylative oxidation and substitution reactions. Journal of the American Chemical Society, 1977, 99, 494-498.	6.6	2
393	Chiral Dirhodium(II) Carboxamidates for Catalytic Asymmetric Synthesis. ACS Symposium Series, 2004, , 1-13.	0.5	2
394	The Future of Catalysis by Chiral Lewis Acids. Topics in Organometallic Chemistry, 2015, , 1-25.	0.7	2
395	Catalytic Allylic Oxidation of Cyclic Enamides and 3,4-Dihydro-2 <i>H</i> Pyrans by TBHP. Journal of Organic Chemistry, 2017, 82, 8506-8513.	1.7	2
396	Challenges in the Highly Selective $[3+1]$ -Cycloaddition of an Enoldiazoacetamide to Form a Donorâ \in "Acceptor Cis-Cyclobutenecarboxamide. Molecules, 2021, 26, 3520.	1.7	2

#	Article	IF	CITATIONS
397	Acetolysis of 4-bromobutyl-1,1-d2 p-nitrobenzenesulfonate. Evidence for 1,4-bromine participation and the existence of a 5-membered cyclic bromonium ion during acetolysis Tetrahedron Letters, 1968, 9, 3127-3130.	0.7	1
398	A new approach to organic laboratory projects. Journal of Chemical Education, 1973, 50, 358.	1.1	1
399	HIGHLY EFFICIENT OLEFIN ISOMERIZATION CATALYZED BY METAL HYDRIDES DERIVES FROM DIRHODIUM(II) CARBOXYLATES AND CATECHOLBORANE. Main Group Metal Chemistry, 1994, 17, .	0.6	1
400	Chiral Dirhodium(II) Carboxamidates for Catalytic Asymmetric Synthesis. ChemInform, 2005, 36, no.	0.1	1
401	Making Ends Meet: Catalytic Cycloaddition. Advanced Synthesis and Catalysis, 2006, 348, 2269-2269.	2.1	1
402	Degradation of azo dye with dirhodium(II) caprolactamate as heterogeneous catalyst. Water Science and Technology, 2012, 65, 2175-2182.	1.2	1
403	Failure of the principle of hard and soft acids and bases to explain the amount of cyclization of various hex-5-enyl derivatives during acetolysis. Chemical Communications / Chemical Society, London, 1967, , 1021.	0.1	0
404	Research as chemical education. Journal of Chemical Education, 1984, 61, 854.	1.1	0
405	ChemPrep Institute for Scientific Information:Â 3501 Market Street, Philadelphia, PA 19104. Telephone:Â 1-800-336-4474. Fax:Â 215-386-6362. http://www.lsinet.Com. List Price for 1985â^'1997 databases:Â \$11Â750 the American Chemical Society. 1998, 120, 5353-5353.	(1) _{6.6} ETQ	q1 ₀ 1 0.7848
406	A Novel Three-Component Reaction Catalyzed by Dirhodium(II) Acetate: Decomposition of Phenyldiazoacetate with Arylamine and Imine for Highly Diastereoselective Synthesis of 1,2-Diamines ChemInform, 2004, 35, no.	0.1	0
407	A Facile Three-Component One-Pot Synthesis of Structurally Constrained Tetrahydrofurans that Are t-RNA Synthetase Inhibitor Analogues ChemInform, 2004, 35, no.	0.1	0
408	Divergence of Carbonyl Ylide Reactions as a Function of Diazocarbonyl Compound and Aldehyde Substituent: Dioxolanes, Dioxolenes, and Epoxides ChemInform, 2004, 35, no.	0.1	0
409	Dirhodium(II) Caprolactamate: An Exceptional Catalyst for Allylic Oxidation ChemInform, 2005, 36, no.	0.1	0
410	Stereoselective Synthesis of Bicyclic Pyrrolidines by a Rhodium-Catalyzed Cascade Process Chemlnform, 2005, 36, no.	0.1	0
411	Efficient Aziridination of Olefins Catalyzed by Mixed-Valent Dirhodium(II,III) Caprolactamate ChemInform, 2005, 36, no.	0.1	0
412	In Search of High Stereocontrol for the Construction of cisâ€Disubstituted Cyclopropane Compounds. Total Synthesis of a Cyclopropaneâ€Configured Ureaâ€PETT Analogue that Is a HIVâ€1 Reverse Transcriptase Inhibitor ChemInform, 2002, 33, 73-73.	0.1	0
413	Unusually large scalar coupling between geminal protons in a saturated pyrimidine. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2016, 45A, .	0.2	0
414	Innentitelbild: Dirhodium(II)â€Catalyzed Annulation of Enoldiazoacetamides with αâ€Diazoketones: An Efficient and Highly Selective Approach to Fused and Bridged Ring Systems (Angew. Chem. 18/2016). Angewandte Chemie, 2016, 128, 5436-5436.	1.6	0

#	Article	lF	CITATIONS
415	Chemoselectivity in dirhodium(II) catalyzed reactions of diazoacetoacetates prepared from $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones. Arkivoc, 2010, 2010, 10-16.	0.3	0
416	On the Origin of the Conformationally Non-Interconvertable Isomers of Bisphenyldirhodium(III) Caprolactamate. Journal of the Mexican Chemical Society, 2019, 53, .	0.2	O