Jason R Plemel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7843883/publications.pdf

Version: 2024-02-01

41 papers

4,041 citations

147801 31 h-index 276875 41 g-index

43 all docs 43 docs citations

43 times ranked

5145 citing authors

#	Article	IF	CITATIONS
1	Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. Journal of Neuroinflammation, 2022, 19, 45.	7.2	51
2	Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Molecular Neurodegeneration, 2022, 17, 34.	10.8	70
3	How to counteract age when the nervous system is damaged. TheScienceBreaker, 2021, 07, .	0.0	O
4	The CD33 short isoform is a gain-of-function variant that enhances Aβ1–42 phagocytosis in microglia. Molecular Neurodegeneration, 2021, 16, 19.	10.8	46
5	Regulation of microglia population dynamics throughout development, health, and disease. Glia, 2021, 69, 2771-2797.	4.9	29
6	An X-ray for myelin. Trends in Neurosciences, 2021, 44, 600-601.	8.6	1
7	Myelin Quantification in White Matter Pathology of Progressive Multiple Sclerosis Post-Mortem Brain Samples: A New Approach for Quantifying Remyelination. International Journal of Molecular Sciences, 2021, 22, 12634.	4.1	6
8	The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury. Glia, 2020, 68, 227-245.	4.9	63
9	Microglia Diversity in Health and Multiple Sclerosis. Frontiers in Immunology, 2020, 11, 588021.	4.8	44
10	Aging-Exacerbated Acute Axon and Myelin Injury Is Associated with Microglia-Derived Reactive Oxygen Species and Is Alleviated by the Generic Medication Indapamide. Journal of Neuroscience, 2020, 40, 8587-8600.	3.6	13
11	Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Science Advances, 2020, 6, eaay6324.	10.3	130
12	Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. Acta Neuropathologica, 2020, 139, 893-909.	7.7	80
13	Help or harm? How immune cells of the brain balance the immune response. TheScienceBreaker, 2020, 06, .	0.0	O
14	Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nature Reviews Drug Discovery, 2019, 18, 905-922.	46.4	265
15	Central Nervous System Remyelination: Roles of Glia and Innate Immune Cells. Frontiers in Molecular Neuroscience, 2019, 12, 225.	2.9	49
16	Deficient Surveillance and Phagocytic Activity of Myeloid Cells Within Demyelinated Lesions in Aging Mice Visualized by <i>Ex Vivo</i> Live Multiphoton Imaging. Journal of Neuroscience, 2018, 38, 1973-1988.	3.6	40
17	Biochemically altered myelin triggers autoimmune demyelination. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5528-5533.	7.1	83
18	Mechanisms of lysophosphatidylcholineâ€induced demyelination: A primary lipid disrupting myelinopathy. Glia, 2018, 66, 327-347.	4.9	124

#	Article	IF	CITATIONS
19	Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system. Nature Reviews Neuroscience, 2018, 19, 49-58.	10.2	100
20	Locomotor recovery following contusive spinal cord injury does not require oligodendrocyte remyelination. Nature Communications, 2018, 9, 3066.	12.8	78
21	Unique spectral signatures of the nucleic acid dye acridine orange can distinguish cell death by apoptosis and necroptosis. Journal of Cell Biology, 2017, 216, 1163-1181.	5.2	54
22	Cell transplantation therapy for spinal cord injury. Nature Neuroscience, 2017, 20, 637-647.	14.8	612
23	Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury. Journal of Neuroscience, 2017, 37, 8635-8654.	3.6	104
24	Myelin regulatory factor drives remyelination in multiple sclerosis. Acta Neuropathologica, 2017, 134, 403-422.	7.7	87
25	Remyelination therapies: a new direction and challenge in multiple sclerosis. Nature Reviews Drug Discovery, 2017, 16, 617-634.	46.4	201
26	An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination. Nature Communications, 2016, 7, 11312.	12.8	167
27	The molecular physiology of the axo-myelinic synapse. Experimental Neurology, 2016, 276, 41-50.	4.1	106
28	Over-the-counter anti-oxidant therapies for use in multiple sclerosis: A systematic review. Multiple Sclerosis Journal, 2015, 21, 1485-1495.	3.0	33
29	Remyelination after spinal cord injury: Is it a target for repair?. Progress in Neurobiology, 2014, 117, 54-72.	5 . 7	155
30	Neutrophil Contribution in Facilitating Optic Nerve Regeneration. Journal of Neuroscience, 2014, 34, 1081-1082.	3.6	5
31	Immune modulatory therapies for spinal cord injury – Past, present and future. Experimental Neurology, 2014, 258, 91-104.	4.1	59
32	Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia, 2013, 61, 1471-1487.	4.9	71
33	Axonal Thinning and Extensive Remyelination without Chronic Demyelination in Spinal Injured Rats. Journal of Neuroscience, 2012, 32, 5120-5125.	3.6	67
34	Motor Axonal Regeneration following Cord Transection. Journal of Neuroscience, 2012, 32, 15645-15646.	3.6	1
35	Intermittent Fasting in Mice Does Not Improve Hindlimb Motor Performance after Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1051-1061.	3.4	13
36	Intermittent Fasting Improves Functional Recovery after Rat Thoracic Contusion Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 479-492.	3.4	73

#	Article	IF	CITATIONS
37	A Systematic Review of Cellular Transplantation Therapies for Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1611-1682.	3.4	490
38	Plateletâ€derived growth factorâ€responsive neural precursors give rise to myelinating oligodendrocytes after transplantation into the spinal cords of contused rats and dysmyelinated mice. Glia, 2011, 59, 1891-1910.	4.9	37
39	Combination of olfactory ensheathing cells with local versus systemic cAMP treatment after a cervical rubrospinal tract injury. Journal of Neuroscience Research, 2010, 88, 2833-2846.	2.9	35
40	A Graded Forceps Crush Spinal Cord Injury Model in Mice. Journal of Neurotrauma, 2008, 25, 350-370.	3.4	104
41	Skin-Derived Precursors Generate Myelinating Schwann Cells That Promote Remyelination and Functional Recovery after Contusion Spinal Cord Injury. Journal of Neuroscience, 2007, 27, 9545-9559.	3.6	279