
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7842582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vitamin K – sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutrition Reviews, 2022, 80, 677-698.	5.8	64
2	Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5. Nutrients, 2022, 14, 484.	4.1	59
3	Khat, a Cultural Chewing Drug: A Toxicokinetic and Toxicodynamic Summary. Toxins, 2022, 14, 71.	3.4	13
4	Stabilization of Silver Nanoparticles on Polyester Fabric Using Organo-Matrices for Controlled Antimicrobial Performance. Polymers, 2022, 14, 1138.	4.5	18
5	Enantioselectivity of Pentedrone and Methylone on Metabolic Profiling in 2D and 3D Human Hepatocyte-like Cells. Pharmaceuticals, 2022, 15, 368.	3.8	5
6	Cocaine: An Updated Overview on Chemistry, Detection, Biokinetics, and Pharmacotoxicological Aspects including Abuse Pattern. Toxins, 2022, 14, 278.	3.4	35
7	Synthetic Cathinones: Recent Developments, Enantioselectivity Studies and Enantioseparation Methods. Molecules, 2022, 27, 2057.	3.8	25
8	Vitamin D: sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Critical Reviews in Clinical Laboratory Sciences, 2022, 59, 517-554.	6.1	45
9	Brain drug delivery and neurodegenerative diseases: Polymeric PLGA-based nanoparticles as a forefront platform. Ageing Research Reviews, 2022, 79, 101658.	10.9	22
10	Fiscalin Derivatives as Potential Neuroprotective Agents. Pharmaceutics, 2022, 14, 1456.	4.5	3
11	Xanthones as P-glycoprotein modulators and their impact on drug bioavailability. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 441-482.	3.3	9
12	Fine-Tuning the Biological Profile of Multitarget Mitochondriotropic Antioxidants for Neurodegenerative Diseases. Antioxidants, 2021, 10, 329.	5.1	9
13	Vitamin C—Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients, 2021, 13, 615.	4.1	150
14	4-Oxoquinolines and monoamine oxidase: When tautomerism matters. European Journal of Medicinal Chemistry, 2021, 213, 113183.	5.5	8
15	S-(+)-Pentedrone and R-(+)-methylone as the most oxidative and cytotoxic enantiomers to dopaminergic SH-SY5Y cells: Role of MRP1 and P-gp in cathinones enantioselectivity. Toxicology and Applied Pharmacology, 2021, 416, 115442.	2.8	8
16	Inflammation as a Possible Trigger for Mitoxantrone-Induced Cardiotoxicity: An In Vivo Study in Adult and Infant Mice. Pharmaceuticals, 2021, 14, 510.	3.8	13
17	Enantioselectivity in Drug Pharmacokinetics and Toxicity: Pharmacological Relevance and Analytical Methods. Molecules, 2021, 26, 3113.	3.8	58
18	Antimicrobial Activity of a Library of Thioxanthones and Their Potential as Efflux Pump Inhibitors. Pharmaceuticals, 2021, 14, 572.	3.8	11

#	Article	IF	CITATIONS
19	Coordination Compounds As Multi-Delivery Systems for Osteoporosis. ACS Applied Materials & Interfaces, 2021, 13, 35469-35483.	8.0	10
20	Enantioresolution and Binding Affinity Studies on Human Serum Albumin: Recent Applications and Trends. Chemosensors, 2021, 9, 304.	3.6	12
21	Role of Inflammation and Redox Status on Doxorubicin-Induced Cardiotoxicity in Infant and Adult CD-1 Male Mice. Biomolecules, 2021, 11, 1725.	4.0	16
22	The Secretome of Human Neonatal Mesenchymal Stem Cells Modulates Doxorubicin-Induced Cytotoxicity: Impact in Non-Tumor Cells. International Journal of Molecular Sciences, 2021, 22, 13072.	4.1	7
23	Design of novel monoamine oxidase-B inhibitors based on piperine scaffold: Structure-activity-toxicity, drug-likeness and efflux transport studies. European Journal of Medicinal Chemistry, 2020, 185, 111770.	5.5	30
24	P-glycoprotein activation by 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) in rat distal ileum: ex vivo and in vivo studies. Toxicology and Applied Pharmacology, 2020, 386, 114832.	2.8	3
25	Pharmacokinetics and Toxicokinetics Roles of Membrane Transporters at Kidney Level. Journal of Pharmacy and Pharmaceutical Sciences, 2020, 23, 333-356.	2.1	9
26	Mitoxantrone impairs proteasome activity and prompts early energetic and proteomic changes in HL-1 cardiomyocytes at clinically relevant concentrations. Archives of Toxicology, 2020, 94, 4067-4084.	4.2	9
27	New marine-derived indolymethyl pyrazinoquinazoline alkaloids with promising antimicrobial profiles. RSC Advances, 2020, 10, 31187-31204.	3.6	7
28	Exploring the Multi-Target Performance of Mitochondriotropic Antioxidants against the Pivotal Alzheimer's Disease Pathophysiological Hallmarks. Molecules, 2020, 25, 276.	3.8	9
29	Multifunctionality and cytotoxicity of a layered coordination polymer. Dalton Transactions, 2020, 49, 3989-3998.	3.3	5
30	Oxygenated xanthones as P-glycoprotein modulators at the intestinal barrier: in vitro and docking studies. Medicinal Chemistry Research, 2020, 29, 1041-1057.	2.4	9
31	Enantioselectivity on the absorption of methylone and pentedrone using Caco-2 cell line: Development and validation of an UHPLC method for cathinones quantification. Toxicology and Applied Pharmacology, 2020, 395, 114970.	2.8	9
32	Dysfunction of ABC transporters at the blood-brain barrier: Role in neurological disorders. , 2020, 213, 107554.		83
33	Boosting Drug Discovery for Parkinson's: Enhancement of the Delivery of a Monoamine Oxidase-B Inhibitor by Brain-Targeted PEGylated Polycaprolactone-Based Nanoparticles. Pharmaceutics, 2019, 11, 331.	4.5	11
34	Benzoic acid-derived nitrones: A new class of potential acetylcholinesterase inhibitors and neuroprotective agents. European Journal of Medicinal Chemistry, 2019, 174, 116-129.	5.5	35
35	The Main Metabolites of Fluorouracil + Adriamycin + Cyclophosphamide (FAC) Are Not Major Contributors to FAC Toxicity in H9c2 Cardiac Differentiated Cells. Biomolecules, 2019, 9, 98.	4.0	11
36	Repurposing nitrocatechols: 5-Nitro-α-cyanocarboxamide derivatives of caffeic acid and caffeic acid phenethyl ester effectively inhibit aggregation of tau-derived hexapeptide AcPHF6. European Journal of Medicinal Chemistry, 2019, 167, 146-152.	5.5	20

#	Article	IF	CITATIONS
37	Newly Synthesized Oxygenated Xanthones as Potential P-Glycoprotein Activators: In Vitro, Ex Vivo, and In Silico Studies. Molecules, 2019, 24, 707.	3.8	22
38	Insights into the Discovery of Novel Neuroprotective Agents: A Comparative Study between Sulfanylcinnamic Acid Derivatives and Related Phenolic Analogues. Molecules, 2019, 24, 4405.	3.8	11
39	Bioisosteric OH- to SH-replacement changes the antioxidant profile of ferulic acid. Organic and Biomolecular Chemistry, 2019, 17, 9646-9654.	2.8	6
40	Doxorubicin Is Key for the Cardiotoxicity of FAC (5-Fluorouracil + Adriamycin + Cyclophosphamide) Combination in Differentiated H9c2 Cells. Biomolecules, 2019, 9, 21.	4.0	13
41	Histological and toxicological evaluation, in rat, of a P-glycoprotein inducer and activator: 1-(propan-2-ylamino)-4-propoxy-9-thioxanthen-9-one (TX5). EXCLI Journal, 2019, 18, 697-722.	0.7	2
42	Development of a PEGylated-Based Platform for Efficient Delivery of Dietary Antioxidants Across the Blood–Brain Barrier. Bioconjugate Chemistry, 2018, 29, 1677-1689.	3.6	29
43	Comprehensive review of cardiovascular toxicity of drugs and related agents. Medicinal Research Reviews, 2018, 38, 1332-1403.	10.5	176
44	Chiral Resolution and Enantioselectivity of Synthetic Cathinones: A Brief Review. Journal of Analytical Toxicology, 2018, 42, 17-24.	2.8	42
45	PEGylated PLGA Nanoparticles As a Smart Carrier to Increase the Cellular Uptake of a Coumarin-Based Monoamine Oxidase B Inhibitor. ACS Applied Materials & Interfaces, 2018, 10, 39557-39569.	8.0	37
46	Multi-milligram resolution and determination of absolute configuration of pentedrone and methylone enantiomers. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1100-1101, 158-164.	2.3	26
47	Desrisking the Cytotoxicity of a Mitochondriotropic Antioxidant Based on Caffeic Acid by a PEGylated Strategy. Bioconjugate Chemistry, 2018, 29, 2723-2733.	3.6	9
48	Chiral Thioxanthones as Modulators of P-glycoprotein: Synthesis and Enantioselectivity Studies. Molecules, 2018, 23, 626.	3.8	17
49	Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors. Frontiers in Chemistry, 2018, 6, 126.	3.6	32
50	Pixantrone, a new anticancer drug with the same old cardiac problems? An in vitro study with differentiated and non-differentiated H9c2 cells. Interdisciplinary Toxicology, 2018, 11, 13-21.	1.0	6
51	Quantification of 1â€(propanâ€2â€ylamino)â€4â€propoxyâ€9 <i>H</i> â€thioxanthenâ€9â€one (TX5), a newly sy Pâ€glycoprotein inducer/activator, in biological samples: method development and validation. Biomedical Chromatography, 2017, 31, e3802.	nthetized 1.7	1
52	Naphthoquinoxaline metabolite of mitoxantrone is less cardiotoxic than the parent compound and it can be a more cardiosafe drug in anticancer therapy. Archives of Toxicology, 2017, 91, 1871-1890.	4.2	18
53	Cellular Models and In Vitro Assays for the Screening of modulators of P-gp, MRP1 and BCRP. Molecules, 2017, 22, 600.	3.8	91
54	Opioids and the Blood-Brain Barrier: A Dynamic Interaction with Consequences on Drug Disposition in Brain. Current Neuropharmacology, 2017, 15, 1156-1173.	2.9	83

#	Article	IF	CITATIONS
55	Development of Blood–Brain Barrier Permeable Nitrocatechol-Based Catechol <i>O</i> -Methyltransferase Inhibitors with Reduced Potential for Hepatotoxicity. Journal of Medicinal Chemistry, 2016, 59, 7584-7597.	6.4	32
56	Effect of Subchronic Intravenous Morphine Infusion and Naloxone-Precipitated Morphine Withdrawal on P-gp and Bcrp at the Rat Blood–Brain Barrier. Journal of Pharmaceutical Sciences, 2016, 105, 350-358.	3.3	22
57	Discovery of New Chemical Entities for Old Targets: Insights on the Lead Optimization of Chromone-Based Monoamine Oxidase B (MAO-B) Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 5879-5893.	6.4	87
58	Chiral enantioresolution of cathinone derivatives present in "legal highsâ€; and enantioselectivity evaluation on cytotoxicity of 3,4-methylenedioxypyrovalerone (MDPV). Forensic Toxicology, 2016, 34, 372-385.	2.4	48
59	Lessons from black pepper: piperine and derivatives thereof. Expert Opinion on Therapeutic Patents, 2016, 26, 245-264.	5.0	31
60	Biology-oriented development of novel lipophilic antioxidants with neuroprotective activity. RSC Advances, 2015, 5, 15800-15811.	3.6	19
61	Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. , 2015, 149, 1-123.		275
62	Several transport systems contribute to the intestinal uptake of Paraquat, modulating its cytotoxic effects. Toxicology Letters, 2015, 232, 271-283.	0.8	17
63	P-glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents paraquat cytotoxicity. Archives of Toxicology, 2015, 89, 1783-1800.	4.2	34
64	Renalase regulates peripheral and central dopaminergic activities. American Journal of Physiology - Renal Physiology, 2015, 308, F84-F91.	2.7	16
65	Assessment of Renalase Activity on Catecholamines Degradation. Open Hypertension Journal, 2015, 7, 14-18.	0.8	4
66	RBE4 cells are highly resistant to paraquatâ€induced cytotoxicity: studies on uptake and efflux mechanisms. Journal of Applied Toxicology, 2014, 34, 1023-1030.	2.8	19
67	Quantification of morphine and its major metabolites M3G and M6G in antemortem and postmortem samples. Biomedical Chromatography, 2014, 28, 1263-1270.	1.7	10
68	Mitochondrial Cumulative Damage Induced by Mitoxantrone: Late Onset Cardiac Energetic Impairment. Cardiovascular Toxicology, 2014, 14, 30-40.	2.7	37
69	Induction and activation of P-glycoprotein by dihydroxylated xanthones protect against the cytotoxicity of the P-glycoprotein substrate paraquat. Archives of Toxicology, 2014, 88, 937-951.	4.2	36
70	Cumulative Mitoxantroneâ€Induced Haematological and Hepatic Adverse Effects in a Subchronic <i>In vivo</i> Study. Basic and Clinical Pharmacology and Toxicology, 2014, 114, 254-262.	2.5	13
71	Colchicine effect on P-glycoprotein expression and activity: In silico and in vitro studies. Chemico-Biological Interactions, 2014, 218, 50-62.	4.0	33
72	The Heart As a Target for Xenobiotic Toxicity: The Cardiac Susceptibility to Oxidative Stress. Chemical Research in Toxicology, 2013, 26, 1285-1311.	3.3	70

#	Article	IF	CITATIONS
73	Therapeutic Concentrations of Mitoxantrone Elicit Energetic Imbalance in H9c2 Cells as an Earlier Event. Cardiovascular Toxicology, 2013, 13, 413-425.	2.7	31
74	Alzheimer's Disease, Cholesterol, and Statins: The Junctions of Important Metabolic Pathways. Angewandte Chemie - International Edition, 2013, 52, 1110-1121.	13.8	56
75	Doxorubicin decreases paraquat accumulation and toxicity in Caco-2 cells. Toxicology Letters, 2013, 217, 34-41.	0.8	23
76	The metabolic profile of mitoxantrone and its relation with mitoxantrone-induced cardiotoxicity. Archives of Toxicology, 2013, 87, 1809-1820.	4.2	49
77	Mechanisms of P-gp inhibition and effects on membrane fluidity of a new rifampicin derivative, 1,8-dibenzoyl-rifampicin. Toxicology Letters, 2013, 220, 259-266.	0.8	26
78	Lipidomic characterization of streptozotocin-induced heart mitochondrial dysfunction. Mitochondrion, 2013, 13, 762-771.	3.4	25
79	Effects of Exercise Training on Endothelial Progenitor Cells in Cardiovascular Disease. American Journal of Physical Medicine and Rehabilitation, 2013, 92, 1020-1030.	1.4	51
80	Development of Novel Rifampicin-Derived P-Glycoprotein Activators/Inducers. Synthesis, In Silico Analysis and Application in the RBE4 Cell Model, Using Paraquat as Substrate. PLoS ONE, 2013, 8, e74425.	2.5	23
81	Toxicity of amphetamines: an update. Archives of Toxicology, 2012, 86, 1167-1231.	4.2	364
82	Immortalized rat brain endothelial cells are highly resistant to paraquat toxic effect. Toxicology Letters, 2012, 211, S175.	0.8	0
83	Kale Extract Increases Glutathione Levels in V79 Cells, but Does not Protect Them against Acute Toxicity Induced by Hydrogen Peroxide. Molecules, 2012, 17, 5269-5288.	3.8	11
84	Synephrine: From trace concentrations to massive consumption in weight-loss. Food and Chemical Toxicology, 2011, 49, 8-16.	3.6	95
85	Investigation of the insulin-like properties of zinc(II) complexes of 3-hydroxy-4-pyridinones: Identification of a compound with glucose lowering effect in STZ-induced type I diabetic animals. Journal of Inorganic Biochemistry, 2011, 105, 1675-1682.	3.5	29
86	In vitro study of P-glycoprotein induction as an antidotal pathway to prevent cytotoxicity in Caco-2 cells. Archives of Toxicology, 2011, 85, 315-326.	4.2	51
87	Structural isomerization of synephrine influences its uptake and ensuing glutathione depletion in rat-isolated cardiomyocytes. Archives of Toxicology, 2011, 85, 929-939.	4.2	27
88	Pâ€glycoprotein activity in human Caucasian male lymphocytes does not follow its increased expression during aging. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 912-919.	1.5	26
89	Contribution of Catecholamine Reactive Intermediates and Oxidative Stress to the Pathologic Features of Heart Diseases. Current Medicinal Chemistry, 2011, 18, 2272-2314.	2.4	93
90	Metabolic interactions between ethanol and MDMA in primary cultured rat hepatocytes. Toxicology, 2010, 270, 150-157.	4.2	11

#	Article	IF	CITATIONS
91	Development and validation of a GC/IT-MS method for simultaneous quantitation of para and meta-synephrine in biological samples. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52, 721-726.	2.8	26
92	Gas chromatography–ion trap mass spectrometry method for the simultaneous measurement of MDMA (ecstasy) and its metabolites, MDA, HMA, and HMMA in plasma and urine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 815-822.	2.3	19
93	Collection of biological samples in forensic toxicology. Toxicology Mechanisms and Methods, 2010, 20, 363-414.	2.7	139
94	Mechanisms Underlying the Hepatotoxic Effects of Ecstasy. Current Pharmaceutical Biotechnology, 2010, 11, 476-495.	1.6	48
95	An effective antidote for paraquat poisonings: The treatment with lysine acetylsalicylate. Toxicology, 2009, 255, 187-193.	4.2	46
96	Molecular and Cellular Mechanisms of Ecstasy-Induced Neurotoxicity: An Overview. Molecular Neurobiology, 2009, 39, 210-271.	4.0	251
97	Adrenaline in pro-oxidant conditions elicits intracellular survival pathways in isolated rat cardiomyocytes. Toxicology, 2009, 257, 70-79.	4.2	35
98	Adrenaline and reactive oxygen species elicit proteome and energetic metabolism modifications in freshly isolated rat cardiomyocytes. Toxicology, 2009, 260, 84-96.	4.2	30
99	Cross-Functioning between the Extraneuronal Monoamine Transporter and Multidrug Resistance Protein 1 in the Uptake of Adrenaline and Export of 5-(Glutathion <i>-S-</i> yl)adrenaline in Rat Cardiomyocytes. Chemical Research in Toxicology, 2009, 22, 129-135.	3.3	16
100	Water extracts of Brassica oleracea var. costata potentiate paraquat toxicity to rat hepatocytes in vitro. Toxicology in Vitro, 2009, 23, 1131-1138.	2.4	11
101	GC Determination of Acetone, Acetaldehyde, Ethanol, and Methanol in Biological Matrices and Cell Culture. Journal of Chromatographic Science, 2009, 47, 272-278.	1.4	60
102	Lysine acetylsalicylate elicits full survival of Wistar rats exposed to a lethal dose of paraquat. Toxicology Letters, 2009, 189, S121-S122.	0.8	3
103	Postmortem Analyses Unveil the Poor Efficacy of Decontamination, Anti-Inflammatory and Immunosuppressive Therapies in Paraquat Human Intoxications. PLoS ONE, 2009, 4, e7149.	2.5	46
104	Reactivity of paraquat with sodium salicylate: Formation of stable complexes. Toxicology, 2008, 249, 130-139.	4.2	28
105	Chronic exposure to ethanol exacerbates MDMA-induced hyperthermia and exposes liver to severe MDMA-induced toxicity in CD1 mice. Toxicology, 2008, 252, 64-71.	4.2	40
106	Ethanol, the forgotten artifact in cell culture. Archives of Toxicology, 2008, 82, 197-198.	4.2	1
107	Synergistic toxicity of ethanol and MDMA towards primary cultured rat hepatocytes. Toxicology, 2008, 254, 42-50.	4.2	27
108	Chemical reactivity of paraquat with the previously validated antidote, sodium salicylate. Toxicology Letters, 2008, 180, S166.	0.8	0

#	Article	IF	CITATIONS
109	Effect of P-Glycoprotein inducers on its expression and activity in Caco-2 cells. Toxicology Letters, 2008, 180, S116.	0.8	0
110	Effect of chronic ethanol exposure on the hepatotoxicity of ecstasy in mice: An ex vivo study. Toxicology in Vitro, 2008, 22, 910-920.	2.4	21
111	Paraquat Poisonings: Mechanisms of Lung Toxicity, Clinical Features, and Treatment. Critical Reviews in Toxicology, 2008, 38, 13-71.	3.9	698
112	Repeated Administration of d-Amphetamine Results in a Time-dependent and Dose-independent Sustained Increase in Urinary Excretion of p-Hydroxyamphetamine in Mice. Journal of Health Science, 2007, 53, 371-377.	0.9	3
113	Neurotoxicity mechanisms of thioether ecstasy metabolites. Neuroscience, 2007, 146, 1743-1757.	2.3	92
114	Ecstasy induces apoptosis via 5-HT2A-receptor stimulation in cortical neurons. NeuroToxicology, 2007, 28, 868-875.	3.0	67
115	Oxidation Process of Adrenaline in Freshly Isolated Rat Cardiomyocytes: Formation of Adrenochrome, Quinoproteins, and GSH Adduct. Chemical Research in Toxicology, 2007, 20, 1183-1191.	3.3	68
116	Time dependent activation of transcription factors in freshly isolated cardiomyocytes: Adrenaline and reactive oxygen species incubation. Toxicology Letters, 2007, 172, S5-S6.	0.8	0
117	Influence of CYP2D6 polymorphism on the cytotoxicity of the designer drug 4-methylthioamphetamine (4-MTA). Toxicology Letters, 2007, 172, S40.	0.8	0
118	Evaluation of GSH adducts of adrenaline in biological samples. Biomedical Chromatography, 2007, 21, 670-679.	1.7	12
119	CYP2D6 increases toxicity of the designer drug 4-methylthioamphetamine (4-MTA). Toxicology, 2007, 229, 236-244.	4.2	27
120	Full survival of paraquat-exposed rats after treatment with sodium salicylateâ~†. Free Radical Biology and Medicine, 2007, 42, 1017-1028.	2.9	81
121	Sodium salicylate prevents paraquat-induced apoptosis in the rat lung. Free Radical Biology and Medicine, 2007, 43, 48-61.	2.9	44
122	Neurotoxicity of Ecstasy Metabolites in Rat Cortical Neurons, and Influence of Hyperthermia. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 53-61.	2.5	71
123	A new and vital antidotal pathway for paraquat poisonings more than 60 years later: Induction of lung P-glycoprotein. Toxicology Letters, 2006, 164, S75.	0.8	0
124	Neurotoxicity of ecstasy metabolites in rat cortical neurons, and influence of hyperthermia. Toxicology Letters, 2006, 164, S118.	0.8	0
125	Effect of adrenaline and oxygen free radicals on calcium tolerant cardiomyocytes: Formation of glutathione adducts. Toxicology Letters, 2006, 164, S130-S131.	0.8	0
126	Validation of a HPLC-ECD method for the detection of adrenaline-GSH adducts in biological samples. Toxicology Letters, 2006, 164, S132.	0.8	0

#	Article	IF	CITATIONS
127	Ethanol and ecstasy: Allied enemies of freshly isolated mouse hepatocytes. Toxicology Letters, 2006, 164, S205.	0.8	0
128	Dexamethasone treatment decreases the pathological effects and increases the survival rate of paraquat-intoxicated rats. Toxicology Letters, 2006, 164, S237-S238.	0.8	0
129	Validation of a HPLC-ECD method for the quantification of the highly reactive metabolite of ecstasy, N-methyl-α-methyldopamine, in human serum. Toxicology Letters, 2006, 164, S309.	0.8	0
130	Paraquat exposure as an etiological factor of Parkinson's disease. NeuroToxicology, 2006, 27, 1110-1122.	3.0	273
131	Acute Paraquat Poisoning. Pediatric Emergency Care, 2006, 22, 537-540.	0.9	46
132	Influence of CYP2D6 polymorphism on 3,4-methylenedioxymethamphetamine (†Ecstasy') cytotoxicity. Pharmacogenetics and Genomics, 2006, 16, 789-799.	1.5	44
133	Cytotoxicity and cell signalling induced by continuous mild hyperthermia in freshly isolated mouse hepatocytes. Toxicology, 2006, 224, 210-218.	4.2	35
134	Single high dose dexamethasone treatment decreases the pathological score and increases the survival rate of paraquat-intoxicated rats. Toxicology, 2006, 227, 73-85.	4.2	97
135	P-glycoprotein induction: an antidotal pathway for paraquat-induced lung toxicity. Free Radical Biology and Medicine, 2006, 41, 1213-1224.	2.9	81
136	Metabolic pathways of 4-bromo-2,5-dimethoxyphenethylamine (2C-B): analysis of phase I metabolism with hepatocytes of six species including human. Toxicology, 2005, 206, 75-89.	4.2	78
137	D-Amphetamine-Induced Hydrogen Peroxide Production in Skeletal Muscle is Modulated by Monoamine Oxidase Inhibition. International Journal of Sports Medicine, 2004, 25, 446-449.	1.7	4
138	Implementation of HPLC Methodology for the Quantification of Malondialdehyde in Cell Suspensions and Liver. Journal of Liquid Chromatography and Related Technologies, 2004, 27, 2357-2369.	1.0	5
139	Hepatotoxicity of 3,4-methylenedioxyamphetamine and ?-methyldopamine in isolated rat hepatocytes: formation of glutathione conjugates. Archives of Toxicology, 2004, 78, 16-24.	4.2	82
140	Comparative metabolism of the designer drug 4-methylthioamphetamine by hepatocytes from man, monkey, dog, rabbit, rat and mouse. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 369, 198-205.	3.0	40
141	Simultaneous determination of amphetamine derivatives in human urine after SPE extraction and HPLC-UV analysis. Biomedical Chromatography, 2004, 18, 125-131.	1.7	54
142	The toxicity of N-methyl-α-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine. Toxicology, 2004, 200, 193-203.	4.2	77
143	Leucoisoprenochrome-o-semiquinone Formation in Freshly Isolated Adult Rat Cardiomyocytes. Chemical Research in Toxicology, 2004, 17, 1584-1590.	3.3	16
144	Metabolism Is Required for the Expression of Ecstasy-Induced Cardiotoxicity in Vitro. Chemical Research in Toxicology, 2004, 17, 623-632.	3.3	71

#	Article	IF	CITATIONS
145	Metabolism of the designer drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in mice, after acute administration. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 811, 143-152.	2.3	18
146	4-methylthioamphetamine-induced hyperthermia in mice: influence of serotonergic and catecholaminergic pathways. Toxicology and Applied Pharmacology, 2003, 190, 262-271.	2.8	19
147	Synthesis and analysis of aminochromes by HPLC-photodiode array. Adrenochrome evaluation in rat blood. Biomedical Chromatography, 2003, 17, 6-13.	1.7	28
148	Identification of 4-Methylthioamphetamine and Some of its Metabolites in Mouse Urine by GC-MS after Acute Administration. Journal of Analytical Toxicology, 2002, 26, 228-232.	2.8	10
149	Cu2+-Induced Isoproterenol Oxidation into Isoprenochrome in Adult Rat Calcium-Tolerant Cardiomyocytes. Chemical Research in Toxicology, 2002, 15, 861-869.	3.3	49
150	Effect of 3,4-methylenedioxymethamphetamine ("ecstasy") on body temperature and liver antioxidant status in mice: influence of ambient temperature. Archives of Toxicology, 2002, 76, 166-172.	4.2	63
151	CARDIOTOXICITY STUDIES USING FRESHLY ISOLATED CALCIUM-TOLERANT CARDIOMYOCYTES FROM ADULT RAT. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 1.	1.5	11
152	The study of oxidative stress in freshly isolated Ca2+-tolerant cardiomyocytes from the adult rat. Toxicology in Vitro, 2001, 15, 283-287.	2.4	7
153	Electrospray tandem mass spectrometry of aminochromes. Rapid Communications in Mass Spectrometry, 2001, 15, 2466-2471.	1.5	15
154	Copper Enhances Isoproterenol Toxicity in Isolated Rat Cardiomyocytes: Effects on Oxidative Stress. Cardiovascular Toxicology, 2001, 1, 195-204.	2.7	40
155	Adaptative response of antioxidant enzymes in different areas of rat brain after repeatedd-amphetamine administration. Addiction Biology, 2001, 6, 213-221.	2.6	31
156	Hydrogen peroxide production in mouse tissues after acute d -amphetamine administration. Influence of monoamine oxidase inhibition. Archives of Toxicology, 2001, 75, 465-469.	4.2	20
157	Simultaneous determination of reduced and oxidized glutathione in freshly isolated rat hepatocytes and cardiomyocytes by HPLC with electrochemical detection. Biomedical Chromatography, 2000, 14, 468-473.	1.7	26
158	Effect of d -amphetamine repeated administration on rat antioxidant defences. Archives of Toxicology, 1999, 73, 83-89.	4.2	19
159	Inhibition of Glutathione Reductase by Isoproterenol Oxidation Products. Journal of Enzyme Inhibition and Medicinal Chemistry, 1999, 15, 47-61.	0.5	43
160	Development of An HPLC-UV Method for Determination of Taurine in Infant Formulae and Breast Milk. Journal of Liquid Chromatography and Related Technologies, 1997, 20, 1269-1278.	1.0	23
161	d-Amphetamine-induced hepatotoxicity: possible contribution of catecholamines and hyperthermia to the effect studied in isolated rat hepatocytes. Archives of Toxicology, 1997, 71, 429-436.	4.2	52
162	Changes in taurine levels in response to repeated administration of the β 2 â€agonist salbutamol in lambs. Journal of Veterinary Pharmacology and Therapeutics, 1997, 20, 33-37.	1.3	8

#	Article	IF	CITATIONS
163	d-Amphetamine Interaction with Glutathione in Freshly Isolated Rat Hepatocytes. Chemical Research in Toxicology, 1996, 9, 1031-1036.	3.3	32
164	Hepatoprotective activity of xanthones and xanthonolignoids against tert-butylhydroperoxide-induced toxicity in isolated rat hepatocytescomparison with silybin. Pharmaceutical Research, 1995, 12, 1756-1760.	3.5	44
165	Glutathione and cysteine measurement in biological samples by HPLC with a glassy carbon working detector. Biomedical Chromatography, 1994, 8, 134-136.	1.7	52