
Wim Crusio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/783930/publications.pdf Version: 2024-02-01

WIM CDUSIO

#	Article	IF	CITATIONS
1	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	21.4	1,034
2	Antidepressant-Like Effects of the Histone Deacetylase Inhibitor, Sodium Butyrate, in the Mouse. Biological Psychiatry, 2007, 62, 55-64.	1.3	462
3	The nature and identification of quantitative trait loci: a community's view. Nature Reviews Genetics, 2003, 4, 911-916.	16.3	390
4	Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behavioural Brain Research, 2006, 175, 43-50.	2.2	375
5	Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends in Neurosciences, 2002, 25, 336-340.	8.6	258
6	Radial-maze performance and structural variation of the hippocampus in mice: a correlation with mossy fibre distribution. Brain Research, 1987, 425, 182-185.	2.2	243
7	13-cis-retinoic acid suppresses hippocampal cell division and hippocampal-dependent learning in mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5111-5116.	7.1	197
8	Behavioral and neuroanatomical characterization of the <i>Fmr1</i> knockout mouse. Hippocampus, 2002, 12, 39-46.	1.9	196
9	Hippocampal mossy fibers and radial-maze learning in the mouse: A correlation with spatial working memory but not with non-spatial reference memory. Neuroscience, 1990, 34, 293-298.	2.3	195
10	Genetic dissection of mouse exploratory behaviour. Behavioural Brain Research, 2001, 125, 127-132.	2.2	162
11	Reproducibility and replicability of rodent phenotyping in preclinical studies. Neuroscience and Biobehavioral Reviews, 2018, 87, 218-232.	6.1	153
12	Social behavior deficits in the Fmr1 mutant mouse. Behavioural Brain Research, 2006, 168, 172-175.	2.2	148
13	Genetic-Background Modulation of Core and Variable Autistic-Like Symptoms in Fmr1 Knock-Out Mice. PLoS ONE, 2011, 6, e17073.	2.5	146
14	Behavioral responses to novelty and structural variation of the hippocampus in mice. II. Multivariate genetic analysis. Behavioural Brain Research, 1989, 32, 81-88.	2.2	140
15	<i>Fmr1</i> KO Mice as a Possible Model of Autistic Features. Scientific World Journal, The, 2006, 6, 1164-1176.	2.1	138
16	Functional implications of decreases in neurogenesis following chronic mild stress in mice. Neuroscience, 2007, 150, 251-259.	2.3	133
17	Using genetically-defined rodent strains for the identification of hippocampal traits relevant for two-way avoidance behavior: a non-invasive approach. Experientia, 1989, 45, 845-859.	1.2	131
18	Flanking gene and genetic background problems in genetically manipulated mice. Biological Psychiatry, 2004, 56, 381-385.	1.3	130

#	Article	IF	CITATIONS
19	Correlations between radial-maze learning and structural variations of septum and hippocampus in rodents. Behavioural Brain Research, 1995, 67, 29-41.	2.2	124
20	Gene-targeting studies: new methods, old problems. Trends in Neurosciences, 1996, 19, 186-187.	8.6	124
21	Agonistic behavior and unpredictable chronic mild stress in mice. Behavior Genetics, 2003, 33, 513-519.	2.1	123
22	Standards for the publication of mouse mutant studies. Genes, Brain and Behavior, 2009, 8, 1-4.	2.2	110
23	A Quantitative-Genetic Analysis of Hippocampal Variation in the Mouse. Journal of Neurogenetics, 1986, 3, 203-214.	1.4	99
24	Hippocampal mossy fiber distribution covaries with open-field habituation in the mouse. Behavioural Brain Research, 1987, 26, 153-158.	2.2	98
25	Water-maze learning in the mouse correlates with variation in hippocampal morphology. Behavior Genetics, 1988, 18, 153-165.	2.1	95
26	Covariations Between Hippocampal Mossy Fibres and Working and Reference Memory in Spatial and Non-spatial Radial Maze Tasks in Mice. European Journal of Neuroscience, 1993, 5, 1413-1420.	2.6	95
27	Rescue of fragile X syndrome phenotypes in Fmr1KO mice by a BKCa channel opener molecule. Orphanet Journal of Rare Diseases, 2014, 9, 124.	2.7	92
28	Early Social Enrichment Rescues Adult Behavioral and Brain Abnormalities in a Mouse Model of Fragile X Syndrome. Neuropsychopharmacology, 2015, 40, 1113-1122.	5.4	87
29	Behavioral responses to novelty and structural variation of the hippocampus in mice. I. Quantitative-genetic analysis of behavior in the open-field. Behavioural Brain Research, 1989, 32, 75-80.	2.2	77
30	Hippocampal mossy fiber distributions and intermale aggression in seven inbred mouse strains. Brain Research, 1994, 660, 167-169.	2.2	75
31	Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice. Behavioral and Brain Functions, 2005, 1, 3.	3.3	73
32	The genetic architecture of behavioural responses to novelty in mice. Heredity, 1986, 56, 55-63.	2.6	68
33	Hippocampal mossy fiber distributions in mice selected for aggression. Brain Research, 1994, 646, 145-148.	2.2	61
34	Further phenotypical characterisation of two substrains of C57BL/6J inbred mice differing by a spontaneous single-gene mutation. Behavioural Brain Research, 1998, 98, 39-43.	2.2	61
35	Dietary supplementation of omega-3 fatty acids rescues fragile X phenotypes in Fmr1-Ko mice. Psychoneuroendocrinology, 2014, 49, 119-129.	2.7	60
36	Behavioral and neuroanatomical characterization of FVB/N inbred mice. Brain Research Bulletin, 2002, 57, 41-47.	3.0	58

#	Article	IF	CITATIONS
37	Water maze and radial maze learning and the density of binding sites of glutamate, GABA, and serotonin receptors in the hippocampus of inbred mouse strains. Hippocampus, 2000, 10, 213-225.	1.9	57
38	Genetic Selection for Novelty-Induced Rearing Behavior in Mice Produces Changes in Hippocampal Mossy Fiber Distributions. Journal of Neurogenetics, 1989, 5, 87-93.	1.4	55
39	Early postnatal hyperthyroidism alters hippocampal circuitry and improves radial-maze learning in adult mice. Journal of Neuroscience, 1991, 11, 2102-2106.	3.6	53
40	Monogenic mouse models of social dysfunction: Implications for autism. Behavioural Brain Research, 2013, 251, 75-84.	2.2	52
41	Spatial and non-spatial spontaneous alternation and hippocampal mossy fibre distribution in nine inbred mouse strains. Behavioural Brain Research, 1991, 43, 197-202.	2.2	47
42	Chronic exposure to glufosinate-ammonium induces spatial memory impairments, hippocampal MRI modifications and glutamine synthetase activation in mice. NeuroToxicology, 2008, 29, 740-747.	3.0	46
43	A genetic-correlational study of hippocampal neurochemical variation and variation in exploratory activities of mice. Behavioural Brain Research, 1991, 43, 65-72.	2.2	43
44	Behavioural and neuroanatomical divergence between two sublines of C57BL/6J inbred mice. Behavioural Brain Research, 1991, 42, 93-97.	2.2	42
45	<scp>QTL</scp> and systems genetics analysis of mouse grooming and behavioral responses to novelty in an open field. Genes, Brain and Behavior, 2017, 16, 790-799.	2.2	40
46	Estimating heritabilities in quantitative behavior genetics: A station passed. Behavioral and Brain Sciences, 1990, 13, 127-128.	0.7	39
47	No correlations between spatial and non-spatial reference memory in a T-maze task and hippocampal mossy fibre distribution in the mouse. Behavioural Brain Research, 1990, 41, 251-259.	2.2	39
48	Neuroanatomical divergence between two substrains of C57BL/6J inbred mice entails differential radial-maze learning. Brain Research, 1994, 644, 352-356.	2.2	39
49	A genetic-correlational study of hippocampal structural variation and variation in exploratory activities of mice. Behavioural Brain Research, 1991, 43, 57-64.	2.2	38
50	The replicated diallel cross: A generalized method of analysis. Behavior Genetics, 1984, 14, 81-104.	2.1	37
51	Behavioral effects of ventilated micro-environment housing in three inbred mouse strains. Physiology and Behavior, 2009, 97, 334-340.	2.1	37
52	Genetic variation in the morphology of the septo-hippocampal cholinergic and GABAergic systems in mice: II. Morpho-behavioral correlations. , 1996, 6, 535-545.		35
53	Chronic inhibition of glutamine synthetase is not associated with impairment of learning and memory in mice. Brain Research Bulletin, 2002, 57, 11-15.	3.0	35
54	Transcriptome analysis of genes and gene networks involved in aggressive behavior in mouse and zebrafish. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 827-838.	1.7	35

#	Article	IF	CITATIONS
55	Sex-Dependent Changes in Social Behaviors in Motor Pre-Symptomatic R6/1 Mice. PLoS ONE, 2011, 6, e19965.	2.5	35
56	Inheritance of species-specific behaviors in the paradise fish (Macropodus opercularis): A diallel study. Behavior Genetics, 1990, 20, 487-498.	2.1	32
57	Hippocampal morphology and spatially related behavior in long-evans and CFY rats. Hippocampus, 1993, 3, 1-7.	1.9	31
58	Strain-Dependent Changes in Acoustic Startle Response and its Plasticity Across Adolescence in Mice. Behavior Genetics, 2009, 39, 623-631.	2.1	30
59	Pervasive and opposing effects of Unpredictable Chronic Mild Stress (UCMS) on hippocampal gene expression in BALB/cJ and C57BL/6J mouse strains. BMC Genomics, 2015, 16, 262.	2.8	30
60	Ageâ€specific autisticâ€like behaviors in heterozygous <i>Fmr1</i> â€KO female mice. Autism Research, 2017, 10, 1067-1078.	3.8	29
61	Hippocampal Variation between the Inbred Mouse Strains C3H/HeJ and DBA/2: A Quantitative-genetic Analysis. Journal of Neurogenetics, 1985, 2, 389-401.	1.4	28
62	Early postnatal hyperthyroidism improves both working and reference memory in a spatial radial-maze task in adult mice. Physiology and Behavior, 1991, 50, 259-261.	2.1	28
63	Hippocampal morphology and open-field behavior in Mus musculus domesticus and Mus spretus inbred mice. Behavior Genetics, 1997, 27, 67-73.	2.1	28
64	Early development of social deficits in APP and APP-PS1 mice. Neurobiology of Aging, 2012, 33, 1002.e17-1002.e27.	3.1	28
65	Sex differences in gene expression patterns associated with the APOE4 allele. F1000Research, 2019, 8, 387.	1.6	28
66	Divergent levels of anxiety in mice selected for differences in sensitivity to a convulsant agent. Physiology and Behavior, 2000, 71, 517-523.	2.1	27
67	Genetic selection of mouse lines differing in sensitivity to a benzodiazepine receptor inverse agonist. Brain Research, 1998, 787, 85-90.	2.2	25
68	Heritability estimates in behavior genetics: Wasn't that station passed long ago?. Behavioral and Brain Sciences, 2012, 35, 361-362.	0.7	25
69	A QUANTITATIVE-GENETIC ANALYSIS OF HIPPOCAMPAL VARIATION IN THE MOUSE. Journal of Neurogenetics, 2007, 21, 197-208.	1.4	23
70	Y chromosomal effects on hippocampal mossy fiber distributions in mice selected for aggression. Brain Research, 1995, 682, 203-206.	2.2	22
71	Paw preference and intra-/infrapyramidal mossy fibers in the hippocampus of the mouse. Behavior Genetics, 1996, 26, 379-390.	2.1	21
72	Genetic Mouse Models of Alzheimer's Disease. Neural Plasticity, 2005, 12, 299-310.	2.2	20

#	Article	IF	CITATIONS
73	Nzb mouse: Hippocampal mossy fiber patterns and behavioral profiles of young and older animals. Drug Development Research, 1988, 15, 297-305.	2.9	19
74	Y-Chromosomal effects on discrimination learning and hippocampal asymmetry in mice. Behavior Genetics, 1989, 19, 543-549.	2.1	19
75	Genetic analysis of isolation-induced aggression. II. Postnatal environmental influences in AB mice. Behavior Genetics, 1993, 23, 391-394.	2.1	19
76	Prenatal effects of parity on behavioral ontogeny in mice. Physiology and Behavior, 1996, 59, 1171-1174.	2.1	18
77	Sex differences in gene expression patterns associated with the APOE4 allele. F1000Research, 2019, 8, 387.	1.6	18
78	Substrain divergence in C3H inbred mice. Behavior Genetics, 1988, 18, 671-674.	2.1	17
79	Selective advantage of fra (X) heterozygotes. Human Genetics, 1990, 86, 25-32.	3.8	17
80	A note on the effect of within-strain sample sizes on QTL mapping in recombinant inbred strain studies. Genes, Brain and Behavior, 2004, 3, 249-251.	2.2	17
81	Systems genetic analysis of hippocampal neuroanatomy and spatial learning in mice. Genes, Brain and Behavior, 2015, 14, 591-606.	2.2	17
82	Strain-specific development of the mossy fiber system in organotypic cultures of the mouse hippocampus. Neuroscience Letters, 1988, 87, 7-10.	2.1	16
83	Natural Selection on Hippocampal Circuitry Underlying Exploratory Behaviour in Mice: Quantitative-Genetic Analysis. , 1995, , 323-342.		16
84	Zinc-induced peripheral anosmia and exploratory behavior in two inbred mouse strains. Physiology and Behavior, 1978, 21, 779-784.	2.1	15
85	Mice selected for differences in sensitivity to a benzodiazepine receptor inverse agonist vary in intermale aggression. Neurogenetics, 1999, 2, 171-175.	1.4	15
86	Communication and social interaction in the cannabinoidâ€ŧype 1 receptor null mouse: Implications for autism spectrum disorder. Autism Research, 2021, 14, 1854-1872.	3.8	15
87	Zinc-induced peripheral anosmia and behavioral responses to novelty in mice: A quantitative-genetic analysis. Behavioral and Neural Biology, 1987, 48, 63-82.	2.2	14
88	Inheritance of Behavioral and Neuroanatomical Phenotypical Variance: Hybrid Mice Are Not Always More Stable Than Inbreds. Behavior Genetics, 2006, 36, 723-731.	2.1	13
89	Autistic-like behavioral effects of prenatal stress in juvenile Fmr1 mice: the relevance of sex differences and gene–environment interactions. Scientific Reports, 2022, 12, 7269.	3.3	13
90	Bi- and multivariate analyses of diallel crosses: A tool for the genetic dissection of neurobehavioral phenotypes. Behavior Genetics, 1993, 23, 59-67.	2.1	12

#	Article	IF	CITATIONS
91	The neurobehavioral genetics of aggression. Behavior Genetics, 1996, 26, 459-461.	2.1	12
92	Gene-Environment Interactions in Neurodevelopmental Disorders. Neural Plasticity, 2017, 2017, 1-2.	2.2	12
93	Common genetic signatures of Alzheimer's disease in Down Syndrome. F1000Research, 2020, 9, 1299.	1.6	12
94	A note on the analysis of reciprocal effects in diallel crosses. Journal of Genetics, 1987, 66, 177-185.	0.7	11
95	Cenetic analysis of isolation-induced aggression in the mouse. III. Classical cross-breeding analysis of differences between two closely related inbred strains. Behavioral and Neural Biology, 1993, 59, 242-248.	2.2	11
96	Organization of motor and posture patterns in paradise fish (Macropodus opercularis): Environmental and genetic components of phenotypical correlation structures. Behavior Genetics, 1995, 25, 385-396.	2.1	11
97	Genetic Dissection of Learning and Memory in Mice. Neural Plasticity, 2004, 11, 217-240.	2.2	10
98	Prenatal exposure to alcohol does not affect radial maze learning and hippocampal mossy fiber sizes in three inbred strains of mouse. Behavioral and Brain Functions, 2005, 1, 5.	3.3	9
99	Comparative mRNA analysis of behavioral and genetic mouse models of aggression. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 427-436.	1.7	9
100	A multivariate quantitative-genetic analysis of behavioral development in mice. , 1998, 32, 339-351.		8
101	The genetics of exploratory behavior. , 2013, , 148-154.		8
102	A multivariate morphometric analysis of hippocampal anatomical variation in C57BL/6 ↔ BALB/c chimeric mice. Brain Research, 1990, 535, 343-346.	2.2	7
103	Hippocampal morphology in the inbred mouse strains NZB and CBA/H and their reciprocal congenics for the nonpseudoautosomal region of the Y chromosome. Behavior Genetics, 1996, 26, 1-5.	2.1	7
104	Radial maze learning in two inbred mouse strains and their reciprocal congenics for the non-pseudoautosomal region of the Y chromosome1Published on the World Wide Web on 1 April 1999.1. Brain Research, 1999, 835, 68-73.	2.2	7
105	Chapter 4.4 Methodological considerations for testing learning in mice. Handbook of Behavioral Neuroscience, 1999, , 638-651.	0.0	7
106	Natural neurobiology and behavior of the mouse. , 2013, , 5-16.		7
107	Behavioral and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus, 2002, 12, 39.	1.9	7
108	â€~My mouse has no phenotype'. Genes, Brain and Behavior, 2002, 1, 71-71.	2.2	6

#	Article	IF	CITATIONS
109	Engaging high school students in neuroscience research -through an e-internship program. F1000Research, 2017, 6, 20.	1.6	6
110	Genetic architecture of numbers of fast and slow muscle fibres in the mouse soleus muscle. Heredity, 1984, 53, 643-647.	2.6	5
111	The neuropsychology of schizophrenia: A perspective from neurobehavioral genetics. Behavioral and Brain Sciences, 1991, 14, 23-24.	0.7	5
112	Are the fine-structural characteristics of mouse hippocampal mossy fiber synapses determined by the density of mossy fiber axons?. Neuroscience Letters, 1993, 158, 75-78.	2.1	5
113	Key issues in contemporary behavioral genetics. Current Opinion in Behavioral Sciences, 2015, 2, 89-95.	3.9	5
114	A quantitative trait locus on chromosome 1 modulates intermale aggression in mice. Genes, Brain and Behavior, 2018, 17, e12469.	2.2	5
115	Analysis of morphine responses in mice reveals a QTL on Chromosome 7. F1000Research, 2016, 5, 2156.	1.6	5
116	Common genetic signatures of Alzheimer's disease in Down Syndrome. F1000Research, 0, 9, 1299.	1.6	5
117	Introducing high school students to the Gene Ontology classification system. F1000Research, 2019, 8, 241.	1.6	5
118	Genes and cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2011, 2, 345-352.	2.8	4
119	Ethogram of the mouse. , 2013, , 17-22.		4
120	Treatment Approaches in Rodent Models for Autism Spectrum Disorder. Current Topics in Behavioral Neurosciences, 2015, 30, 325-340.	1.7	4
121	Introducing high school students to the Gene Ontology classification system. F1000Research, 0, 8, 241.	1.6	4
122	Analysis of morphine responses in mice reveals a QTL on Chromosome 7. F1000Research, 2016, 5, 2156.	1.6	4
123	Introducing high school students to the Gene Ontology classification system. F1000Research, 2019, 8, 241.	1.6	4
124	Genes, Brain and Behavior entering its second year. Genes, Brain and Behavior, 2003, 2, 1-2.	2.2	3
125	Ovarian Abnormalities in the Staggerer Mutant Mouse. Scientific World Journal, The, 2005, 5, 661-664.	2.1	3
126	Does a polymorphic glucocorticoid receptor explain inherited altered stress response and increased anxietyâ€ŧype behaviors in a mouse population?. FASEB Journal, 2008, 22, 5-6.	0.5	3

#	Article	IF	CITATIONS
127	Active and passive avoidance. , 2013, , 291-298.		3
128	Hippocampal Mossy Fiber Distribution and Two-Way Avoidance Learning in Rats and Mice. Advances in Behavioral Biology, 1985, , 127-138.	0.2	3
129	Narcolepsy in Parkinson's disease with insulin resistance. F1000Research, 2020, 9, 1361.	1.6	3
130	COMPVAR: A Computer Program for Iteratively Estimating Components of Variance in Crossbreeding Experiments. Journal of Heredity, 1991, 82, 359-359.	2.4	2
131	The sociopathy of sociobiology. Behavioral and Brain Sciences, 1995, 18, 552-552.	0.7	2
132	Radialmaze. , 2013, , 299-303.		2
133	Genetic Dissection of Variation in Hippocampal Intra- and Infrapyramidal Mossy Fibers in the Mouse. Methods in Molecular Biology, 2017, 1488, 419-430.	0.9	2
134	Engaging high school students in systems biologyÂthrough an e-internship program. F1000Research, 2017, 6, 20.	1.6	2
135	A comparison between the full diallel cross and the simplified triple-test cross. Theoretical and Applied Genetics, 1986, 73, 27-30.	3.6	1
136	The hunting of the hippocampal function. Behavioral and Brain Sciences, 1996, 19, 767-768.	0.7	1
137	Neuroanatomy of cerebellum and olfactory bulb in a substrain of C57BL/6J inbred mice carrying a spontaneous mutation. Physiology and Behavior, 2001, 73, 827-831.	2.1	1
138	Genetic analysis and the targeting of hippocampal function. Hippocampus, 2002, 12, 2-3.	1.9	1
139	Genes, Brain and Behavior: Aiming for a new synthesis. Genes, Brain and Behavior, 2002, 1, 1-2.	2.2	1
140	Three successful years and a promising future for Genes, Brain and Behavior. Genes, Brain and Behavior, 2005, 4, 1-1.	2.2	1
141	P. Armitage and T. Colton (eds): Encyclopedia of Biostatistics. Genes, Brain and Behavior, 2007, 6, 304-304.	2.2	1
142	Behavioral phenotyping of mouse grooming and barbering. , 2013, , 195-204.		1
143	Reflexdevelopment. , 2013, , 88-96.		1
144	Cued and contextual fear conditioning. , 2013, , 315-324.		1

#	Article	IF	CITATIONS
145	Getting it right: learning and memory determines hand-preference behavior in the mouse. , 0, , 109-127.		1
146	Water navigation tasks. , 2013, , 277-290.		1
147	Introducing high school students to the Gene Ontology classification system. F1000Research, 0, 8, 241.	1.6	1
148	Narcolepsy in Parkinson's disease with insulin resistance. F1000Research, 0, 9, 1361.	1.6	1
149	Effects of Chronic Alcohol Consumption on Hippocampal Anatomy and Associated Behaviors in Three Inbred Strains of Mice. The Open Behavioral Science Journal, 2007, 1, 5-12.	0.8	1
150	Scribble Controls Social Motivation Behavior through the Regulation of the ERK/Mnk1 Pathway. Cells, 2022, 11, 1601.	4.1	1
151	Genetic effects on "environmental―measures: Consequences for behavior-genetic analysis. Behavioral and Brain Sciences, 1991, 14, 393-393.	0.7	0
152	Neuropsychological inference using a microphrenological approach does not need a locality assumption. Behavioral and Brain Sciences, 1997, 20, 517-518.	0.7	0
153	Symposium 3: What Genetically-Defined Animals can Teach us About What is Being Learned in Common Laboratory Tasks. Neural Plasticity, 1999, 6, 14-17.	2.2	Ο
154	Behavioral neurogenetics beyond determinism. Behavioral and Brain Sciences, 1999, 22, 890-891.	0.7	0
155	The sociobiology of sociopathy: An alternative hypothesis. Behavioral and Brain Sciences, 2004, 27, .	0.7	Ο
156	P. McGuffin, M.J. Owen and I. I. Gottesman (eds): Psychiatric Genetics and Genomics. Genes, Brain and Behavior, 2004, 3, 186-186.	2.2	0
157	Books in short Genes, Brain and Behavior, 2006, 5, 304-304.	2.2	Ο
158	Books in short. Genes, Brain and Behavior, 2007, 6, 208-208.	2.2	0
159	Adult Neurogenesis. Genes, Brain and Behavior, 2008, 7, 831-832.	2.2	0
160	Handbook of Statistical Genetics. Genes, Brain and Behavior, 2008, 7, 832-832.	2.2	0
161	Books in short. Genes, Brain and Behavior, 2012, 11, 374-374.	2.2	0

#	Article	IF	CITATIONS
163	Mouse models of stress-induced depression-like behavior: stress vulnerability and antidepressant response as traits. , 0, , 179-194.		0
164	Strains, SNPs, and selected lines: genetic factors inluencing variation in murine anxiety-like behavior. , 0, , 155-162.		0
165	Huntington's disease. , 0, , 436-446.		0
166	Developing mouse models of neurobehavioral disorders. , 0, , 4-17.		0
167	Behavioral and Brain Functions at 15. Behavioral and Brain Functions, 2020, 16, 8.	3.3	0
168	Radial Maze. , 2010, , 1111-1111.		0
169	Narcolepsy in Parkinson's disease with insulin resistance. F1000Research, 0, 9, 1361.	1.6	ο