Yongguang Guan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7843592/publications.pdf

Version: 2024-02-01

	840776	794594
434	11	19
citations	h-index	g-index
19	19	634
docs citations	times ranked	citing authors
	citations 19	434 11 citations h-index 19 19

#	Article	IF	CITATIONS
1	Edible ligand-metal-organic frameworks: Synthesis, structures, properties and applications. Coordination Chemistry Reviews, 2022, 450, 214234.	18.8	16
2	Inactivation of Escherichia coli K12 on raw almonds using supercritical carbon dioxide and thyme oil. Food Microbiology, 2022, 103, 103955.	4.2	6
3	Metal-organic framework based nanozyme hybrid for synergistic bacterial eradication by lysozyme and light-triggered carvacrol release. Chemical Engineering Journal, 2022, 431, 134003.	12.7	17
4	Self-emulsifying Transparent Nanoemulsion to Improve 9'-cis-Bixin Photo Stability in Aqueous Solution by Tween 20 and Lecithin. Food Biophysics, 2022, 17, 545-556.	3.0	1
5	Insight into the phase inversion of a turmeric oil nanoemulsion in antifungal process. International Journal of Food Science and Technology, 2021, 56, 785-793.	2.7	6
6	Photo-triggered on-demand carvacrol vapor release from nano-generators for non-contact bacterial inactivation between nanomaterials and bacteria. Chemical Engineering Journal, 2021, 420, 129874.	12.7	9
7	The structural appeal of metal–organic frameworks in antimicrobial applications. Coordination Chemistry Reviews, 2021, 442, 214007.	18.8	51
8	An entrapped metal-organic framework system for controlled release of ethylene. Journal of Colloid and Interface Science, 2019, 533, 207-215.	9.4	25
9	Caffeic Acid Phenethyl Ester Loaded in Microemulsions: Enhanced In Vitro Activity against Colon and Breast Cancer Cells and Possible Cellular Mechanisms. Food Biophysics, 2019, 14, 80-89.	3.0	15
10	Stable aqueous foams created with intercalated montmorillonite nanoclay coated by sodium caseinate. Journal of Food Engineering, 2019, 248, 36-45.	5.2	12
11	A Novel Sensing Chip for Probing Chlorine Permeation into Simulated Produce Cracks. Advanced Materials Interfaces, 2018, 5, 1800119.	3.7	1
12	Focusing quorum sensing signalling by nanoâ€magnetic assembly. Environmental Microbiology, 2018, 20, 2585-2597.	3.8	7
13	Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis. Colloids and Surfaces B: Biointerfaces, 2018, 169, 470-477.	5.0	15
14	An immune magnetic nano-assembly for specifically amplifying intercellular quorum sensing signals. Colloids and Surfaces B: Biointerfaces, 2018, 172, 197-206.	5.0	6
15	Encapsulation of ferulic acid ethyl ester in caseinate to suppress off-flavor formation in UHT milk. Food Chemistry, 2017, 237, 532-537.	8.2	11
16	Silver Nanocluster-Embedded Zein Films as Antimicrobial Coating Materials for Food Packaging. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35297-35304.	8.0	80
17	Eugenol improves physical and chemical stabilities of nanoemulsions loaded with \hat{l}^2 -carotene. Food Chemistry, 2016, 194, 787-796.	8.2	67
18	Microemulsions Based on a Sunflower Lecithin–Tween 20 Blend Have High Capacity for Dissolving Peppermint Oil and Stabilizing Coenzyme Q ₁₀ . Journal of Agricultural and Food Chemistry, 2015, 63, 983-989.	5.2	39

#	Article	IF	CITATIONS
19	Yeast mannoproteins improve thermal stability of anthocyanins at pH 7.0. Food Chemistry, 2015, 172, 121-128.	8.2	50