
Ying Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/784228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational strategy of exciplex-type thermally activated delayed fluorescent (TADF) emitters: Stacking of donor and acceptor units of the intramolecular TADF molecule. Chemical Engineering Journal, 2022, 433, 133546.	12.7	11
2	Vacuum-deposited organic solar cells utilizing a low-bandgap non-fullerene acceptor. Journal of Materials Chemistry C, 2022, 10, 2569-2574.	5.5	5
3	Dual-acceptor thermally activated delayed fluorescence emitters: Achieving high efficiency and long lifetime in orange-red OLEDs. Chemical Engineering Journal, 2022, 434, 134728.	12.7	10
4	Nanosized Carbon Macrocycles Based on a Planar Chiral Pseudo <i>Meta</i> â€{2.2]Paracyclophane. Chemistry - A European Journal, 2022, 28, .	3.3	26
5	Modulating Nonâ€Radiative Deactivation via Acceptor Reconstruction to Expand Highâ€Efficient Red Thermally Activated Delayed Fluorescent Emitters. Advanced Optical Materials, 2022, 10, .	7.3	11
6	Stable organic light-emitting diodes based on thioxanthone derivative with shortened photoluminescence delayed lifetime. Organic Electronics, 2022, 104, 106490.	2.6	2
7	Nearly 100% exciton utilization in highly efficient red OLEDs based on dibenzothioxanthone acceptor. Chinese Chemical Letters, 2022, 33, 4645-4648.	9.0	7
8	Benzothiadiazole based "hot exciton'' materials for red electroluminescence with the maximum external quantum efficiency approaching 10%. Journal of Materials Chemistry C, 2022, 10, 8684-8693.	5.5	9
9	Pyrimidine-based thermally activated delayed fluorescent materials with unique asymmetry for highly-efficient organic light-emitting diodes. Dyes and Pigments, 2022, 203, 110373.	3.7	8
10	Malononitrile based ternary AIE-ML materials: Experimental proof for emission switch from non-TADF to TADF. Organic Electronics, 2021, 88, 106003.	2.6	7
11	Creating Side Transport Pathways in Organic Solar Cells by Introducing Delayed Fluorescence Molecules. Chemistry of Materials, 2021, 33, 4578-4585.	6.7	11
12	High-Efficiency Red-Fluorescent Organic Light-Emitting Diodes with Excellent Color Purity. Journal of Physical Chemistry C, 2021, 125, 1980-1989.	3.1	22
13	Two-Channel Space Charge Transfer-Induced Thermally Activated Delayed Fluorescent Materials for Efficient OLEDs with Low Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2021, 13, 49066-49075.	8.0	17
14	Stable deep blue organic light emitting diodes with CIE of y < 0.10 based on quinazoline and carbazole units. Chinese Chemical Letters, 2020, 31, 1188-1192.	9.0	21
15	Image-force effects on energy level alignment at electron transport material/cathode interfaces. Journal of Materials Chemistry C, 2020, 8, 173-179.	5.5	11
16	Highly Efficient, Red Delayed Fluorescent Emitters with Exothermic Reverse Intersystem Crossing via Hot Excited Triplet States. Journal of Physical Chemistry C, 2020, 124, 20816-20826.	3.1	14
17	Benzo[4,5]thieno- <i>S</i> , <i>S</i> -dioxide-[3,2- <i>b</i>]benzofurans: synthesis, properties and application in electroluminescent devices. Journal of Materials Chemistry C, 2020, 8, 8796-8803.	5.5	6
18	Metal-Free Room-Temperature Phosphorescence from Amorphous Triarylborane-Based Biphenyl. Organometallics, 2020, 39, 4153-4158.	2.3	17

#	Article	IF	CITATIONS
19	Realizing Efficient Single Organic Molecular White Light-Emitting Diodes from Conformational Isomerization of Quinazoline-Based Emitters. ACS Applied Materials & Interfaces, 2020, 12, 14233-14243.	8.0	60
20	The structure optimization of phenanthroimidazole based isomers with external quantum efficiency approaching 7% in non-doped deep-blue OLEDs. Journal of Materials Chemistry C, 2020, 8, 2975-2984.	5.5	35
21	Experimental Evidence for "Hot Exciton―Thermally Activated Delayed Fluorescence Emitters. Advanced Optical Materials, 2019, 7, 1801190.	7.3	56
22	Molecular engineering of thermally activated delayed fluorescence emitters to concurrently achieve high performance and reduced efficiency roll-off in organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 9966-9974.	5.5	20
23	Deepâ€Red/Nearâ€Infrared Electroluminescence from Singleâ€Component Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel. Advanced Functional Materials, 2019, 29, 1903112.	14.9	59
24	Angular-Fused Dithianaphthylquinone Derivative: Selective Synthesis, Thermally Activated Delayed Fluorescence Property, and Application in Organic Light-Emitting Diode. Organic Letters, 2019, 21, 8832-8836.	4.6	11
25	Multifunctional applications of triazine/carbazole hybrid thermally activated delayed fluorescence emitters in organic light emitting diodes. Journal of Materials Chemistry C, 2019, 7, 12470-12481.	5.5	30
26	Solution-processed white organic light-emitting diodes with bi-component emitting layer based on symmetry blue spiro-sulfone derivative. Organic Electronics, 2019, 71, 24-30.	2.6	19
27	Design of Efficient Exciplex Emitters by Decreasing the Energy Gap Between the Local Excited Triplet (3LE) State of the Acceptor and the Charge Transfer (CT) States of the Exciplex. Frontiers in Chemistry, 2019, 7, 188.	3.6	7
28	Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters. Advanced Optical Materials, 2019, 7, 1801767.	7.3	29
29	Intermolecular Interaction-Induced Thermally Activated Delayed Fluorescence Based on a Thiochromone Derivative. Journal of Physical Chemistry Letters, 2019, 10, 1888-1893.	4.6	23
30	High efficiency, high color rendering index white organic light-emitting diodes based on thermally activated delayed fluorescence materials. Applied Physics Letters, 2019, 115, .	3.3	9
31	Highly efficient white light-emitting diodes with a bi-component emitting layer based on blue and yellow thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2018, 6, 2951-2956.	5.5	26
32	Highly efficient blue organic light-emitting diodes from pyrimidine-based thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2018, 6, 2351-2359.	5.5	58
33	Highly Efficient, Solution-Processed Organic Light-Emitting Diodes Based on Thermally Activated Delayed-Fluorescence Emitter with a Mixed Polymer Interlayer. ACS Applied Energy Materials, 2018, 1, 543-551.	5.1	29
34	Novel thioxanthone host material with thermally activated delayed fluorescence for reduced efficiency roll-off of phosphorescent OLEDs. Chinese Chemical Letters, 2018, 29, 471-474.	9.0	14
35	Interface Exciplex Anchoring the Color Stability of Solutionâ€Processed Thermally Activated Delayed Fluorescent White Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800978.	7.3	34
36	Solid-State Emissive Triarylborane-Based [2.2]Paracyclophanes Displaying Circularly Polarized Luminescence and Thermally Activated Delayed Fluorescence. Organic Letters, 2018, 20, 6868-6871.	4.6	75

#	Article	IF	CITATIONS
37	Highâ€Performance Semitransparent Ternary Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1800627.	14.9	109
38	Novel spironaphthalenone-based host materials for efficient red phosphorescent and thermally activated delayed fluorescent OLEDs. Organic Electronics, 2018, 61, 376-382.	2.6	13
39	Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	7
40	Aromaticâ€Imideâ€Based Thermally Activated Delayed Fluorescence Materials for Highly Efficient Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2017, 56, 8818-8822.	13.8	118
41	Aromaticâ€Imideâ€Based Thermally Activated Delayed Fluorescence Materials for Highly Efficient Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2017, 129, 8944-8948.	2.0	20
42	Fluorescent carbon dot-gated multifunctional mesoporous silica nanocarriers for redox/enzyme dual-responsive targeted and controlled drug delivery and real-time bioimaging. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 105-115.	4.3	37
43	Triplet decay-induced negative temperature dependence of the transient photoluminescence decay of thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2017, 5, 12077-12084.	5.5	48
44	Pyridine linked fluorene hybrid bipolar host for blue, green, and orange phosphorescent organic light-emitting diodes toward solution processing. Journal of Materials Chemistry C, 2017, 5, 11937-11946.	5.5	15
45	Synergistic Tailoring of Electrostatic and Hydrophobic Interactions for Rapid and Specific Recognition of Lysophosphatidic Acid, an Early-Stage Ovarian Cancer Biomarker. Journal of the American Chemical Society, 2017, 139, 11616-11621.	13.7	58
46	n-Doping-induced efficient electron-injection for high efficiency inverted organic light-emitting diodes based on thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2017, 5, 8400-8407.	5.5	29
47	Highly Conductive, Air‣table Silver Nanowire@Iongel Composite Films toward Flexible Transparent Electrodes. Advanced Materials, 2016, 28, 7167-7172.	21.0	203
48	Carbon Dots with Intrinsic Theranostic Properties for Bioimaging, Redâ€Lightâ€Triggered Photodynamic/Photothermal Simultaneous Therapy In Vitro and In Vivo. Advanced Healthcare Materials, 2016, 5, 665-675.	7.6	246
49	High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter. Chinese Physics Letters, 2016, 33, 088501.	3.3	4
50	Reduction of the singlet–triplet energy gap of a thermally activated delayed fluorescence emitter by molecular interaction between the host and the emitter. Journal of Materials Chemistry C, 2016, 4, 10776-10780.	5.5	20
51	Theranostics: Carbon Dots with Intrinsic Theranostic Properties for Bioimaging, Red-Light-Triggered Photodynamic/Photothermal Simultaneous Therapy In Vitro and In Vivo (Adv. Healthcare Mater.) Tj ETQq1 1 0.	784 31 & rgB	T /Øverlock
52	Highly Efficient Nondoped Organic Light Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter with Quantum-Well Structure. ACS Applied Materials & Interfaces, 2016, 8, 20955-20961.	8.0	32
53	Highly efficient inverted organic light-emitting diodes based on thermally activated delayed fluorescence. Science China Materials, 2016, 59, 421-426.	6.3	14
54	Tunable dwell time in gated silicene nanostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 502-508.	2.1	10

#	Article	IF	CITATIONS
55	Highly Efficient Orange and Red Phosphorescent Organic Lightâ€Emitting Diodes with Low Rollâ€Off of Efficiency using a Novel Thermally Activated Delayed Fluorescence Material as Host. Advanced Materials, 2015, 27, 4041-4047.	21.0	127
56	Nonvolatile memory devices based on carbon nano-dot doped poly(vinyl alcohol) composites with low operation voltage and high ON/OFF ratio. RSC Advances, 2015, 5, 26886-26890.	3.6	16
57	White organic light emitting diodes based on a yellow thermally activated delayed fluorescent emitter and blue fluorescent emitter. RSC Advances, 2015, 5, 59137-59141.	3.6	16
58	A cross-dipole stacking molecule of an anthracene derivative: integrating optical and electrical properties. Journal of Materials Chemistry C, 2015, 3, 3068-3071.	5.5	35
59	Aminobenzofuran-Fused Rhodamine Dyes with Deep-Red to Near-Infrared Emission for Biological Applications. Journal of Organic Chemistry, 2015, 80, 3170-3175.	3.2	40
60	Tuning Charge Balance in Solution-Processable Bipolar Triphenylamine-diazafluorene Host Materials for Phosphorescent Devices. ACS Applied Materials & Interfaces, 2015, 7, 9445-9452.	8.0	17
61	Naphthyl substituted anthracene combining charge transport with light emission. Journal of Materials Chemistry C, 2015, 3, 10695-10698.	5.5	28
62	High mobility emissive organic semiconductor. Nature Communications, 2015, 6, 10032.	12.8	420
63	Novel Thermally Activated Delayed Fluorescence Materials–Thioxanthone Derivatives and Their Applications for Highly Efficient OLEDs. Advanced Materials, 2014, 26, 5198-5204.	21.0	488
64	Turn-on fluorescence sensor based on the aggregation of pyrazolo[3,4-b]pyridine-based coumarin chromophores induced by Hg2+. Tetrahedron Letters, 2013, 54, 6447-6449.	1.4	23
65	Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time. Biosensors and Bioelectronics, 2013, 47, 391-395.	10.1	27
66	Coumarin- and Rhodamine-Fused Deep Red Fluorescent Dyes: Synthesis, Photophysical Properties, and Bioimaging in Vitro. Journal of Organic Chemistry, 2013, 78, 6121-6130.	3.2	120
67	Copolythiophene-Derived Colorimetric and Fluorometric Sensor for Lysophosphatidic Acid Based on Multipoint Interactions. ACS Applied Materials & amp; Interfaces, 2013, 5, 2283-2288.	8.0	39
68	Facile fabrication of conducting hollow carbon nanofibers/Si composites for copper phthalocyanine-based field effect transistors and high performance lithium-ion batteries. RSC Advances, 2012, 2, 8323.	3.6	14
69	Molecular order, charge injection efficiency and the role of intramolecular polar bonds at organic/organic heterointerfaces. Organic Electronics, 2012, 13, 1853-1858.	2.6	5
70	Experimental Evidence for Epitaxial Silicene on Diboride Thin Films. Physical Review Letters, 2012, 108, 245501.	7.8	1,488
71	Effect of Oxygen on the Electronic Structure of Highly Crystalline Picene Films. Journal of the American Chemical Society, 2011, 133, 10054-10057.	13.7	27
72	Effect of treated temperature on structure and performance of LiCoO2 coated by Li4Ti5O12. Surface and Coatings Technology, 2011, 205, 3885-3889.	4.8	32

#	Article	IF	CITATIONS
73	Intermolecular band dispersion in quasi-one-dimensional adenine assemblies. Chemical Communications, 2011, 47, 12349.	4.1	1
74	Structure-dependent band dispersion in epitaxial anthracene films. Journal of Chemical Physics, 2011, 135, 124709.	3.0	9
75	Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano, 2010, 4, 1790-1798.	14.6	1,977
76	Effect of the phenyl ring orientation in the polystyrene buffer layer on the performance of pentacene thin-film transistors. Organic Electronics, 2010, 11, 1066-1073.	2.6	29
77	Stacks of Nucleic Acids as Molecular Wires: Direct Measurement of the Intermolecular Band Dispersion in Multilayer Guanine Assemblies. Journal of the American Chemical Society, 2010, 132, 12808-12810.	13.7	8
78	Low-voltage high-performance organic thin film transistors with a thermally annealed polystyrene/hafnium oxide dielectric. Applied Physics Letters, 2009, 95, .	3.3	26
79	Synthesis, Characterization, and Fieldâ€Effect Transistor Performance of Thieno[3,2â€b]thieno[2′,3′:4,5]thieno[2,3â€d]thiophene Derivatives. Advanced Functional Materials, 2009 772-778.	, 19,9	85
80	Improvements in Stability and Performance of <i>N,N′</i> â€Dialkyl Perylene Diimideâ€Based nâ€Type Thinâ€Fi Transistors. Advanced Materials, 2009, 21, 1631-1635.	lm 21.0	90
81	Polymer gate dielectrics with self-assembled monolayers forÂhigh-mobility organic thin-film transistors based on copper phthalocyanine. Applied Physics A: Materials Science and Processing, 2009, 95, 777-780.	2.3	18
82	Fused-Ring Pyrazine Derivatives for n-Type Field-Effect Transistors. ACS Applied Materials & Interfaces, 2009, 1, 1122-1129.	8.0	44
83	Ï∈-σ-Phosphonic acid organic monolayer–amorphous sol–gel hafnium oxide hybrid dielectric for low-voltage organic transistors on plastic. Journal of Materials Chemistry, 2009, 19, 7929.	6.7	33
84	Effect of dielectric layers on device stability of pentacene-based field-effect transistors. Physical Chemistry Chemical Physics, 2009, 11, 7268.	2.8	34
85	Highâ€Performance, Lowâ€Operatingâ€Voltage Organic Fieldâ€Effect Transistors with Low Pinchâ€Off Voltages. Advanced Functional Materials, 2008, 18, 810-815.	14.9	17
86	Highâ€Performance Organic Transistor Memory Elements with Steep Flanks of Hysteresis. Advanced Functional Materials, 2008, 18, 2593-2601.	14.9	81
87	Organic Fieldâ€Effect Transistors with a Low Pinchâ€Off Voltage and a Controllable Threshold Voltage. Advanced Materials, 2008, 20, 611-615.	21.0	21
88	Highâ€Performance Organic Fieldâ€Effect Transistors with Low ost Copper Electrodes. Advanced Materials, 2008, 20, 1286-1290.	21.0	91
89	Polythiophene Derivative with the Simplest Conjugated-Side-Chain of Alkenyl: Synthesis and Applications in Polymer Solar Cells and Field-Effect Transistors. Journal of Physical Chemistry B, 2008, 112, 13476-13482.	2.6	27
90	Tuning the threshold voltage by inserting a thin molybdenum oxide layer into organic field-effect transistors. Applied Physics Letters, 2007, 91, .	3.3	23

#	Article	IF	CITATIONS
91	Solution-Processed Organic Field-Effect Transistors Based on Polythiophene Derivatives with Conjugated Bridges as Linking Chains. Chemistry of Materials, 2007, 19, 3361-3363.	6.7	42
92	First Synthesis of 2,3,6,7-Tetrabromonaphthalene Diimide. Organic Letters, 2007, 9, 3917-3920.	4.6	93
93	High-Performance Transistor Based on Individual Single-Crystalline Micrometer Wire of Perylo[1,12-b,c,d]thiophene. Journal of the American Chemical Society, 2007, 129, 1882-1883.	13.7	148
94	Organic Light-Emitting Transistors Containing a Laterally Arranged Heterojunction. Advanced Functional Materials, 2007, 17, 1567-1573.	14.9	40
95	Dibenzotetrathiafulvalene Bisimides: New Building Blocks for Organic Electronic Materials**. Advanced Materials, 2007, 19, 3037-3042.	21.0	54
96	1-Imino Nitroxide Pyrene for High Performance Organic Field-Effect Transistors with Low Operating Voltage. Journal of the American Chemical Society, 2006, 128, 13058-13059.	13.7	87
97	Novel butterfly pyrene-based organic semiconductors for field effect transistors. Chemical Communications, 2006, , 755.	4.1	86
98	A novel air-stable n-type organic semiconductor: 4,4′-bis[(6,6′-diphenyl)-2,2-difluoro-1,3,2-dioxaborine] and its application in organic ambipolar field-effect transistors. Journal of Materials Chemistry, 2006, 16, 4499-4503.	6.7	55
99	High-Performance Low-Cost Organic Field-Effect Transistors with Chemically Modified Bottom Electrodes. Journal of the American Chemical Society, 2006, 128, 16418-16419.	13.7	118
100	Field-effect transistors with good performance using new electron donor-Ï€-acceptor molecules as the active layers. Chemical Physics Letters, 2006, 431, 370-374.	2.6	3
101	High-Performance and Stable Organic Thin-Film Transistors Based on Fused Thiophenes. Advanced Functional Materials, 2006, 16, 426-432.	14.9	180
102	Noncoplanar organic field-effect transistor based on copper phthalocyanine. Applied Physics Letters, 2006, 88, 121907.	3.3	13
103	Organic thin-film transistors with high mobilities and low operating voltages based on 5,5′-bis-biphenyl-dithieno[3,2-b:2′,3′-d]thiophene semiconductor and polymer gate dielectric. Applied Physics Letters, 2006, 88, 242113.	3.3	41
104	Organic field-effect transistors based on Langmuir-Blodgett films of an extended porphyrin analogue – Cyclo[6]pyrrole. Chemical Physics Letters, 2005, 414, 369-373.	2.6	23
105	Red Fluorescent Organic Light-Emitting Diodes with Low-Efficiency Roll-Off. Energy & Fuels, 0, , .	5.1	3
106	Sensitized Fluorescence Organic Light-Emitting Diodes with Reduced Efficiency Roll-off. Organic Materials, 0, 3, .	2.0	0