Gary J Rose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7839826/publications.pdf

Version: 2024-02-01

38	1,689	23	35
papers	citations	h-index	g-index
39	39	39	948
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Short-term synaptic plasticity as a temporal filter. Trends in Neurosciences, 2001, 24, 381-385.	8.6	324
2	Auditory midbrain neurons that count. Nature Neuroscience, 2002, 5, 934-936.	14.8	124
3	Short-Term Synaptic Plasticity Contributes to the Temporal Filtering of Electrosensory Information. Journal of Neuroscience, 2000, 20, 7122-7130.	3. 6	115
4	Processing amplitude-modulated sounds by the auditory midbrain of two species of toads: matched temporal filters. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1984, 154, 211-219.	1.6	97
5	Long-term temporal integration in the anuran auditory system. Nature Neuroscience, 1998, 1, 519-523.	14.8	81
6	Counting on Inhibition and Rate-Dependent Excitation in the Auditory System. Journal of Neuroscience, 2007, 27, 13384-13392.	3 . 6	69
7	Insights into neural mechanisms and evolution of behaviour from electric fish. Nature Reviews Neuroscience, 2004, 5, 943-951.	10.2	63
8	Neural coding of difference frequencies in the midbrain of the electric fishEigenmannia: Reading the sense of rotation in an amplitude-phase plane. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1986, 158, 613-624.	1.6	57
9	Behavioural plasticity mediates aggression in choruses of the Pacific treefrog. Animal Behaviour, 1994, 47, 633-641.	1.9	55
10	Species specificity and temperature dependency of temporal processing by the auditory midbrain of two species of treefrogs. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1985, 157, 763-769.	1.6	53
11	Midbrain Auditory Neurons Integrate Excitation and Inhibition to Generate Duration Selectivity: An In Vivo Whole-Cell Patch Study in Anurans. Journal of Neuroscience, 2008, 28, 5481-5493.	3.6	52
12	Integration and recovery processes contribute to the temporal selectivity of neurons in the midbrain of the northern leopard frog, Rana pipiens. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2000, 186, 923-937.	1.6	49
13	Species-typical songs in white-crowned sparrows tutored with only phrase pairs. Nature, 2004, 432, 753-758.	27.8	49
14	Plasticity of aggressive thresholds inHyla regilladiscrete accommodation to encounter calls. Animal Behaviour, 1997, 53, 353-361.	1.9	40
15	New techniques for making whole-cell recording from CNS neurons in vivo. Neuroscience Research, 1996, 26, 89-94.	1.9	38
16	Interval-counting neurons in the anuran auditory midbrain: factors underlying diversity of interval tuning. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 97-108.	1.6	37
17	Pacific treefrogs use temporal integration to differentiate advertisement from encounter calls. Animal Behaviour, 2002, 63, 1183-1190.	1.9	34
18	Mechanisms of Long-Interval Selectivity in Midbrain Auditory Neurons: Roles of Excitation, Inhibition, and Plasticity. Journal of Neurophysiology, 2008, 100, 3407-3416.	1.8	34

#	Article	IF	CITATIONS
19	The numerical abilities of anurans and their neural correlates: insights from neuroethological studies of acoustic communication. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160512.	4.0	34
20	?Ancestral? neural mechanisms of electrolocation suggest a substrate for the evolution of the jamming avoidance response. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1987, 160, 491-500.	1.6	33
21	Aggressive Thresholds of Male Pacific Treefrogs for Advertisement Calls Vary with Amplitude of Neighbors' Calls. Ethology, 1991, 89, 244-252.	1.1	31
22	Time computations in anuran auditory systems. Frontiers in Physiology, 2014, 5, 206.	2.8	30
23	Species-specificity of temporal processing in the auditory midbrain of gray treefrogs: interval-counting neurons. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2015, 201, 485-503.	1.6	27
24	Phasic, suprathreshold excitation and sustained inhibition underlie neuronal selectivity for short-duration sounds. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1927-35.	7.1	23
25	Counting on dis-inhibition: a circuit motif for interval counting and selectivity in the anuran auditory system. Journal of Neurophysiology, 2015, 114, 2804-2815.	1.8	19
26	Discrimination of the sign of frequency differences bySternopygus, an electric fish without a jamming avoidance response. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1991, 168, 461-467.	1.6	16
27	Differential distribution of ampullary and tuberous processing in the torus semicircularis of Eigenmannia. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992, 170, 253-61.	1.6	16
28	Roles of syntax information in directing song development in white-crowned sparrows (zonotrichia) Tj ETQq0 C	0 0 rgBT /O	verlock 10 Tf !
29	Function of the Amphibian Central Auditory System. , 2007, , 250-290.		15
30	Combining pharmacology and whole-cell patch recording from CNS neurons, in vivo. Journal of Neuroscience Methods, 2013, 213, 99-104.	2.5	11
31	Species specificity of temporal processing in the auditory midbrain of gray treefrogs: long-interval neurons. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 67-79.	1.6	11
32	Tutor model syntax influences the syntactical and phonological structure of crystallized songs of white-crowned sparrows. Animal Behaviour, 2008, 76, 1815-1827.	1.9	9
33	Neural basis of acoustic species recognition in a cryptic species complex. Journal of Experimental Biology, 2021, 224, .	1.7	9
34	How auditory selectivity for sound timing arises: The diverse roles of GABAergic inhibition in shaping the excitation to interval-selective midbrain neurons. Progress in Neurobiology, 2021, 199, 101962.	5.7	6
35	Structure and Function of Neurons in the Complex of the Nucleus electrosensorius of <i>Sternopygus</i> and <i>Eigenmannia</i> Diencephalic Substrates for the Evolution of the Jamming Avoidance Response. Brain, Behavior and Evolution, 2004, 64, 85-103.	1.7	5
36	Representation of Temporal Patterns of Signal Amplitude in the Anuran Auditory System and Electrosensory System., 1995,, 1-24.		5

#	Article	IF	CITATIONS
37	Latency for facultative expression of male-typical courtship behaviour by female bluehead wrasses depends on social rank: The †priming/gating' hypothesis. Journal of Experimental Biology, 2018, 221, .	1.7	3
38	Anuran Auditory Systems as Models for Understanding Sensory Processing and the Evolution of Communication., 2020, , 138-148.		0