
Bernhard Luscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7839132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In silico Screening and Behavioral Validation of a Novel Peptide, LCGA-17, With Anxiolytic-Like Properties. Frontiers in Neuroscience, 2021, 15, 705590.	2.8	6
2	GABA _A receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
3	Disinhibition of somatostatin interneurons confers resilience to stress in male but not female mice. Neurobiology of Stress, 2020, 13, 100238.	4.0	9
4	Full function of exon junction complex factor, Rbm8a, is critical for interneuron development. Translational Psychiatry, 2020, 10, 379.	4.8	16
5	Antidepressant mechanisms of ketamine: Focus on GABAergic inhibition. Advances in Pharmacology, 2020, 89, 43-78.	2.0	15
6	Ketamine normalizes binge drinking-induced defects in glutamatergic synaptic transmission and ethanol drinking behavior in female but not male mice. Neuropharmacology, 2019, 149, 35-44.	4.1	25
7	Gluconate suppresses seizure activity in developing brains by inhibiting CLC-3 chloride channels. Molecular Brain, 2019, 12, 50.	2.6	5
8	Reversal of a Treatment-Resistant, Depression-Related Brain State with the Kv7 Channel Opener Retigabine. Neuroscience, 2019, 406, 109-125.	2.3	10
9	Brexanolone, a neurosteroid antidepressant, vindicates the GABAergic deficit hypothesis of depression and may foster resilience. F1000Research, 2019, 8, 751.	1.6	56
10	GABA _A receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
11	Adolescent Social Stress Increases Anxiety-like Behavior and Alters Synaptic Transmission, Without Influencing Nicotine Responses, in a Sex-Dependent Manner. Neuroscience, 2018, 373, 182-198.	2.3	25
12	The Absence of DHHC3 Affects Primary and Latent Herpes Simplex Virus 1 Infection. Journal of Virology, 2018, 92, .	3.4	13
13	DHHC7 Palmitoylates Glucose Transporter 4 (Glut4) and Regulates Glut4 Membrane Translocation. Journal of Biological Chemistry, 2017, 292, 2979-2991.	3.4	45
14	Disinhibition of somatostatin-positive interneurons by deletion of postsynaptic GABAA receptors. Molecular Psychiatry, 2017, 22, 787-787.	7.9	4
15	Binding of Herpes Simplex Virus 1 UL20 to GODZ (DHHC3) Affects Its Palmitoylation and Is Essential for Infectivity and Proper Targeting and Localization of UL20 and Glycoprotein K. Journal of Virology, 2017, 91, .	3.4	17
16	Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state. Molecular Psychiatry, 2017, 22, 920-930.	7.9	153
17	Increased Motor-Impairing Effects of the Neuroactive Steroid Pregnanolone in Mice with Targeted Inactivation of the GABAA Receptor γ2 Subunit in the Cerebellum. Frontiers in Pharmacology, 2016, 7, 403.	3.5	6
18	Dissociation of Golgi-associated DHHC-type Zinc Finger Protein (GODZ)- and Sertoli Cell Gene with a Zinc Finger Domain-1² (SERZ-1²)-mediated Palmitoylation by Loss of Function Analyses in Knock-out Mice. Journal of Biological Chemistry, 2016, 291, 27371-27386.	3.4	31

BERNHARD LUSCHER

#	Article	IF	CITATIONS
19	Bidirectional Homeostatic Regulation of a Depression-Related Brain State by Gamma-Aminobutyric Acidergic Deficits and Ketamine Treatment. Biological Psychiatry, 2016, 80, 457-468.	1.3	94
20	Effect of C-Terminal S-Palmitoylation on D2 Dopamine Receptor Trafficking and Stability. PLoS ONE, 2015, 10, e0140661.	2.5	36
21	GABAergic Control of Depression-Related Brain States. Advances in Pharmacology, 2015, 73, 97-144.	2.0	107
22	GABAergic Signaling in Health and Disease. Neuropharmacology, 2015, 88, 1.	4.1	2
23	Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressive-like phenotype of GABAA receptor-deficient mice. Neuropharmacology, 2015, 88, 171-179.	4.1	39
24	Palmitoylation of Gephyrin Controls Receptor Clustering and Plasticity of GABAergic Synapses. PLoS Biology, 2014, 12, e1001908.	5.6	79
25	Adult hippocampal neurogenesis in the absence of serotonin (Commentary on Diaz <i>etÂal</i> .). European Journal of Neuroscience, 2013, 38, 2649-2649.	2.6	3
26	Multiple molecular mechanisms for a single GABA _A mutation in epilepsy. Neurology, 2013, 80, 1003-1008.	1.1	67
27	γ-Aminobutyric Acid Type A (GABAA) Receptor α Subunits Play a Direct Role in Synaptic Versus Extrasynaptic Targeting. Journal of Biological Chemistry, 2012, 287, 27417-27430.	3.4	54
28	Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 2012, 489, 150-154.	27.8	463
29	Influence of GABAA Receptor α Subunit Isoforms on the Benzodiazepine Binding Site. PLoS ONE, 2012, 7, e42101.	2.5	12
30	GABAergic Control of Critical Developmental Periods for Anxiety- and Depression-Related Behavior in Mice. PLoS ONE, 2012, 7, e47441.	2.5	37
31	Gamma-Aminobutyric Acidergic Deficits Cause Melancholic Depression: A Reply to Markou and Geyer. Biological Psychiatry, 2011, 69, e13-e14.	1.3	2
32	GABAA Receptor Trafficking-Mediated Plasticity of Inhibitory Synapses. Neuron, 2011, 70, 385-409.	8.1	371
33	The GABAergic deficit hypothesis of major depressive disorder. Molecular Psychiatry, 2011, 16, 383-406.	7.9	687
34	Knockdown of GABAA Receptor Signaling in GnRH Neurons Has Minimal Effects upon Fertility. Endocrinology, 2010, 151, 4428-4436.	2.8	51
35	Î ³ -Aminobutyric Acid-Type A Receptor Deficits Cause Hypothalamic-Pituitary-Adrenal Axis Hyperactivity and Antidepressant Drug Sensitivity Reminiscent of Melancholic Forms of Depression. Biological Psychiatry, 2010, 68, 512-520.	1.3	124
36	A balanced chromosomal translocation disrupting <i>ARHGEF9</i> is associated with epilepsy, anxiety, aggression, and mental retardation. Human Mutation, 2009, 30, 61-68.	2.5	131

BERNHARD LUSCHER

#	Article	IF	CITATIONS
37	Calcium-modulating cyclophilin ligand regulates membrane trafficking of postsynaptic GABAA receptors. Molecular and Cellular Neurosciences, 2008, 38, 277-289.	2.2	36
38	Sequential Postsynaptic Maturation Governs the Temporal Order of GABAergic and Glutamatergic Synaptogenesis in Rat Embryonic Cultures. Journal of Neuroscience, 2007, 27, 10860-10869.	3.6	37
39	GABAergic Control of Adult Hippocampal Neurogenesis in Relation to Behavior Indicative of Trait Anxiety and Depression States. Journal of Neuroscience, 2007, 27, 3845-3854.	3.6	186
40	Trafficking of Postsynaptic GABAA Receptors by Receptor-Associated Proteins. , 2007, , 41-67.		0
41	Downregulation of tonic GABA currents following epileptogenic stimulation of rat hippocampal cultures. Journal of Physiology, 2006, 577, 579-590.	2.9	23
42	GODZ-Mediated Palmitoylation of GABAA Receptors Is Required for Normal Assembly and Function of GABAergic Inhibitory Synapses. Journal of Neuroscience, 2006, 26, 12758-12768.	3.6	148
43	Distinct Â2 Subunit Domains Mediate Clustering and Synaptic Function of Postsynaptic GABAA Receptors and Gephyrin. Journal of Neuroscience, 2005, 25, 594-603.	3.6	138
44	The GDP-GTP Exchange Factor Collybistin: An Essential Determinant of Neuronal Gephyrin Clustering. Journal of Neuroscience, 2004, 24, 5816-5826.	3.6	239
45	The Â2 Subunit of GABAA Receptors Is a Substrate for Palmitoylation by GODZ. Journal of Neuroscience, 2004, 24, 5881-5891.	3.6	225
46	Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. , 2004, 102, 195-221.		245
47	Autoradiographic imaging of altered synaptic αβγ2 and extrasynaptic αβ GABAA receptors in a genetic mouse model of anxiety. Neurochemistry International, 2004, 44, 539-547.	3.8	19
48	The γ2 subunit of GABAA receptors is required for maintenance of receptors at mature synapses. Molecular and Cellular Neurosciences, 2003, 24, 442-450.	2.2	242
49	Pre- and post-synaptic mechanisms regulating the clustering of type A γ-aminobutyric acid receptors (GABAA receptors). Biochemical Society Transactions, 2003, 31, 889-892.	3.4	45
50	GABAA and GABAC receptors: regulation of assembly, localization, clustering and turnover. , 2002, , 192-218.		3
51	Hypothalamic Somatostatin and Growth Hormone-Releasing Hormone mRNA Expression Depend upon GABA _A Receptor Expression in the Developing Mouse. Neuroendocrinology, 2002, 76, 93-98.	2.5	3
52	GABAergic Terminals Are Required for Postsynaptic Clustering of Dystrophin But Not of GABA _A Receptors and Gephyrin. Journal of Neuroscience, 2002, 22, 4805-4813.	3.6	142
53	Subcellular localization and regulation of GABAA receptors and associated proteins. International Review of Neurobiology, 2001, 48, 31-64.	2.0	9
54	Ubiquitination, proteasomes and GABAA receptors. Nature Cell Biology, 2001, 3, E232-E233.	10.3	14

BERNHARD LUSCHER

#	Article	IF	CITATIONS
55	Rescue of γ2 subunit-deficient mice by transgenic overexpression of the GABAAreceptor γ2S or γ2L subunit isoforms. European Journal of Neuroscience, 2000, 12, 2639-2643.	2.6	36
56	Behavioural changes produced by transgenic overexpression of γ2L and γ2S subunits of the GABAAreceptor. European Journal of Neuroscience, 2000, 12, 2634-2638.	2.6	39
57	Role of the GABAAreceptor γ2 subunit in the development of gonadotropin-releasing hormone neurons in vivo. European Journal of Neuroscience, 2000, 12, 3488-3496.	2.6	22
58	Singleâ€channel properties of neuronal GABA _A receptors from mice lacking the γ2 subunit. Journal of Physiology, 2000, 527, 11-31.	2.9	63
59	Postsynaptic clustering of gamma -aminobutyric acid type A receptors by the gamma 3 subunit in vivo. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12860-12865.	7.1	66
60	Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nature Neuroscience, 1999, 2, 833-839.	14.8	521
61	Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nature Neuroscience, 1998, 1, 563-571.	14.8	775
62	GABAA-receptor assembly in vivo: Lessons from subunit mutant mice. Life Sciences, 1998, 62, 1611-1615.	4.3	15
63	Neuronal subtype-specific expression directed by the GABAA receptor δ subunit gene promoter/upstream region in transgenic mice and in cultured cells. Molecular Brain Research, 1997, 51, 197-211.	2.3	18
64	Activation of the GABAA-receptor l´-subunit gene promoter following pentylenetetrazole-induced seizures in transgenic mice. Molecular Brain Research, 1997, 51, 212-219.	2.3	13
65	Brain cell type specificity and gliosis-induced activation of the human cytomegalovirus immediate-early promoter in transgenic mice. Journal of Neuroscience, 1996, 16, 2275-2282.	3.6	52
66	Heterogeneity of GABAA-receptors: cell-specific expression, pharmacology, and regulation. Neurochemical Research, 1995, 20, 631-636.	3.3	86
67	Tissue-specific expression of a FMR1/β-galactosidase fusion gene in transgenic mice. Human Molecular Genetics, 1995, 4, 359-366.	2.9	70
68	Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutyric acid type A receptors Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7749-7753.	7.1	403
69	Histone-specific RNA 3′ processing in nuclear extracts from mammalian cells. Methods in Enzymology, 1990, 181, 74-89.	1.0	16
70	Transcription factor AP-4 contains multiple dimerization domains that regulate dimer specificity Genes and Development, 1990, 4, 1741-1752.	5.9	310
71	Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers Genes and Development, 1989, 3, 1507-1517.	5.9	254
72	Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements Genes and Development, 1988, 2, 1557-1569.	5.9	563

#	Article	IF	CITATIONS
73	RNA 3′ processing regulates histone mRNA levels in a mammalian cell cycle mutant. A processing factor becomes limiting in G1-arrested cells EMBO Journal, 1987, 6, 1721-1726.	7.8	105
74	A signal regulating mouse histone H4 mRNA levels in a mammalian cell cycle mutant and sequences controlling RNA 3â€2 processing are both contained within the same 80-bp fragment EMBO Journal, 1986, 5, 3297-3303.	7.8	69
75	Faithful cell-cycle regulation of a recombinant mouse histone H4 gene is controlled by sequences in the 3'-terminal part of the gene Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 4389-4393.	7.1	141
76	Membrane protein topology: amino acid residues in a putative transmembrane .alphahelix of bacteriorhodopsin labeled with the hydrophobic carbene-generating reagent 3-(trifluoromethyl)-3-(m-[1251]iodophenyl)diazirine. Biochemistry, 1985, 24, 5422-5430.	2.5	47