Pooi See Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7842906/publications.pdf

Version: 2024-02-01

403 papers 31,772 citations

95 h-index 165 g-index

418 all docs

418 docs citations

418 times ranked

31150 citing authors

#	Article	IF	CITATIONS
1	Flexible electrochromic fiber with rapid color switching and high optical modulation. Nano Research, 2023, 16, 5473-5479.	10.4	16
2	Lowâ€Voltage Soft Actuators for Interactive Human–Machine Interfaces. Advanced Intelligent Systems, 2022, 4, 2100075.	6.1	29
3	Tunable Intracrystal Cavity in Tungsten Bronzeâ€Like Bimetallic Oxides for Electrochromic Energy Storage. Advanced Energy Materials, 2022, 12, 2103106.	19.5	48
4	Natural Polymer in Soft Electronics: Opportunities, Challenges, and Future Prospects. Advanced Materials, 2022, 34, e2105020.	21.0	49
5	Scalable Inkjet Printing of Electrochromic Smart Windows for Building Energy Modulation. Advanced Energy and Sustainability Research, 2022, 3, 2100172.	5.8	14
6	Piezoelectric Energy Harvesting Technology: From Materials, Structures, to Applications. Small Structures, 2022, 3, 2100128.	12.0	43
7	Crystallographic Anisotropy Dependence of Interfacial Sliding Phenomenon in a $Cu(16)/Nb(16)$ ARB (Accumulated Rolling Bonding) Nanolaminate. Nanomaterials, 2022, 12, 308.	4.1	3
8	Ionic covalent organic framework based electrolyte for fast-response ultra-low voltage electrochemical actuators. Nature Communications, 2022, 13, 390.	12.8	36
9	Reconfigurable Origami Transparent Cellulose Triboelectric Paper for Multiâ€modal Energy Harvesting. ChemNanoMat, 2022, 8, .	2.8	6
10	Towards Highâ€Performance Aqueous Sodium Ion Batteries: Constructing Hollow NaTi ₂ (PO ₄) ₃ @C Nanocube Anode with Zn Metalâ€Induced Preâ€Sodiation and Deep Eutectic Electrolyte. Advanced Energy Materials, 2022, 12, .	19.5	30
11	Stretchable, Breathable, and Stable Leadâ€Free Perovskite/Polymer Nanofiber Composite for Hybrid Triboelectric and Piezoelectric Energy Harvesting. Advanced Materials, 2022, 34, e2200042.	21.0	108
12	Wide-Spectrum Modulated Electrochromic Smart Windows Based on MnO ₂ /PB Films. ACS Applied Materials & District Subsection (1998) Applied Materials & Distric	8.0	62
13	Heat-Insulating Black Electrochromic Device Enabled by Reversible Nickel–Copper Electrodeposition. ACS Applied Materials & Interfaces, 2022, 14, 20237-20246.	8.0	17
14	Energy, Sustainability, and Climate Change. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	0
15	Pseudocapacitive and dual-functional electrochromic Zn batteries. Materials Today Energy, 2022, 27, 101048.	4.7	14
16	Molecularâ€Level Methylcellulose/MXene Hybrids with Greatly Enhanced Electrochemical Actuation. Advanced Materials, 2022, 34, e2200660.	21.0	18
17	Performance optimization strategies of halide perovskite-based mechanical energy harvesters. Nanoscale Horizons, 2022, 7, 1029-1046.	8.0	7
18	Top electrode modulated W/Ag/MgO/Au resistive random access memory for improved electronic synapse performance. Journal of Applied Physics, 2022, 132, 014502.	2.5	2

#	Article	IF	CITATIONS
19	Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface. Advanced Materials, 2021, 33, e2002640.	21.0	278
20	Locomotion of Miniature Soft Robots. Advanced Materials, 2021, 33, e2003558.	21.0	95
21	Stretchable Energy Storage Devices: From Materials and Structural Design to Device Assembly. Advanced Energy Materials, 2021, 11, 2003308.	19.5	61
22	Electrochemical Supercapacitors: From Mechanism Understanding to Multifunctional Applications. Advanced Energy Materials, 2021, 11, 2003311.	19.5	109
23	Recent Progress in Artificial Muscles for Interactive Soft Robotics. Advanced Materials, 2021, 33, e2003088.	21.0	139
24	A Tailorable Sprayâ€Assembly Strategy of Silver Nanowiresâ€Bundle Mesh for Transferable Highâ€Performance Transparent Conductor. Advanced Functional Materials, 2021, 31, .	14.9	32
25	Surface modification of liquid metal as an effective approach for deformable electronics and energy devices. Chemical Science, 2021, 12, 2760-2777.	7.4	49
26	Towards Control of the Size, Composition and Surface Area of NiO Nanostructures by Sn Doping. Nanomaterials, 2021, 11, 444.	4.1	9
27	Emerging Thermal Technology Enabled Augmented Reality. Advanced Functional Materials, 2021, 31, 2007952.	14.9	35
28	Breathable Nanogenerators for an On-Plant Self-Powered Sustainable Agriculture System. ACS Nano, 2021, 15, 5307-5315.	14.6	99
29	Three dimensional printed nanogenerators. EcoMat, 2021, 3, e12098.	11.9	16
30	Three-dimensional printing of tactile sensors for soft robotics. MRS Bulletin, 2021, 46, 330-336.	3.5	10
31	Zincâ€lon Hybrid Supercapacitors: Progress and Future Perspective. Batteries and Supercaps, 2021, 4, 1529-1546.	4.7	48
32	Ingenuity of Materials and Designs in Soft Robotics. Advanced Materials, 2021, 33, e2007638.	21.0	1
33	Artificial Muscles: Recent Progress in Artificial Muscles for Interactive Soft Robotics (Adv. Mater.) Tj ETQq1 1 0.78	4314 rgBT	- <mark> </mark> Overlock
34	Sustainable wearable energy storage devices selfâ€charged by humanâ€body bioenergy. SusMat, 2021, 1, 285-302.	14.9	60
35	Synergistic Effect of PVDF-Coated PCL-TCP Scaffolds and Pulsed Electromagnetic Field on Osteogenesis. International Journal of Molecular Sciences, 2021, 22, 6438.	4.1	16
36	Rugged Soft Robots using Tough, Stretchable, and Selfâ€Healable Adhesive Elastomers. Advanced Functional Materials, 2021, 31, 2103097.	14.9	77

#	Article	IF	Citations
37	Deformable High Loading Liquid Metal Nanoparticles Composites for Thermal Energy Management. Advanced Energy Materials, 2021, 11, 2101387.	19.5	47
38	Berkovich nanoindentation study of $16 {\rm \^A}nm$ Cu/Nb ARB nanolaminate: Effect of anisotropy on the surface pileup. MRS Advances, 2021, 6, 495-499.	0.9	3
39	Printable elastomeric electrodes with sweat-enhanced conductivity for wearables. Science Advances, 2021, 7, .	10.3	50
40	Zincâ€lon Hybrid Supercapacitors: Progress and Future Perspective. Batteries and Supercaps, 2021, 4, 1527-1528.	4.7	4
41	Electropolymerized 1D Growth Coordination Polymer for Hybrid Electrochromic Aqueous Zinc Battery. Advanced Science, 2021, 8, e2101944.	11.2	27
42	Ferroelastic-switching-driven large shear strain and piezoelectricity in a hybrid ferroelectric. Nature Materials, 2021, 20, 612-617.	27.5	87
43	Robust Trioptical-State Electrochromic Energy Storage Device Enabled by Reversible Metal Electrodeposition. ACS Energy Letters, 2021, 6, 4328-4335.	17.4	36
44	Magnetically Directed Co-nanoinitiators for Cross-Linking Adhesives and Enhancing Mechanical Properties. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57851-57863.	8.0	2
45	Continuous Tuning of the Fermi Level in Disorder-Engineered Amorphous Films of Li-Doped ZnO for Thermoelectric Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55029-55039.	8.0	3
46	Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors. Advanced Functional Materials, 2020, 30, 1902564.	14.9	252
47	Transparent Flexible Polymer Actuator with Enhanced Output Force Enabled by Conductive Nanowires Interlayer. Advanced Materials Technologies, 2020, 5, 1900762.	5.8	15
48	Multifunctional Supercapacitors: Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors (Adv. Funct. Mater. 2/2020). Advanced Functional Materials, 2020, 30, 2070008.	14.9	7
49	Uncovering the Indium Filament Revolution in Transparent Bipolar ITO/SiO _{<i>x</i>} /ITO Resistive Switching Memories. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4579-4585.	8.0	17
50	Waterâ€Processable, Stretchable, Selfâ€Healable, Thermally Stable, and Transparent Ionic Conductors for Actuators and Sensors. Advanced Materials, 2020, 32, e1906679.	21.0	119
51	The Advances of Metal Sulfides and In Situ Characterization Methods beyond Li Ion Batteries: Sodium, Potassium, and Aluminum Ion Batteries. Small Methods, 2020, 4, 1900648.	8.6	106
52	Emerging Soft Conductors for Bioelectronic Interfaces. Advanced Functional Materials, 2020, 30, 1907184.	14.9	70
53	Tri-rutile layered niobium-molybdates for all solid-state symmetric supercapacitors. Journal of Materials Chemistry A, 2020, 8, 20141-20150.	10.3	6
54	Self-healable sticky porous elastomer for gas-solid interacted power generation. Science Advances, 2020, 6, eabb4246.	10.3	88

#	Article	IF	Citations
55	All 3D Printed Stretchable Piezoelectric Nanogenerator for Self-Powered Sensor Application. Sensors, 2020, 20, 6748.	3.8	21
56	Mechanically interlocked stretchable nanofibers for multifunctional wearable triboelectric nanogenerator. Nano Energy, 2020, 78, 105358.	16.0	88
57	Oneâ€Dimensional <i>Ï€</i> â€"d Conjugated Coordination Polymer for Electrochromic Energy Storage Device with Exceptionally High Performance. Advanced Science, 2020, 7, 1903109.	11.2	72
58	A Quasiâ€Solidâ€State Tristate Reversible Electrochemical Mirror Device with Enhanced Stability. Advanced Science, 2020, 7, 1903198.	11.2	26
59	Inkjetâ€Printed Iontronics for Transparent, Elastic, and Strainâ€Insensitive Touch Sensing Matrix. Advanced Intelligent Systems, 2020, 2, 2000088.	6.1	15
60	All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy, 2020, 72, 104676.	16.0	161
61	Molecular Level Assembly for High-Performance Flexible Electrochromic Energy-Storage Devices. ACS Energy Letters, 2020, 5, 1159-1166.	17.4	126
62	Reversible Electrochemical Mirror Devices: A Quasiâ€Solidâ€State Tristate Reversible Electrochemical Mirror Device with Enhanced Stability (Adv. Sci. 13/2020). Advanced Science, 2020, 7, 2070073.	11.2	2
63	Photothermal actuated origamis based on graphene oxide–cellulose programmable bilayers. Nanoscale Horizons, 2020, 5, 730-738.	8.0	32
64	lonic Conductors: Waterâ€Processable, Stretchable, Selfâ€Healable, Thermally Stable, and Transparent lonic Conductors for Actuators and Sensors (Adv. Mater. 7/2020). Advanced Materials, 2020, 32, 2070048.	21.0	3
65	Encapsulation of MnS Nanocrystals into N, S-Co-doped Carbon as Anode Material for Full Cell Sodium-Ion Capacitors. Nano-Micro Letters, 2020, 12, 34.	27.0	42
66	Nuclear wastewater decontamination by 3D-Printed hierarchical zeolite monoliths. RSC Advances, 2020, 10, 5766-5776.	3.6	42
67	Rectifying ionic current with ionoelastomers. Science, 2020, 367, 735-736.	12.6	15
68	Stretchable and Wearable Resistive Switching Randomâ€Access Memory. Advanced Intelligent Systems, 2020, 2, 2000007.	6.1	24
69	Synthesis through 3D printing: formation of 3D coordination polymers. RSC Advances, 2020, 10, 14812-14817.	3.6	17
70	Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile. Science and Technology of Advanced Materials, 2019, 20, 837-857.	6.1	79
71	Ti ₃ C ₂ MXene Paper for the Effective Adsorption and Controllable Release of Aroma Molecules. Small, 2019, 15, e1903281.	10.0	32
72	Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micro-nanostructures for mechanical and water energy harvesting. Nano Energy, 2019, 64, 103904.	16.0	85

#	Article	IF	CITATIONS
73	Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Science Advances, 2019, 5, eaaw7956.	10.3	213
74	Smart Windows: Electroâ€, Thermoâ€, Mechanoâ€, Photochromics, and Beyond. Advanced Energy Materials, 2019, 9, 1902066.	19.5	383
75	Smart Windows: Smart Windows: Electroâ€, Thermoâ€, Mechanoâ€, Photochromics, and Beyond (Adv. Energy) Tj	ETOq1 1	0,784314 12
76	Piezoelectric Energy Harvesting with an Ultrasonic Vibration Source. Actuators, 2019, 8, 8.	2.3	8
77	Enhancing dynamic actuation performance of dielectric elastomer actuators by tuning viscoelastic effects with polar crosslinking. NPG Asia Materials, $2019,11,.$	7.9	40
78	Advances in self-healing supramolecular soft materials and nanocomposites. Nano Convergence, 2019, 6, 29.	12.1	52
79	Progress on triboelectric nanogenerator with stretchability, self-healability and bio-compatibility. Nano Energy, 2019, 59, 237-257.	16.0	151
80	Interaction of Copper Phthalocyanine with Nitrogen Dioxide and Ammonia Investigation Using X-ray Absorption Spectroscopy and Chemiresistive Gas Measurements. ACS Omega, 2019, 4, 10388-10395.	3.5	27
81	Ultrafast Laser Pulses Enable Oneâ€Step Graphene Patterning on Woods and Leaves for Green Electronics. Advanced Functional Materials, 2019, 29, 1902771.	14.9	138
82	Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nature Communications, 2019, 10, 2158.	12.8	308
83	Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy, 2019, 61, 584-593.	16.0	117
84	A high-performance soft actuator based on a poly(vinylidene fluoride) piezoelectric bimorph. Smart Materials and Structures, 2019, 28, 055011.	3.5	23
85	3D Printing of a Thermo―and Solvatochromic Composite Material Based on a Cu(II)–Thymine Coordination Polymer with Moisture Sensing Capabilities. Advanced Functional Materials, 2019, 29, 1808424.	14.9	35
86	Reconfigurable and programmable origami dielectric elastomer actuators with 3D shape morphing and emissive architectures. NPG Asia Materials, 2019, 11 , .	7.9	21
87	Electrochemical Mechanism Investigation of Cu ₂ MoS ₄ Hollow Nanospheres for Fast and Stable Sodium Ion Storage. Advanced Functional Materials, 2019, 29, 1807753.	14.9	72
88	Vanadium Oxide Nanosheets for Flexible Dendriteâ€Free Hybrid Aluminiumâ€Lithiumâ€lon Batteries with Excellent Cycling Performance. Batteries and Supercaps, 2019, 2, 205-212.	4.7	5
89	Sulfurâ€Rich Colloidal Nickel Sulfides as Bifunctional Catalyst for Allâ€Solidâ€State, Flexible and Rechargeable Znâ€Air Batteries. ChemCatChem, 2019, 11, 1205-1213.	3.7	40
90	A Stretchable and Selfâ€Healing Energy Storage Device Based on Mechanically and Electrically Restorative Liquidâ€Metal Particles and Carboxylated Polyurethane Composites. Advanced Materials, 2019, 31, e1805536.	21.0	209

#	Article	IF	CITATIONS
91	Printable Superelastic Conductors with Extreme Stretchability and Robust Cycling Endurance Enabled by Liquidâ€Metal Particles. Advanced Materials, 2018, 30, e1706157.	21.0	208
92	Direct inkjet-patterning of energy efficient flexible electrochromics. Nano Energy, 2018, 49, 147-154.	16.0	78
93	Deformable conductors for human–machine interface. Materials Today, 2018, 21, 508-526.	14.2	163
94	Metal Organic Framework: Hydrolytically Stable MOF in 3Dâ€Printed Structures (Adv. Sustainable Syst.) Tj ETQq	0	/Qverlock 1
95	Hydrolytically Stable MOF in 3Dâ€Printed Structures. Advanced Sustainable Systems, 2018, 2, 1700150.	5.3	54
96	Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy, 2018, 44, 248-255.	16.0	216
97	Recent Advances in Flexible Electrochromic Devices: Prerequisites, Challenges, and Prospects. Energy Technology, 2018, 6, 33-45.	3.8	155
98	Inkjet-printed metal oxide nanoparticles on elastomer for strain-adaptive transmissive electrochromic energy storage systems. Science and Technology of Advanced Materials, 2018, 19, 759-770.	6.1	44
99	Fully laser-patterned stretchable microsupercapacitors integrated with soft electronic circuit components. NPG Asia Materials, 2018, 10, 959-969.	7.9	56
100	<i>Diphylleia grayi</i> -Inspired Stretchable Hydrochromics with Large Optical Modulation in the Visible–Near-Infrared Region. ACS Applied Materials & Description (1988) (1988	8.0	29
101	Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nature Communications, 2018, 9, 4280.	12.8	433
102	A Nonpresodiate Sodiumâ€ion Capacitor with High Performance. Small, 2018, 14, e1804035.	10.0	36
103	Holey graphene-wrapped porous TiNb24O62 microparticles as high-performance intercalation pseudocapacitive anode materials for lithium-ion capacitors. NPG Asia Materials, 2018, 10, 406-416.	7.9	55
104	NiMn layered double hydroxides derived multiphase Mn-doped Ni sulfides with reduced graphene oxide composites as anode materials with superior cycling stability for sodium ion batteries. Materials Today Energy, 2018, 9, 74-82.	4.7	18
105	Rational Design of Amphiphilic Peptides and Its Effect on Antifouling Performance. Biomacromolecules, 2018, 19, 3620-3627.	5.4	15
106	A Deformable and Highly Robust Ethyl Cellulose Transparent Conductor with a Scalable Silver Nanowires Bundle Micromesh. Advanced Materials, 2018, 30, e1802803.	21.0	95
107	Energy-Efficient Flexible Electrochromic Display: A Promising Trend In The Development Of Smart Displays. , 2018, , .		0
108	Progress and Prospects in Stretchable Electroluminescent Devices. Nanophotonics, 2017, 6, 435-451.	6.0	35

#	Article	IF	CITATIONS
109	Direct Observation of Indium Conductive Filaments in Transparent, Flexible, and Transferable Resistive Switching Memory. ACS Nano, 2017, 11, 1712-1718.	14.6	83
110	Water Energy Harvesting: Flexible Superamphiphobic Film for Water Energy Harvesting (Adv. Mater.) Tj ETQq0 0	0 ggBT /O	verlock 10 Tf
111	Strain Sensors: Extremely Stretchable Strain Sensors Based on Conductive Selfâ∈Healing Dynamic Crossâ∈Links Hydrogels for Humanâ∈Motion Detection (Adv. Sci. 2/2017). Advanced Science, 2017, 4, .	11.2	4
112	Capacitors: A Highâ€Performance Lithiumâ€ion Capacitor Based on 2D Nanosheet Materials (Small 6/2017). Small, 2017, 13, .	10.0	2
113	Coaxial Ag–base metal nanowire networks with high electrochemical stability for transparent and stretchable asymmetric supercapacitors. Nanoscale Horizons, 2017, 2, 199-204.	8.0	63
114	NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn–air batteries. Nanoscale, 2017, 9, 774-780.	5.6	130
115	Carbon Coated Bimetallic Sulfide Hollow Nanocubes as Advanced Sodium Ion Battery Anode. Advanced Energy Materials, 2017, 7, 1700180.	19.5	130
116	Self-powered pressure sensor for ultra-wide range pressure detection. Nano Research, 2017, 10, 3557-3570.	10.4	117
117	A fiber asymmetric supercapacitor based on FeOOH/PPy on carbon fibers as an anode electrode with high volumetric energy density for wearable applications. Nanoscale, 2017, 9, 10794-10801.	5.6	126
118	A copper-based reversible electrochemical mirror device with switchability between transparent, blue, and mirror states. Journal of Materials Chemistry C, 2017, 5, 6547-6554.	5.5	35
119	Multi-responsive supercapacitors: Smart solution to store electrical energy. Materials Today Energy, 2017, 4, 41-57.	4.7	39
120	Inkjet Printed Large Area Multifunctional Smart Windows. Advanced Energy Materials, 2017, 7, 1602598.	19.5	239
121	Fast charging self-powered electric double layer capacitor. Journal of Power Sources, 2017, 342, 70-78.	7.8	98
122	Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. Journal of Materials Chemistry A, 2017, 5, 3039-3068.	10.3	625
123	Recent Advances in Electrochromic Smart Fenestration. Advanced Sustainable Systems, 2017, 1, 1700074.	5.3	110
124	Transparent, Flexible Cellulose Nanofibril–Phosphorene Hybrid Paper as Triboelectric Nanogenerator. Advanced Materials Interfaces, 2017, 4, 1700651.	3.7	97
125	Deformable and Transparent Ionic and Electronic Conductors for Soft Energy Devices. Advanced Energy Materials, 2017, 7, 1701369.	19.5	63
126	Investigation of Charge Transfer Kinetics at Carbon/Hydroquinone Interfaces for Redox-Active-Electrolyte Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33728-33734.	8.0	25

#	Article	IF	Citations
127	Interplay of Nanoscale, Hybrid P3HT/ZTO Interface on Optoelectronics and Photovoltaic Cells. ACS Applied Materials & Diterfaces, 2017, 9, 33212-33219.	8.0	10
128	Ti-Doped WO ₃ synthesized by a facile wet bath method for improved electrochromism. Journal of Materials Chemistry C, 2017, 5, 9995-10000.	5.5	43
129	Wearable Allâ€Fabricâ€Based Triboelectric Generator for Water Energy Harvesting. Advanced Energy Materials, 2017, 7, 1701243.	19.5	220
130	Highly Transparent, Stretchable, and Selfâ∈Healing Ionicâ∈Skin Triboelectric Nanogenerators for Energy Harvesting and Touch Applications. Advanced Materials, 2017, 29, 1702181.	21.0	322
131	Electrochemical Approach for Effective Antifouling and Antimicrobial Surfaces. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26503-26509.	8.0	33
132	Localized Charge Transfer in Two-Dimensional Molybdenum Trioxide. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27045-27053.	8.0	10
133	Nanogenerators: Transparent, Flexible Cellulose Nanofibril–Phosphorene Hybrid Paper as Triboelectric Nanogenerator (Adv. Mater. Interfaces 22/2017). Advanced Materials Interfaces, 2017, 4, .	3.7	1
134	A Stretchable and Transparent Nanocomposite Nanogenerator for Self-Powered Physiological Monitoring. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42200-42209.	8.0	131
135	Multi-layered metal nanocrystals in a sol-gel spin-on-glass matrix for flash memory applications. Materials Chemistry and Physics, 2017, 186, 36-43.	4.0	4
136	Flexible Superamphiphobic Film for Water Energy Harvesting. Advanced Materials Technologies, 2017, 2, 1600186.	5.8	51
137	Extremely Stretchable Strain Sensors Based on Conductive Selfâ€Healing Dynamic Crossâ€Links Hydrogels for Humanâ€Motion Detection. Advanced Science, 2017, 4, 1600190.	11.2	728
138	A Highâ€Performance Lithiumâ€lon Capacitor Based on 2D Nanosheet Materials. Small, 2017, 13, 1602893.	10.0	70
139	A semitransparent snake-like tactile and olfactory bionic sensor with reversibly stretchable properties. NPG Asia Materials, 2017, 9, e437-e437.	7.9	22
140	Development and applications of transparent conductive nanocellulose paper. Science and Technology of Advanced Materials, 2017, 18, 620-633.	6.1	64
141	Next-Generation Multifunctional Electrochromic Devices. Accounts of Chemical Research, 2016, 49, 1469-1476.	15.6	516
142	Electroluminescent Devices: Extremely Stretchable Electroluminescent Devices with Ionic Conductors (Adv. Mater. 22/2016). Advanced Materials, 2016, 28, 4489-4489.	21.0	1
143	Bridging Unilamellar Nanosheets for High Performance Additiveâ€Free Supercapacitor Electrodes. Advanced Materials Interfaces, 2016, 3, 1600108.	3.7	3
144	Amorphousâ€Siâ€Based Resistive Switching Memories with Highly Reduced Electroforming Voltage and Enlarged Memory Window. Advanced Electronic Materials, 2016, 2, 1500370.	5.1	23

#	Article	IF	Citations
145	Special proceedings of the Symposium A: "Advances in energy storage systems: lithium batteries, supercapacitors and beyondâ€; during ICMAT 2015, June 28–July 3, Singapore. Journal of Solid State Electrochemistry, 2016, 20, 1819-1820.	2.5	1
146	Self-powered graphene thermistor. Nano Energy, 2016, 26, 586-594.	16.0	27
147	Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors. Advanced Energy Materials, 2016, 6, 1501882.	19.5	391
148	Hexagonal Boron Nitride Thin Film for Flexible Resistive Memory Applications. Advanced Functional Materials, 2016, 26, 2176-2184.	14.9	167
149	Design of Mixedâ€Metal Silver Decamolybdate Nanostructures for High Specific Energies at High Power Density. Advanced Materials, 2016, 28, 6966-6975.	21.0	35
150	Sulfidation of NiMn‣ayered Double Hydroxides/Graphene Oxide Composites toward Supercapacitor Electrodes with Enhanced Performance. Advanced Energy Materials, 2016, 6, 1501745.	19.5	254
151	Foldable Electronic Devices: Highly Transparent Conducting Nanopaper for Solid State Foldable Electrochromic Devices (Small 46/2016). Small, 2016, 12, 6418-6418.	10.0	0
152	A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx–Al2O3 thin film structure. Journal of Applied Physics, 2016, 119, .	2.5	153
153	Thickness-dependent sensitivity of Copper Phthalocyanine chemiresistive Nitrogen Dioxide sensors. , 2016, , .		1
154	Coexistence of Write Once Read Many Memory and Memristor in blend of Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate and Polyvinyl Alcohol. Scientific Reports, 2016, 6, 38816.	3.3	18
155	Supercapacitors: Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors (Adv. Energy Mater. 4/2016). Advanced Energy Materials, 2016, 6, n/a-n/a.	19.5	2
156	Physical and electrical properties of bilayer CeO2/TiO2 gate dielectric stack. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 210, 57-63.	3.5	7
157	Polymer Light-Emitting Electrochemical Cell Blends Based on Selection of Lithium Salts, LiX [X = Trifluoromethanesulfonate, Hexafluorophosphate, and Bis(trifluoromethylsulfonyl)imide] with Low Turn-On Voltage. Journal of Physical Chemistry C, 2016, 120, 11324-11330.	3.1	15
158	Solid Polymer Electrolyte with High Ionic Conductivity via Layer-by-Layer Deposition. Chemistry of Materials, 2016, 28, 2934-2940.	6.7	35
159	Electrochemical Cycling Induced Surface Segregation of AuPt Nanoparticles in HClO4and H2SO4. Journal of the Electrochemical Society, 2016, 163, F752-F760.	2.9	5
160	Highly Transparent Conducting Nanopaper for Solid State Foldable Electrochromic Devices. Small, 2016, 12, 6370-6377.	10.0	66
161	Novel concepts in functional resistive switching memories. Journal of Materials Chemistry C, 2016, 4, 9637-9645.	5.5	59
162	Direct Observation of Conducting Filaments in Tungsten Oxide Based Transparent Resistive Switching Memory. ACS Applied Materials & Switching Switching Nemory. ACS Applied Materials & Switching Switching Nemory. ACS Applied Materials & Switching S	8.0	80

#	Article	lF	Citations
163	Resistive Switching in p-Type Nickel Oxide/n-Type Indium Gallium Zinc Oxide Thin Film Heterojunction Structure. ECS Journal of Solid State Science and Technology, 2016, 5, Q239-Q243.	1.8	5
164	Resistive Switching Memory Phenomena in PEDOT PSS: Coexistence of Switchable Diode Effect and Write Once Read Many Memory. Scientific Reports, 2016, 6, 19594.	3.3	25
165	Optically readout write once read many memory with single active organic layer. Applied Physics Letters, 2016, 108, .	3.3	10
166	Extremely Stretchable Electroluminescent Devices with Ionic Conductors. Advanced Materials, 2016, 28, 4490-4496.	21.0	193
167	Metal Organic Frameworkâ€Derived Metal Phosphates as Electrode Materials for Supercapacitors. Advanced Energy Materials, 2016, 6, 1501833.	19.5	212
168	Facile preparation of aqueous suspensions of WO ₃ /sulfonated PEDOT hybrid nanoparticles for electrochromic applications. Chemical Communications, 2016, 52, 9379-9382.	4.1	26
169	Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2016, 8, 521-529.	8.0	284
170	Self-Assembly-Induced Alternately Stacked Single-Layer MoS ₂ and N-doped Graphene: A Novel van der Waals Heterostructure for Lithium-Ion Batteries. ACS Applied Materials & Discourse (Interfaces, 2016, 8, 2372-2379.	8.0	202
171	Ultra-large optical modulation of electrochromic porous WO ₃ film and the local monitoring of redox activity. Chemical Science, 2016, 7, 1373-1382.	7.4	198
172	Spray coated ultrathin films from aqueous tungsten molybdenum oxide nanoparticle ink for high contrast electrochromic applications. Journal of Materials Chemistry C, 2016, 4, 33-38.	5.5	63
173	Inkjet-printed all solid-state electrochromic devices based on NiO/WO ₃ nanoparticle complementary electrodes. Nanoscale, 2016, 8, 348-357.	5.6	157
174	Electronic Materials Research in Singapore. , 2016, , 197-223.		0
175	A polydopamine coated polyaniline single wall carbon nanotube composite material as a stable supercapacitor cathode in an organic electrolyte. Journal of Materials Research, 2015, 30, 3575-3583.	2.6	15
176	Composites: Oxidative Intercalation for Monometallic Ni2+ -Ni3+ Layered Double Hydroxide and Enhanced Capacitance in Exfoliated Nanosheets (Small 17/2015). Small, 2015, 11, 1986-1986.	10.0	1
177	Foldable Electronics: Foldable Electrochromics Enabled by Nanopaper Transfer Method (Adv. Funct.) Tj ETQq $1\ 1\ C$).784314 14.9	rgBT /Overlo
178	Synthesis, Characterization, and Memory Performance of Two Phenazine/Triphenylamineâ€Based Organic Small Molecules through Donorâ€Acceptor Design. Asian Journal of Organic Chemistry, 2015, 4, 646-651.	2.7	13
179	Foldable Electrochromics Enabled by Nanopaper Transfer Method. Advanced Functional Materials, 2015, 25, 4203-4210.	14.9	96
180	Oxygenâ€lonsâ€Mediated Pseudocapacitive Charge Storage in Molybdenum Trioxide Nanobelts. ChemNanoMat, 2015, 1, 403-408.	2.8	4

#	Article	IF	Citations
181	Supercapacitor Electrodes: Investigation of Charge Transfer Kinetics of Polyaniline Supercapacitor Electrodes by Scanning Electrochemical Microscopy (Adv. Mater. Interfaces 1/2015). Advanced Materials Interfaces, 2015, 2, n/a-n/a.	3.7	0
182	Layer-by-Layer Assembly of PEDOT:PSS and WO3 Nanoparticles: Enhanced Electrochromic Coloration Efficiency and Mechanism Studies by Scanning Electrochemical Microscopy. Electrochimica Acta, 2015, 174, 57-65.	5.2	78
183	Electroluminescent Devices: Highly Stretchable and Selfâ€Deformable Alternating Current Electroluminescent Devices (Adv. Mater. 18/2015). Advanced Materials, 2015, 27, 2947-2947.	21.0	3
184	Stretchable Graphene Thermistor with Tunable Thermal Index. ACS Nano, 2015, 9, 2130-2137.	14.6	293
185	Hierarchically Built Gold Nanoparticle Supercluster Arrays as Charge Storage Centers for Enhancing the Performance of Flash Memory Devices. ACS Applied Materials & Enterfaces, 2015, 7, 279-286.	8.0	13
186	Electrochromic Films: Enhanced Electrochromism with Rapid Growth Layer-by-Layer Assembly of Polyelectrolyte Complexes (Adv. Funct. Mater. 3/2015). Advanced Functional Materials, 2015, 25, 400-400.	14.9	0
187	Enhanced Electrochromism with Rapid Growth Layerâ€byâ€Layer Assembly of Polyelectrolyte Complexes. Advanced Functional Materials, 2015, 25, 401-408.	14.9	54
188	MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications. Chemical Communications, 2015, 51, 3109-3112.	4.1	145
189	Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy, 2015, 12, 258-267.	16.0	360
190	Formation of hexagonal-molybdenum trioxide (h-MoO ₃) nanostructures and their pseudocapacitive behavior. Nanoscale, 2015, 7, 11777-11786.	5.6	85
191	Redox Active Polyaniline-h-MoO ₃ Hollow Nanorods for Improved Pseudocapacitive Performance. Journal of Physical Chemistry C, 2015, 119, 9041-9049.	3.1	74
192	Highly Stretchable and Selfâ€Deformable Alternating Current Electroluminescent Devices. Advanced Materials, 2015, 27, 2876-2882.	21.0	238
193	Water-soluble conjugated polymers as active elements for organic nonvolatile memories. RSC Advances, 2015, 5, 30542-30548.	3.6	11
194	Highly spectrum-selective ultraviolet photodetector based on p-NiO/n-IGZO thin film heterojunction structure. Optics Express, 2015, 23, 27683.	3.4	37
195	Organic memory effect from donor–acceptor polymers based on 7-perfluorophenyl-6H-[1,2,5]thiadiazole[3,4-g]benzoimidazole. RSC Advances, 2015, 5, 77122-77129.	3.6	15
196	Study of Multilevel High-Resistance States in HfO _{<italic>x</italic>} -Based Resistive Switching Random Access Memory by Impedance Spectroscopy. IEEE Transactions on Electron Devices, 2015, 62, 2684-2688.	3.0	11
197	Titanium doped niobium oxide for stable pseudocapacitive lithium ion storage and its application in 3 V non-aqueous supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21706-21712.	10.3	41
198	Oxidative Intercalation for Monometallic Ni ²⁺ -Ni ³⁺ Layered Double Hydroxide and Enhanced Capacitance in Exfoliated Nanosheets. Small, 2015, 11, 2044-2050.	10.0	48

#	Article	IF	Citations
199	Rewritable Multilevel Memory Performance of a Tetraazatetracene Donor–Acceptor Derivative with Good Endurance. Chemistry - an Asian Journal, 2015, 10, 116-119.	3.3	65
200	Investigation of Charge Transfer Kinetics of Polyaniline Supercapacitor Electrodes by Scanning Electrochemical Microscopy. Advanced Materials Interfaces, 2015, 2, 1400154.	3.7	40
201	Sticky tubes and magnetic hydrogels co-assembled by a short peptide and melanin-like nanoparticles. Chemical Communications, 2015, 51, 5432-5435.	4.1	33
202	Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device. Nano Energy, 2015, 11, 765-772.	16.0	149
203	Solution-assembled nanowires for high performance flexible and transparent solar-blind photodetectors. Journal of Materials Chemistry C, 2015, 3, 596-600.	5.5	45
204	An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure. Advanced Materials, 2014, 26, 943-950.	21.0	163
205	Supercapacitors: Achieving High Rate Performance in Layered Hydroxide Supercapacitor Electrodes (Adv. Energy Mater. 6/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	19.5	0
206	Open-circuit voltage improvement in tantalum-doped TiO ₂ nanocrystals. Physical Chemistry Chemical Physics, 2014, 16, 25679-25683.	2.8	19
207	Nanowire Photodetectors: An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure (Adv. Mater. 6/2014). Advanced Materials, 2014, 26, 979-979.	21.0	0
208	One-pot sequential electrochemical deposition of multilayer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid)/tungsten trioxide hybrid films and their enhanced electrochromic properties. Journal of Materials Chemistry A, 2014, 2, 2708-2717.	10.3	74
209	Hollow LiMn ₂ O ₄ Nanocones as Superior Cathode Materials for Lithiumâ€lon Batteries with Enhanced Power and Cycle Performances. Small, 2014, 10, 1096-1100.	10.0	63
210	Nickel Cobalt Oxide Nanowire-Reduced Graphite Oxide Composite Material and Its Application for High Performance Supercapacitor Electrode Material. Journal of Nanoscience and Nanotechnology, 2014, 14, 7104-7110.	0.9	8
211	Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes. Nanoscale, 2014, 6, 4572.	5.6	120
212	Graphene: Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper for Strain Sensors (Adv. Mater. 13/2014). Advanced Materials, 2014, 26, 1950-1950.	21.0	17
213	Highly Stretchable Piezoresistive Graphene–Nanocellulose Nanopaper for Strain Sensors. Advanced Materials, 2014, 26, 2022-2027.	21.0	1,009
214	Synthesis, Characterization, and Nonâ€Volatile Memory Device Application of an Nâ€Substituted Heteroacene. Chemistry - an Asian Journal, 2014, 9, 779-783.	3.3	123
215	Stretchable Silverâ€Zinc Batteries Based on Embedded Nanowire Elastic Conductors. Advanced Energy Materials, 2014, 4, 1301396.	19.5	127
216	Stretchable and Wearable Electrochromic Devices. ACS Nano, 2014, 8, 316-322.	14.6	399

#	Article	IF	Citations
217	One-step facile electrochemical preparation of WO3/graphene nanocomposites with improved electrochromic properties. Electrochimica Acta, 2014, 117, 139-144.	5.2	59
218	High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor. Nano Energy, 2014, 3, 119-126.	16.0	304
219	Polarization Orientation, Piezoelectricity, and Energy Harvesting Performance of Ferroelectric PVDFâ€√rFE Nanotubes Synthesized by Nanoconfinement. Advanced Energy Materials, 2014, 4, 1400723.	19.5	111
220	Inorganic–organic hybrid polymer with multiple redox for high-density data storage. Chemical Science, 2014, 5, 3404-3408.	7.4	164
221	Lithium storage improvement from hierarchical double-shelled SnO2 hollow spheres. RSC Advances, 2014, 4, 10450-10453.	3.6	5
222	Plasma Modified MoS ₂ Nanoflakes for Surface Enhanced Raman Scattering. Small, 2014, 10, 1090-1095.	10.0	129
223	High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors. Nanoscale, 2014, 6, 10734-10739.	5.6	99
224	Gas flow induced by ultrasonic cavitation bubble clouds and surface capillary wave. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 1042-1046.	3.0	1
225	Stretchable Energy Storage and Conversion Devices. Small, 2014, 10, 3443-3460.	10.0	126
226	Rational Design of MnO/Carbon Nanopeapods with Internal Void Space for High-Rate and Long-Life Li-Ion Batteries. ACS Nano, 2014, 8, 6038-6046.	14.6	420
227	Stretchable Electronics: Stretchable Energy Storage and Conversion Devices (Small 17/2014). Small, 2014, 10, 3442-3442.	10.0	1
228	Insights on the Fundamental Capacitive Behavior: A Case Study of MnO ₂ . Small, 2014, 10, 3568-3578.	10.0	45
229	Aniline Tetramerâ€Graphene Oxide Composites for High Performance Supercapacitors. Advanced Energy Materials, 2014, 4, 1400781.	19.5	44
230	Topotactic Phase Transformation of Hexagonal MoO ₃ to Layered MoO ₃ -II and Its Two-Dimensional (2D) Nanosheets. Chemistry of Materials, 2014, 26, 5533-5539.	6.7	55
231	Nanomaterials for Energy and Water Management. Small, 2014, 10, 3432-3433.	10.0	8
232	Achieving High Rate Performance in Layered Hydroxide Supercapacitor Electrodes. Advanced Energy Materials, 2014, 4, 1301240.	19.5	166
233	"Nano to nano―electrodeposition of WO ₃ crystalline nanoparticles for electrochromic coatings. Journal of Materials Chemistry A, 2014, 2, 16224-16229.	10.3	81
234	A comparison of carbon supports in MnO ₂ /C supercapacitors. RSC Advances, 2014, 4, 31416.	3.6	22

#	Article	IF	Citations
235	Flexible and Highly Scalable V ₂ O ₅ â€rGO Electrodes in an Organic Electrolyte for Supercapacitor Devices. Advanced Energy Materials, 2014, 4, 1400236.	19.5	276
236	Green synthesis of nanobelt-membrane hybrid structured vanadium oxide with high electrochromic contrast. Journal of Materials Chemistry C, 2014, 2, 4727-4732.	5 . 5	58
237	Rational design of a high performance all solid state flexible micro-supercapacitor on paper. RSC Advances, 2013, 3, 15827.	3.6	45
238	Spin-Orbit Splitting in Single-Layer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Reveale by Triply Resonant Raman Scattering. Physical Review Letters, 2013, 111, 126801.	d7.8	137
239	Photoluminescence via gap plasmons between single silver nanowires and a thin gold film. Nanoscale, 2013, 5, 12086.	5.6	20
240	Synthesis of pyramidal and prismatic hexagonal MoO3 nanorods using thiourea. CrystEngComm, 2013, 15, 7663.	2.6	29
241	High switching speed and coloration efficiency of titanium-doped vanadium oxide thin film electrochromic devices. Journal of Materials Chemistry C, 2013, 1, 7380.	5 . 5	60
242	Formation of PVDF-g-HEMA/BaTiO3 nanocomposites via in situ nanoparticle synthesis for high performance capacitor applications. Journal of Materials Chemistry A, 2013, 1, 14455.	10.3	48
243	3D carbon based nanostructures for advanced supercapacitors. Energy and Environmental Science, 2013, 6, 41-53.	30.8	1,389
244	Polydopamine Spheres as Active Templates for Convenient Synthesis of Various Nanostructures. Small, 2013, 9, 596-603.	10.0	323
245	Large Areal Mass, Flexible and Freeâ€Standing Reduced Graphene Oxide/Manganese Dioxide Paper for Asymmetric Supercapacitor Device. Advanced Materials, 2013, 25, 2809-2815.	21.0	562
246	Manganese oxide micro-supercapacitors with ultra-high areal capacitance. Nanoscale, 2013, 5, 4119.	5.6	103
247	Zn2GeO4 Nanowires As Efficient Electron Injection Material for Electroluminescent Devices. ACS Applied Materials & Efficient Electron Injection Material for Electroluminescent Devices. ACS Applied Materials & Efficient Electron Injection Material for Electroluminescent Devices. ACS	8.0	17
248	Dependencies of Donor–Acceptor Memory on Molecular Levels. Journal of Physical Chemistry C, 2013, 117, 677-682.	3.1	20
249	Self-assembled polymer layers of linear polyethylenimine for enhancing electrochromic cycling stability. Journal of Materials Chemistry C, 2013, 1, 3651.	5.5	14
250	Flexible Printed Supercapacitors Based on Nanostructured Materials. Materials Research Society Symposia Proceedings, 2013, 1540, 3901.	0.1	0
251	Augmented one dimensional nanostructured sensor elements. , 2012, , .		0
252	Enhancing charge-storage capacity of non-volatile memory devices using template-directed assembly of gold nanoparticles. Nanoscale, 2012, 4, 2296.	5.6	38

#	Article	IF	CITATIONS
253	Chemical sensing investigations on Zn–In2O3 nanowires. Sensors and Actuators B: Chemical, 2012, 171-172, 244-248.	7.8	34
254	Significant electrochemical stability of manganese dioxide/polyaniline coaxial nanowires by self-terminated double surfactant polymerization for pseudocapacitor electrode. Journal of Materials Chemistry, 2012, 22, 23921.	6.7	82
255	Green aqueous modification of fluoropolymers for energy storage applications. Journal of Materials Chemistry, 2012, 22, 5951.	6.7	141
256	Enhancing electrochemical reaction sites in nickel–cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale, 2012, 4, 7266.	5.6	409
257	Nickel Cobalt Oxide-Single Wall Carbon Nanotube Composite Material for Superior Cycling Stability and High-Performance Supercapacitor Application. Journal of Physical Chemistry C, 2012, 116, 12448-12454.	3.1	295
258	Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polymer Chemistry, 2012, 3, 962.	3.9	155
259	Cryogel Synthesis of Hierarchical Interconnected Macro-/Mesoporous Co ₃ O ₄ with Superb Electrochemical Energy Storage. Journal of Physical Chemistry C, 2012, 116, 4930-4935.	3.1	90
260	Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide–reduced graphite oxide composite material and its application for asymmetric supercapacitor device. Journal of Materials Chemistry, 2012, 22, 23114.	6.7	338
261	Covalent Assembly of Gold Nanoparticles: An Application toward Transistor Memory. Journal of Physical Chemistry B, 2012, 116, 9784-9790.	2.6	24
262	Thin SnO ₂ Nanowires with Uniform Diameter as Excellent Field Emitters: A Stability of More Than 2400 Minutes. Advanced Functional Materials, 2012, 22, 1613-1622.	14.9	134
263	Ferroelectric Tunnel Junction Memory Devices made from Monolayers of Vinylidene Fluoride Oligomers. Advanced Materials, 2012, 24, 4163-4169.	21.0	40
264	Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications. Advanced Materials, 2012, 24, 4071-4096.	21.0	672
265	Materials Research at Nanyang Technological University, Singapore. Advanced Materials, 2012, 24, 4038-4040.	21.0	O
266	Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications (Adv. Mater.) Tj ETQq0 0 0 rgBT	/9yerlock	10 Tf 50 22
267	Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode. Electrochimica Acta, 2012, 65, 190-195.	5.2	108
268	Copper nanoparticles embedded in a polyimide film for non-volatile memory applications. Materials Letters, 2012, 68, 287-289.	2.6	19
269	Monitoring electroactive ions at manganese dioxide pseudocapacitive electrodes with scanning electrochemical microscope for supercapacitor electrodes. Journal of Power Sources, 2012, 207, 205-211.	7.8	35
270	Recent Progresses in Improving Nanowire Photodetector Performances. Science of Advanced Materials, 2012, 4, 241-253.	0.7	18

#	Article	IF	Citations
271	Sensing properties of different classes of gases based on the nanowire-electrode junction barrier modulation. Nanoscale, 2011, 3, 1760.	5.6	25
272	Binder-free Co(OH)2 nanoflake–ITO nanowire heterostructured electrodes for electrochemical energy storage with improved high-rate capabilities. Journal of Materials Chemistry, 2011, 21, 10482.	6.7	58
273	Tailoring insoluble nanobelts into soluble anti-UV nanopotpourris. Nanoscale, 2011, 3, 4742.	5.6	9
274	Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): a novel material for high energy density capacitors. Journal of Materials Chemistry, 2011, 21, 3751.	6.7	110
275	Layer-by-Layer Assembled Solid Polymer Electrolyte for Electrochromic Devices. Chemistry of Materials, 2011, 23, 2142-2149.	6.7	61
276	Covalent Assembly of Gold Nanoparticles for Nonvolatile Memory Applications. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4619-4625.	8.0	29
277	High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy and Environmental Science, 2011, 4, 1813.	30.8	315
278	Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. Journal of Materials Chemistry, 2011, 21, 16500.	6.7	109
279	Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance. Polymer Chemistry, 2011, 2, 2000.	3.9	94
280	Gold-Nanoparticle-Functionalized In ₂ O ₃ Nanowires as CO Gas Sensors with a Significant Enhancement in Response. ACS Applied Materials & Significant Enhancement in Response.	8.0	144
281	High ionic conductivity P(VDF-TrFE)/PEO blended polymer electrolytes for solid electrochromic devices. Physical Chemistry Chemical Physics, 2011, 13, 13319.	2.8	42
282	Spontaneous Growth and Phase Transformation of Highly Conductive Nickel Germanide Nanowires. ACS Nano, 2011, 5, 5006-5014.	14.6	29
283	Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Advances, 2011, 1, 576.	3.6	177
284	Conductivity Changes Of Conducting Polymers With Electro-statically Bonded Counter-ions For Organic Memories. , $2011, , .$		0
285	Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing. Sensors and Actuators B: Chemical, 2011, 160, 1346-1351.	7.8	133
286	Postchemistry of Organic Microrods: Thermopolymerization in Aqueous Solution. Chemistry - an Asian Journal, 2011, 6, 801-803.	3.3	20
287	V ₂ O ₅ Loaded on SnO ₂ Nanowires for Highâ€Rate Li Ion Batteries. Advanced Materials, 2011, 23, 746-750.	21.0	132
288	Alternative resistive switching mechanism based on migration of charged counter-ions within conductive polymers. Organic Electronics, 2011, 12, 185-189.	2.6	18

#	Article	IF	Citations
289	Ultrahighâ€Performance Solarâ€Blind Photodetectors Based on Individual Singleâ€crystalline In ₂ Ge ₂ O ₇ Nanobelts. Advanced Materials, 2010, 22, 5145-5149.	21.0	249
290	Supercritical Carbon Dioxideâ€Treated Electrospun Poly(vinylidene fluoride) Nanofibrous Membranes: Morphology, Structures and Properties as an Ionicâ€Liquid Host. Macromolecular Rapid Communications, 2010, 31, 1779-1784.	3.9	15
291	Electrophoretic deposition (EPD) of WO3 nanorods for electrochromic application. Journal of the European Ceramic Society, 2010, 30, 1139-1144.	5.7	73
292	Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors. Sensors and Actuators B: Chemical, 2010, 150, 19-24.	7.8	128
293	Pulsed laser annealing technology for nanoscale fabrication of silicon-based devices in semiconductors., 2010,, 327-364.		0
294	Synthesis of one-dimensional (1D) Ge-based ternary oxide nanostructures. , 2010, , .		2
295	Electrochemical energy storage in a \hat{l}^2 -Na0.33V2O5 nanobelt network and its application for supercapacitors. Journal of Materials Chemistry, 2010, 20, 8368.	6.7	91
296	Network-Enhanced Photoresponse Time of Ge Nanowire Photodetectors. ACS Applied Materials & Amp; Interfaces, 2010, 2, 1794-1797.	8.0	62
297	Facile Coating of Manganese Oxide on Tin Oxide Nanowires with High-Performance Capacitive Behavior. ACS Nano, 2010, 4, 4247-4255.	14.6	518
298	Enhanced Ferroelectric Switching Characteristics of P(VDF-TrFE) for Organic Memory Devices. Journal of Physical Chemistry B, 2010, 114, 13289-13293.	2.6	55
299	Crystallographic Alignment of ZnO Nanorod Arrays on Zn ₂ GeO ₄ Nanocrystals: Promising Lattice-Matched Substrates. Journal of Physical Chemistry C, 2010, 114, 265-268.	3.1	26
300	Kinking-Induced Structural Evolution of Metal Oxide Nanowires into Single-Crystalline Nanorings. ACS Nano, 2010, 4, 5350-5356.	14.6	28
301	Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time. Applied Physics Letters, 2010, 96, .	3.3	162
302	Room-temperature synthesis of MnO2·3H2O ultrathin nanostructures and their morphological transformation to well-dispersed nanorods. Chemical Communications, 2010, 46, 2468.	4.1	25
303	Lanthanide-based graded barrier structure for enhanced nanocrystal memory properties. Applied Physics Letters, 2009, 95, 113113.	3.3	3
304	Flow assisted synthesis of highly ordered silica nanowire arrays. Applied Physics A: Materials Science and Processing, 2009, 94, 763-766.	2.3	20
305	Low-voltage organic ferroelectric field effect transistors using Langmuir–Schaefer films of poly(vinylidene fluoride-trifluororethylene). Organic Electronics, 2009, 10, 145-151.	2.6	12
306	Dendrimer-encapsulated Pt nanoparticles in supercritical medium: Synthesis, characterization, and application to device fabrication. Journal of Colloid and Interface Science, 2009, 332, 505-510.	9.4	23

#	Article	IF	CITATIONS
307	Synthesis, growth mechanism and room-temperature blue luminescence emission of uniform WO3 nanosheets with W as starting material. Journal of Crystal Growth, 2009, 311, 316-319.	1.5	64
308	Charge-induced conductance modulation of carbon nanotube field effect transistor memory devices. Carbon, 2009, 47, 3063-3070.	10.3	14
309	Catalytic Growth of Germanium Oxide Nanowires, Nanotubes, and Germanium Nanowires: Temperature-Dependent Effect. Journal of Physical Chemistry C, 2009, 113, 1705-1708.	3.1	24
310	One-Pot Synthesis of Hierarchically Assembled Tungsten Oxide (Hydrates) Nano/Microstructures by a Crystal-Seed-Assisted Hydrothermal Process. Crystal Growth and Design, 2009, 9, 2293-2299.	3.0	41
311	Bismuth-Catalyzed Growth of Germanium Nanowires in Vapor Phase. Journal of Physical Chemistry C, 2009, 113, 2208-2211.	3.1	22
312	Textured Ni(Pt) Germanosilicide Formation on a Condensed Si[sub 1â^'x]Ge[sub x]/Si Substrate. Journal of the Electrochemical Society, 2009, 156, H500.	2.9	6
313	Tuning Photoluminescence of Ge/GeO ₂ Core/Shell Nanoparticles by Strain. Journal of Physical Chemistry C, 2009, 113, 19863-19866.	3.1	12
314	The temperature-controlled growth of In ₂ O ₃ nanowires, nanotowers and ultra-long layered nanorods. Nanotechnology, 2009, 20, 195605.	2.6	41
315	Controlled Synthesis of WO ₃ Nanorods and Their Electrochromic Properties in H ₂ SO ₄ Electrolyte. Journal of Physical Chemistry C, 2009, 113, 9655-9658.	3.1	287
316	Morphology Control of Indium Germanate Nanowires, Nanoribbons, and Hierarchical Nanostructures. Crystal Growth and Design, 2009, 9, 3697-3701.	3.0	30
317	Toward Electrochromic Device Using Solid Electrolyte with Polar Polymer Host. Journal of Physical Chemistry B, 2009, 113, 8006-8010.	2.6	27
318	Micellar poly(styrene-b-4-vinylpyridine)-nanoparticle hybrid system for non-volatile organic transistor memory. Journal of Materials Chemistry, 2009, 19, 7354.	6.7	99
319	Synthesis and Structure Characterization of Ternary Zn ₂ GeO ₄ Nanowires by Chemical Vapor Transport. Journal of Physical Chemistry C, 2009, 113, 14135-14139.	3.1	7 3
320	Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk. Polymer, 2008, 49, 4196-4203.	3.8	100
321	Plasmonâ€enhanced polarized Raman spectroscopy for sensitive surface characterization. Journal of Raman Spectroscopy, 2008, 39, 1338-1342.	2.5	6
322	Biomimetic processing of bioactive interface on silicon substrates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 368-377.	3.4	2
323	Nonâ€Volatile Organic Memory Applications Enabled by In Situ Synthesis of Gold Nanoparticles in a Selfâ€Assembled Block Copolymer. Advanced Materials, 2008, 20, 2325-2331.	21.0	186
324	Resistive switching effects of HfO2 high-k dielectric. Microelectronic Engineering, 2008, 85, 2420-2424.	2.4	60

#	Article	IF	Citations
325	Enhanced organic ferroelectric field effect transistor characteristics with strained poly(vinylidene) Tj ETQq1 1 0.78	34314 rgBT 2.6	T/8yerlock
326	Interface strain study of thin Lu2O3/Si using HRBS. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 1486-1489.	1.4	5
327	Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO ₃ Nanorods. Journal of Physical Chemistry C, 2008, 112, 14306-14312.	3.1	404
328	Demonstration of Schottky Barrier NMOS Transistors With Erbium Silicided Source/Drain and Silicon Nanowire Channel. IEEE Electron Device Letters, 2008, 29, 1167-1170.	3.9	22
329	Nickel-Silicided Schottky Junction CMOS Transistors With Gate-All-Around Nanowire Channels. IEEE Electron Device Letters, 2008, 29, 902-905.	3.9	19
330	Enhancement of photoluminescence of Ge/GeO ₂ core/shell nanoparticles. Europhysics Letters, 2008, 83, 47010.	2.0	18
331	Single Crystalline Semi-Nanotubes of Indium Germanate. Crystal Growth and Design, 2008, 8, 3144-3147.	3.0	24
332	Laser-Induced Melt-Mediated Ni(Pt) Germanosilicide Formation on Condensed Si[sub 1â^'x]Ge[sub x]/Si Substrates. Electrochemical and Solid-State Letters, 2008, 11, H262.	2.2	2
333	Materials and Electrical Characterization of Er(Si[sub 1â^'x]Ge[sub x])[sub 2â^'y] Films Formed on Si[sub 1â^'x]Ge[sub x](001) (x=0–0.3) via Rapid Thermal Annealing. Journal of the Electrochemical Society, 2008, 155, H26.	2.9	2
334	Enhanced charge storage capability of Ge/GeO2core/shell nanostructure. Nanotechnology, 2008, 19, 355206.	2.6	13
335	Erbium silicided Schottky Source/Drain Silicon Nanowire N-Metal–Oxide–Semiconductor Field-Effect Transistors. Japanese Journal of Applied Physics, 2008, 47, 3277-3281.	1.5	4
336	Lu2O3â^•Al2O3 gate dielectrics for germanium metal-oxide-semiconductor devices. Applied Physics Letters, 2008, 93, 062901.	3.3	9
337	Charging dynamics of discrete gold nanoparticle arrays self-assembled within a poly(styrene-b-4-vinylpyridine) diblock copolymer template. Applied Physics Letters, 2008, 93, 222908.	3.3	20
338	Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors. Applied Physics Letters, 2008, 93, 183503.	3.3	20
339	Thermal stability of rare-earth based ultrathin Lu[sub 2]O[sub 3] for high-k dielectrics. Journal of Vacuum Science & Technology B, 2007, 25, 1203.	1.3	20
340	Formation, photoluminescence and charge storage characteristics of Au nanocrystals embedded in amorphous Al ₂ O ₃ matrix. Europhysics Letters, 2007, 80, 67003.	2.0	18
341	Leakage conduction mechanism of amorphous Lu 2 O 3 high-k dielectric films fabricated by pulsed laser ablation. Europhysics Letters, 2007, 77, 67001.	2.0	11
342	Electret mechanism, hysteresis, and ambient performance of sol-gel silica gate dielectrics in pentacene field-effect transistors. Applied Physics Letters, 2007, 91, .	3.3	20

#	Article	IF	CITATIONS
343	Enhanced photoluminescence of ZnOâ [•] Er2O3 core-shell structure nanorods synthesized by pulsed laser deposition. Applied Physics Letters, 2007, 90, 263106.	3.3	33
344	Ge nanocrystals in lanthanide-based Lu2O3 high-k dielectric for nonvolatile memory applications. Journal of Applied Physics, 2007, 102, .	2.5	19
345	Nickel silicide formation using multiple-pulsed laser annealing. Journal of Applied Physics, 2007, 101, 034307.	2.5	10
346	Laser-induced Ni(Pt) germanosilicide formation through a self-limiting melting phenomenon on Si1â^'xGexâ^•Si heterostructure. Applied Physics Letters, 2007, 90, 073108.	3.3	7
347	Anomalous polarization switching in organic ferroelectric field effect transistors. Applied Physics Letters, 2007, 91, 042909.	3.3	16
348	Effect of low fluence laser annealing on ultrathin Lu2O3 high-k dielectric. Applied Physics Letters, 2007, 91, 092903.	3.3	19
349	Design for Manufacturability and its Role in Enhancing Stress Migration Reliability of Porous Ultra Low-k Copper Interconnects. , 2007, , .		3
350	Formation of Silicided Hyper-Shallow p+/n- Junctions by Pulsed Laser Annealing. ECS Transactions, 2007, 11 , $379-394$.	0.5	1
351	Formation of Ge Nanocrystals in Lu2O3 High-k Dielectric and its Application in Non-Volatile Memory Device. Materials Research Society Symposia Proceedings, 2007, 997, 1.	0.1	1
352	Enhanced Functional and Structural Characteristics of Poly(vinylidene-trifluoroethylene) Copolymer Thin Films by Corona Poling. Journal of the Electrochemical Society, 2007, 154, G224.	2.9	17
353	Al2O3nanocrystals embedded in amorphous Lu2O3high-k gate dielectric for floating gate memory application. Journal of Physics: Conference Series, 2007, 61, 1312-1316.	0.4	4
354	Rare-earth based ultra-thin Lu2O3for high-k dielectrics. Journal of Physics: Conference Series, 2007, 61, 229-233.	0.4	8
355	Charging phenomena in pentacene-gold nanoparticle memory device. Applied Physics Letters, 2007, 90, 042906.	3.3	141
356	DNA Sensing by Field-Effect Transistors Based on Networks of Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 14427-14432.	13.7	144
357	Investigation of turn-on voltage shift in organic ferroelectric transistor with high polarity gate dielectric. Organic Electronics, 2007, 8, 415-422.	2.6	53
358	Improved pentacene device characteristics with sol–gel SiO2 dielectric films. Organic Electronics, 2007, 8, 455-459.	2.6	11
359	Improved electrical performance of erbium silicide Schottky diodes formed by Pre-RTA amorphization of Si. IEEE Electron Device Letters, 2006, 27, 93-95.	3.9	9
360	Dopant activation in subamorphized silicon upon laser annealing. Applied Physics Letters, 2006, 89, 082101.	3.3	12

#	Article	IF	CITATIONS
361	Electrical detection of hybridization and threading intercalation of deoxyribonucleic acid using carbon nanotube network field-effect transistors. Applied Physics Letters, 2006, 89, 232104.	3.3	50
362	Multiple-pulse laser thermal annealing for the formation of Co-silicided junction. IEEE Electron Device Letters, 2006, 27, 237-239.	3.9	5
363	A simple approach to form Ge nanocrystals embedded in amorphous Lu 2 O 3 high- k gate dielectric by pulsed laser ablation. Europhysics Letters, 2006, 74, 177-180.	2.0	15
364	Time resolved emission spectroscopy investigations of pulsed laser ablated plasmas of ZrO2and Al2O3. Journal of Physics: Conference Series, 2006, 28, 100-104.	0.4	3
365	Trap-controlled behavior in ultrathin Lu2O3 high-k gate dielectrics. Solid State Communications, 2006, 138, 571-573.	1.9	17
366	Thermal effects on LPCVD amorphous silicon. Thin Solid Films, 2006, 504, 145-148.	1.8	14
367	Effect of Ti alloying in nickel silicide formation. Thin Solid Films, 2006, 504, 153-156.	1.8	9
368	Effects of Si(001) surface amorphization on ErSi2 thin film. Thin Solid Films, 2006, 504, 157-160.	1.8	9
369	Erbium silicidation on SiGe for advanced MOS application. Thin Solid Films, 2006, 504, 91-94.	1.8	5
370	Formation of SiO2nanocrystals in Lu2O3high-kdielectric by pulsed laser ablation and application in memory device. Nanotechnology, 2006, 17, 3175-3177.	2.6	5
371	LaAlO[sub 3] Nanocrystals Embedded in Amorphous Lu[sub 2]O[sub 3] High-k Gate Dielectric for Floating Gate Memory Application. Electrochemical and Solid-State Letters, 2006, 9, F53.	2.2	11
372	Laser-induced Ni(Ti) silicide formation. Applied Physics Letters, 2006, 88, 113108.	3.3	15
373	Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Applied Physics Letters, 2006, 89, 172111.	3.3	61
374	Role of low temperature rapid thermal annealing in post-laser-annealed p-channel metal-oxide-semiconductor field effect transistor. Applied Physics Letters, 2006, 89, 122113.	3.3	4
375	Pyramidal structural defects in erbium silicide thin films. Applied Physics Letters, 2006, 88, 021908.	3.3	18
376	Pulsed laser-induced silicidation on TiN-capped Coâ [•] Si bilayers. Journal of Applied Physics, 2006, 99, 044902.	2.5	3
377	Formation of SrTiO3 nanocrystals in amorphous Lu2O3 high-k gate dielectric for floating gate memory application. Applied Physics Letters, 2006, 89, 043104.	3.3	8
378	FABRICATION OF SILICON NANOCRYSTALS AND ITS ROOM TEMPERATURE LUMINESCENCE EFFECTS. International Journal of Nanoscience, 2006, 05, 565-570.	0.7	4

#	Article	IF	CITATIONS
379	Capacitance-voltage measurement in memory devices using ferroelectric polymer., 2005, 6037, 201.		2
380	On the Morphological Changes of Ni- and Ni(Pt)-Silicides. Journal of the Electrochemical Society, 2005, 152, G305.	2.9	12
381	Evolution of surface roughness during metal silicides phase transformation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 122-128.	2.1	1
382	Silicide Formation from Laser Thermal Processing of Ti/Co Bilayers. Electrochemical and Solid-State Letters, 2004, 7, G213.	2.2	9
383	Analysis of laterally non-uniform layers and sub-micron devices by Rutherford backscattering spectrometry. Nuclear Instruments & Methods in Physics Research B, 2004, 215, 495-500.	1.4	5
384	Effects of Ti/Co and Co/Ti systems on the germanosilicidation of poly-Si capped poly-Si1â^'xGex substrate. Thin Solid Films, 2004, 462-463, 209-212.	1.8	4
385	The impact of etch-stop layer for borderless contacts on deep submicron CMOS device performanceâ€"a comparative study. Thin Solid Films, 2004, 462-463, 29-33.	1.8	3
386	Ni(Pt) alloy silicidation on (100) Si and poly-silicon lines. Thin Solid Films, 2004, 462-463, 137-145.	1.8	10
387	Characterization of the junction leakage of Ti-capped Ni-silicided junctions. Thin Solid Films, 2004, 462-463, 202-208.	1.8	4
388	Formation of ultra-shallow $p+/n$ junctions in silicon-on-insulator (SOI) substrate using laser annealing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 114-115, 25-28.	3.5	16
389	In situ XRD analysis of Ni(Pt)/Si(100) reactions in low temperature regime â‰ 4 00°C. Solid State Communications, 2003, 128, 325-328.	1.9	8
390	Thermal reaction of nickel and Si[sub 0.75]Ge[sub 0.25] alloy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1903.	2.1	52
391	Interfacial reactions of Ni on Si1â^'xGex (x=0.2, 0.3) at low temperature by rapid thermal annealing. Journal of Applied Physics, 2002, 92, 214-217.	2.5	57
392	Phase and Layer Stability of Ni- and Ni(Pt)-Silicides on Narrow Poly-Si Lines. Journal of the Electrochemical Society, 2002, 149, G331.	2.9	24
393	Effect of Ion Implantation on Layer Inversion of Ni Silicided Poly-Si. Journal of the Electrochemical Society, 2002, 149, G505.	2.9	9
394	Layer Inversion of Ni(Pt)Si on Mixed Phase Si Films. Electrochemical and Solid-State Letters, 2002, 5, G15.	2.2	9
395	Enhanced stability of Ni monosilicide on MOSFETs poly-Si gate stack. Microelectronic Engineering, 2002, 60, 171-181.	2.4	20
396	Nickel silicide formation on $Si(100)$ and Poly-Si with a presilicide $N2$ + implantation. Journal of Electronic Materials, 2001, 30, 1554-1559.	2.2	16

Pooi See Lee

#	Article	IF	CITATIONS
397	Micro-RBS study of nickel silicide formation. Nuclear Instruments & Methods in Physics Research B, 2001, 181, 399-403.	1.4	5
398	New salicidation technology with Ni(Pt) alloy for MOSFETs. IEEE Electron Device Letters, 2001, 22, 568-570.	3.9	85
399	Comparative study of current–voltage characteristics of Ni and Ni(Pt)-alloy silicided p+/n diodes. Applied Physics Letters, 2001, 78, 3256-3258.	3.3	34
400	On the Ni–Si phase transformation with/without native oxide. Microelectronic Engineering, 2000, 51-52, 583-594.	2.4	45
401	Improved NiSi salicide process using presilicide N/sub 2//sup +/ implant for MOSFETs. IEEE Electron Device Letters, 2000, 21, 566-568.	3.9	33
402	Micro-Raman Spectroscopy Investigation of Nickel Silicides and Nickel (Platinum) Silicides. Electrochemical and Solid-State Letters, 1999, 3, 153.	2.2	67
403	Ferroelectric copolymer P(VDF-TrFE) as gate dielectric in organic field effect transistors for memory application devices. , 0, , .		1