List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7839252/publications.pdf Version: 2024-02-01

Ιμις Δ Ρλαπο

#	Article	IF	CITATIONS
1	Overcoming challenges of HERG potassium channel liability through rational design: Eag1 inhibitors for cancer treatment. Medicinal Research Reviews, 2022, 42, 183-226.	10.5	19
2	Voltage-Gated Potassium Channels Beyond the Action Potential. Bioelectricity, 2022, 4, 117-125.	1.1	3
3	Design of New Potent and Selective Thiophene-Based KV1.3 Inhibitors and Their Potential for Anticancer Activity. Cancers, 2022, 14, 2595.	3.7	5
4	miR449 Protects Airway Regeneration by Controlling AURKA/HDAC6-Mediated Ciliary Disassembly. International Journal of Molecular Sciences, 2022, 23, 7749.	4.1	1
5	3D Pharmacophore-Based Discovery of Novel KV10.1 Inhibitors with Antiproliferative Activity. Cancers, 2021, 13, 1244.	3.7	6
6	The Interplay between Dysregulated Ion Transport and Mitochondrial Architecture as a Dangerous Liaison in Cancer. International Journal of Molecular Sciences, 2021, 22, 5209.	4.1	15
7	Discovery of K _V 1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges. Medicinal Research Reviews, 2021, 41, 2423-2473.	10.5	23
8	Molecular Dynamics-Derived Pharmacophore Model Explaining the Nonselective Aspect of KV10.1 Pore Blockers. International Journal of Molecular Sciences, 2021, 22, 8999.	4.1	3
9	Voltage-gated potassium channels (K _v) in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
10	Production of levan from Bacillus subtilis var. natto and apoptotic effect on SH-SY5Y neuroblastoma cells. Carbohydrate Polymers, 2021, 273, 118613.	10.2	12
11	Comparative analysis of alternating hemiplegia of childhood and rapid-onset dystonia-parkinsonism ATP1A3 mutations reveals functional deficits, which do not correlate with disease severity. Neurobiology of Disease, 2020, 143, 105012.	4.4	8
12	Kv10.1 Regulates Microtubule Dynamics during Mitosis. Cancers, 2020, 12, 2409.	3.7	13
13	A Novel Anti-Kv10.1 Nanobody Fused to Single-Chain TRAIL Enhances Apoptosis Induction in Cancer Cells. Frontiers in Pharmacology, 2020, 11, 686.	3.5	16
14	The EAG Voltage-Dependent K+ Channel Subfamily: Similarities and Differences in Structural Organization and Gating. Frontiers in Pharmacology, 2020, 11, 411.	3.5	24
15	Inhibition of Kv10.1 Channels Sensitizes Mitochondria of Cancer Cells to Antimetabolic Agents. Cancers, 2020, 12, 920.	3.7	16
16	Measurement of Microtubule Dynamics by Spinning Disk Microscopy in Monopolar Mitotic Spindles. Journal of Visualized Experiments, 2019, , .	0.3	1
17	Antibodies Targeting K _V Potassium Channels: A Promising Treatment for Cancer. Bioelectricity, 2019, 1, 180-187.	1.1	7
18	The antitumor efficacy of monomeric disintegrin obtustatin in S-180 sarcoma mouse model. Investigational New Drugs, 2019, 37, 1044-1051.	2.6	13

#	Article	IF	CITATIONS
19	Antitumor efficacy of obtustatin in S-180 sarcoma mouse model. Toxicon, 2019, 159, S19.	1.6	Ο
20	New Structures and Gating of Voltage-Dependent Potassium (Kv) Channels and Their Relatives: A Multi-Domain and Dynamic Question. International Journal of Molecular Sciences, 2019, 20, 248.	4.1	28
21	Voltage-gated potassium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	10
22	SK3 Channel Overexpression in Mice Causes Hippocampal Shrinkage Associated with Cognitive Impairments. Molecular Neurobiology, 2017, 54, 1078-1091.	4.0	23
23	Gating Modulation of the Tumorâ€Related Kv10.1 Channel by Mibefradil. Journal of Cellular Physiology, 2017, 232, 2019-2032.	4.1	18
24	Alternating pH landscapes shape epithelial cancer initiation and progression: Focus on pancreatic cancer. BioEssays, 2017, 39, 1600253.	2.5	53
25	A new mechanism of voltage-dependent gating exposed by KV10.1 channels interrupted between voltage sensor and pore. Journal of General Physiology, 2017, 149, 577-593.	1.9	30
26	The electric fence to cell ycle progression: Do local changes in membrane potential facilitate disassembly of the primary cilium?. BioEssays, 2017, 39, 1600190.	2.5	15
27	Probing the Gating of Kv10.1 Channels by MTS Reagents. Biophysical Journal, 2017, 112, 248a.	0.5	0
28	Kv10.1 potassium channel: from the brain to the tumors. Biochemistry and Cell Biology, 2017, 95, 531-536.	2.0	37
29	APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1. Marine Drugs, 2017, 15, 287.	4.6	32
30	Synthesis of novel purpurealidin analogs and evaluation of their effect on the cancer-relevant potassium channel KV10.1. PLoS ONE, 2017, 12, e0188811.	2.5	17
31	Guiding TRAIL to cancer cells through Kv10.1 potassium channel overcomes resistance to doxorubicin. European Biophysics Journal, 2016, 45, 709-719.	2.2	29
32	In vivo imaging of tumour xenografts with an antibody targeting the potassium channel Kv10.1. European Biophysics Journal, 2016, 45, 721-733.	2.2	16
33	Cyclic expression of the voltageâ€gated potassium channel K _V 10.1 promotes disassembly of the primary cilium. EMBO Reports, 2016, 17, 708-723.	4.5	47
34	Periodic expression of Kv10.1 driven by pRb/E2F1 contributes to G2/M progression of cancer and non-transformed cells. Cell Cycle, 2016, 15, 799-811.	2.6	43
35	Kv10.1 K+ channel: from physiology to cancer. Pflugers Archiv European Journal of Physiology, 2016, 468, 751-762.	2.8	72
36	Analysis of the expression of Kv10.1 potassium channel in patients with brain metastases and glioblastoma multiforme: impact on survival. BMC Cancer, 2015, 15, 839.	2.6	55

#	Article	IF	CITATIONS
37	Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes. Journal of Biological Chemistry, 2015, 290, 30351-30365.	3.4	15
38	CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells. PLoS ONE, 2015, 10, e0130519.	2.5	31
39	Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains. Nature Communications, 2015, 6, 6672.	12.8	76
40	K _V 10.1 opposes activityâ€dependent increase in Ca ²⁺ influx into the presynaptic terminal of the parallel fibre–Purkinje cell synapse. Journal of Physiology, 2015, 593, 181-196.	2.9	44
41	Discontinuity between the Voltage-Sensor and the Pore Domain does not Abolish Voltage-Gating of Kv10.1 Potassium Channel. Biophysical Journal, 2015, 108, 427a.	0.5	0
42	Potassium channels in cell cycle and cell proliferation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130094.	4.0	305
43	Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood–brain barrier integrity. Molecular Psychiatry, 2014, 19, 1143-1149.	7.9	293
44	Hippocampal ether-Ã-go-go1 potassium channels blockade: Effects in the startle reflex and prepulse inhibition. Neuroscience Letters, 2014, 559, 13-17.	2.1	4
45	The roles of K+ channels in cancer. Nature Reviews Cancer, 2014, 14, 39-48.	28.4	391
46	KV10.1 K+-channel plasma membrane discrete domain partitioning and its functional correlation in neurons. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 921-931.	2.6	18
47	MyD88 signaling mediates the effects of the innate immune response in cerebellar short-term synaptic plasticity. Journal of Neuroimmunology, 2014, 275, 95.	2.3	0
48	PIST (GOPC) modulates the oncogenic voltage-gated potassium channel KV10.1. Frontiers in Physiology, 2013, 4, 201.	2.8	9
49	Behavioural and functional characterization of Kv10.1 (Eag1) knockout mice. Human Molecular Genetics, 2013, 22, 2247-2262.	2.9	56
50	Human Glioma–Initiating Cells Show a Distinct Immature Phenotype Resembling but Not Identical to NG2 Glia. Journal of Neuropathology and Experimental Neurology, 2013, 72, 307-324.	1.7	21
51	RNA interference with EAG1 enhances interferon gamma injury to glioma cells in vitro. Anticancer Research, 2013, 33, 865-70.	1.1	10
52	Approaches Targeting KV10.1 Open a Novel Window for Cancer Diagnosis and Therapy. Current Medicinal Chemistry, 2012, 19, 675-682.	2.4	26
53	Cortactin Controls Surface Expression of the Voltage-gated Potassium Channel KV10.1. Journal of Biological Chemistry, 2012, 287, 44151-44163.	3.4	26
54	801 Frequent Aberrant Expression of the Human Ether a Go-go (hEAG1) Potassium Channel in Head and Neck Cancer –Pathobiological Mechanisms and Clinical Implications. European Journal of Cancer, 2012, 48, S191.	2.8	0

#	Article	IF	CITATIONS
55	Frequent aberrant expression of the human ether à go-go (hEAG1) potassium channel in head and neck cancer: pathobiological mechanisms and clinical implications. Journal of Molecular Medicine, 2012, 90, 1173-1184.	3.9	43
56	Physical and functional interaction of K _V 10.1 with Rabaptinâ€5 impacts ion channel trafficking. FEBS Letters, 2012, 586, 3077-3084.	2.8	17
57	Association of Kv10.1 to Different Plasma Membrane Domains and its Interaction with other Membrane Associated Proteins in Endogenous Expression Systems. Biophysical Journal, 2012, 102, 680a.	0.5	0
58	Eag1, Eag2, and SK3 potassium channel expression in the rat hippocampus after global transient brain ischemia. Journal of Neuroscience Research, 2012, 90, 632-640.	2.9	10
59	Ether-Ã-go-go 1 (Eag1) Potassium Channel Expression in Dopaminergic Neurons of Basal Ganglia is Modulated by 6-Hydroxydopamine Lesion. Neurotoxicity Research, 2012, 21, 317-333.	2.7	18
60	Nucleofection induces non-specific changes in the metabolic activity of transfected cells. Molecular Biology Reports, 2012, 39, 2187-2194.	2.3	14
61	TRPM8 Ion Channels Differentially Modulate Proliferation and Cell Cycle Distribution of Normal and Cancer Prostate Cells. PLoS ONE, 2012, 7, e51825.	2.5	76
62	Eag1 potassium channels as markers of cervical dysplasia. Oncology Reports, 2011, 26, 1377-83.	2.6	31
63	Tumor cell-selective apoptosis induction through targeting of KV10.1 via bifunctional TRAIL antibody. Molecular Cancer, 2011, 10, 109.	19.2	58
64	A CAG repeat polymorphism of <i>KCNN3</i> predicts SK3 channel function and cognitive performance in schizophrenia. EMBO Molecular Medicine, 2011, 3, 309-319.	6.9	63
65	Functional KV10.1 Channels Localize to the Inner Nuclear Membrane. PLoS ONE, 2011, 6, e19257.	2.5	57
66	Rapid Internalization of the Oncogenic K+ Channel KV10.1. PLoS ONE, 2011, 6, e26329.	2.5	25
67	<i>Eag 1</i> , <i>Eag 2</i> and <i>Kcnn3</i> gene brain expression of isolated reared rats. Genes, Brain and Behavior, 2010, 9, 918-924.	2.2	11
68	K+channels as therapeutic targets in oncology. Future Medicinal Chemistry, 2010, 2, 745-755.	2.3	13
69	The potassium channel Ether à go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Molecular Cancer, 2010, 9, 18.	19.2	94
70	Characterization of Eag1 Channel Lateral Mobility in Rat Hippocampal Cultures by Single-Particle-Tracking with Quantum Dots. PLoS ONE, 2010, 5, e8858.	2.5	42
71	The voltage dependence of hEag currents is not determined solely by membrane-spanning domains. European Biophysics Journal, 2009, 38, 279-284.	2.2	7
72	Voltage-gated potassium channels as therapeutic targets. Nature Reviews Drug Discovery, 2009, 8, 982-1001.	46.4	644

#	Article	IF	CITATIONS
73	Concept of a selective tumour therapy and its evaluation by near-infrared fluorescence imaging and flat-panel volume computed tomography in mice. European Journal of Radiology, 2009, 70, 286-293.	2.6	9
74	lon channels: functional expression and therapeutic potential in cancer. EMBO Reports, 2008, 9, 512-515.	4.5	87
75	Pattern of axonal injury in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis: Implications for multiple sclerosis. Neurobiology of Disease, 2008, 30, 162-173.	4.4	118
76	Eag1 potassium channel immunohistochemistry in the CNS of adult rat and selected regions of human brain. Neuroscience, 2008, 155, 833-844.	2.3	56
77	Eag1 as a cancer target. Expert Opinion on Therapeutic Targets, 2008, 12, 837-843.	3.4	40
78	Eag1: An Emerging Oncological Target. Cancer Research, 2008, 68, 1611-1613.	0.9	78
79	Eag1 Expression Interferes with Hypoxia Homeostasis and Induces Angiogenesis in Tumors. Journal of Biological Chemistry, 2008, 283, 36234-36240.	3.4	149
80	Monoclonal Antibody Blockade of the Human Eag1 Potassium Channel Function Exerts Antitumor Activity. Cancer Research, 2007, 67, 7343-7349.	0.9	196
81	Re-Expression of a Developmentally Restricted Potassium Channel in Autoimmune Demyelination. American Journal of Pathology, 2007, 171, 589-598.	3.8	20
82	Different relevance of inactivation and F468 residue in the mechanisms of hEag1 channel blockage by astemizole, imipramine and dofetilide. FEBS Letters, 2006, 580, 5059-5066.	2.8	24
83	Overexpression of Eag1 potassium channels in clinical tumours. Molecular Cancer, 2006, 5, 41.	19.2	227
84	Ether à go-go potassium channel expression in soft tissue sarcoma patients. Molecular Cancer, 2006, 5, 42.	19.2	89
85	Potassium channels as tumour markers. FEBS Letters, 2006, 580, 2850-2852.	2.8	77
86	Silencing the Activity and Proliferative Properties of the Human Eagl Potassium Channel by RNA Interference. Journal of Biological Chemistry, 2006, 281, 13030-13037.	3.4	104
87	Role of Voltage-gated Potassium Channels in Cancer. Journal of Membrane Biology, 2005, 205, 115-124.	2.1	178
88	Glycosylation of Eag1 (Kv10.1) Potassium Channels. Journal of Biological Chemistry, 2005, 280, 29506-29512.	3.4	47
89	International Union of Pharmacology. LIII. Nomenclature and Molecular Relationships of Voltage-Gated Potassium Channels. Pharmacological Reviews, 2005, 57, 473-508.	16.0	785
90	Ether à go-go Potassium Channels as Human Cervical Cancer Markers. Cancer Research, 2004, 64, 6996-7001.	0.9	143

#	Article	IF	CITATIONS
91	Voltage-Gated Potassium Channels in Cell Proliferation. Physiology, 2004, 19, 285-292.	3.1	251
92	Mechanism of Block of hEag1 K+ Channels by Imipramine and Astemizole. Journal of General Physiology, 2004, 124, 301-317.	1.9	122
93	C-terminal domains implicated in the functional surface expression of potassium channels. EMBO Journal, 2003, 22, 395-403.	7.8	122
94	Cytoskeletal interactions determine the electrophysiological properties of human EAG potassium channels. Pflugers Archiv European Journal of Physiology, 2000, 441, 167-174.	2.8	49
95	Oncogenic potential of EAG K+ channels. EMBO Journal, 1999, 18, 5540-5547.	7.8	373
96	Cell Cycle–related Changes in the Conducting Properties of r-eag K+ Channels. Journal of Cell Biology, 1998, 143, 767-775.	5.2	101
97	Altered Ligand Dissociation Rates in Thyrotropin-Releasing Hormone Receptors Mutated in Glutamine 105 of Transmembrane Helix IIIâ€. Biochemistry, 1997, 36, 3308-3318.	2.5	4
98	Mitosis-promoting factor-mediated suppression of a cloned delayed rectifier potassium channel expressed in Xenopus oocytes. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 537-542.	7.1	69
99	Molecular basis for different pore properties of potassium channels from the rat brain Kv1 gene family. Pflugers Archiv European Journal of Physiology, 1997, 434, 661-668.	2.8	29
100	Demonstration of an inwardly rectifying K + current component modulated by thyrotropin-releasing hormone and caffeine in GH 3 rat anterior pituitary cells. Pflugers Archiv European Journal of Physiology, 1997, 435, 119-129.	2.8	44
101	Caffeine enhancement of electrical activity through direct blockade of inward rectifying K+ currents in GH3 rat anterior pituitary cells. Pflugers Archiv European Journal of Physiology, 1996, 431, 443-451.	2.8	18
102	Gs Couples Thyrotropin-releasing Hormone Receptors Expressed in Xenopus Oocytes to Phospholipase C. Journal of Biological Chemistry, 1995, 270, 3554-3559.	3.4	35
103	Ether-Ã-go-go encodes a voltage-gated channel permeable to K+ and Ca2+ and modulated by cAMP. Nature, 1993, 365, 445-448.	27.8	221
104	Clucose activation of adenylate cyclase in Saccharomyces cerevisiae mutants lacking glucose-phosphorylating enzymes. Cellular Signalling, 1993, 5, 435-441.	3.6	1
105	Activation of adenylate cyclase incdc25mutants ofSaccharomyces cerevisiae. FEBS Letters, 1993, 319, 237-243.	2.8	16
106	Extracellular K+ specifically modulates a rat brain K+ channel Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2466-2470.	7.1	229
107	In vitro activation of theSaccharomyces cerevisiaeRas/adenylate cyclase system by glucose and some of its analogues. FEBS Letters, 1991, 290, 43-48.	2.8	7
108	Effect of glucose analogues on yeast adenylate cyclase <i>in vitro</i> . Biochemical Society Transactions, 1989, 17, 1010-1011.	3.4	1

#	Article	IF	CITATIONS
109	Chronic Acidosis Rewires Cancer Cell Metabolism Through PPARα Signaling. SSRN Electronic Journal, 0, , .	0.4	0