
Francesca Re

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7838855/publications.pdf Version: 2024-02-01

FRANCESCA RE

#	Article	IF	CITATIONS
1	Molecular dynamics simulations of doxorubicin in sphingomyelin-based lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183763.	2.6	9
2	Reduced Levels of ABCA1 Transporter Are Responsible for the Cholesterol Efflux Impairment in β-Amyloid-Induced Reactive Astrocytes: Potential Rescue from Biomimetic HDLs. International Journal of Molecular Sciences, 2022, 23, 102.	4.1	9
3	Givinostat-Liposomes: Anti-Tumor Effect on 2D and 3D Glioblastoma Models and Pharmacokinetics. Cancers, 2022, 14, 2978.	3.7	10
4	Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer's mice. Cell Death and Differentiation, 2021, 28, 203-218.	11.2	63
5	Multifunctional Liposomes Modulate Purinergic Receptor-Induced Calcium Wave in Cerebral Microvascular Endothelial Cells and Astrocytes: New Insights for Alzheimer's disease. Molecular Neurobiology, 2021, 58, 2824-2835.	4.0	5
6	H-Ferritin nanoparticle-mediated delivery of antibodies across a BBB <i>in vitro</i> model for treatment of brain malignancies. Biomaterials Science, 2021, 9, 2032-2042.	5.4	19
7	Oxidative Stress Boosts the Uptake of Cerium Oxide Nanoparticles by Changing Brain Endothelium Microvilli Pattern. Antioxidants, 2021, 10, 266.	5.1	7
8	Radiation and Adjuvant Drug-Loaded Liposomes target Glioblastoma Stem Cells and Trigger <i>In-situ</i> Immune Response. Neuro-Oncology Advances, 2021, 3, vdab076.	0.7	9
9	Dietary Nanoparticles Interact with Cluten Peptides and Alter the Intestinal Homeostasis Increasing the Risk of Celiac Disease. International Journal of Molecular Sciences, 2021, 22, 6102.	4.1	5
10	Small Hexokinase 1 Peptide against Toxic SOD1 G93A Mitochondrial Accumulation in ALS Rescues the ATP-Related Respiration. Biomedicines, 2021, 9, 948.	3.2	10
11	The 3.0 Cell Communication: New Insights in the Usefulness of Tunneling Nanotubes for Glioblastoma Treatment. Cancers, 2021, 13, 4001.	3.7	13
12	Coupling quaternary ammonium surfactants to the surface of liposomes improves both antibacterial efficacy and host cell biocompatibility. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 12-20.	4.3	19
13	An update of nanoparticle-based approaches for glioblastoma multiforme immunotherapy. Nanomedicine, 2020, 15, 1861-1871.	3.3	23
14	PEGylated solid lipid nanoparticles for brain delivery of lipophilic kiteplatin Pt(IV) prodrugs: An in vitro study. International Journal of Pharmaceutics, 2020, 583, 119351.	5.2	45
15	The Clustering of mApoE Anti-Amyloidogenic Peptide on Nanoparticle Surface Does Not Alter Its Performance in Controlling Beta-Amyloid Aggregation. International Journal of Molecular Sciences, 2020, 21, 1066.	4.1	10
16	The Extent of Human Apolipoprotein A-I Lipidation Strongly Affects the β-Amyloid Efflux Across the Blood-Brain Barrier in vitro. Frontiers in Neuroscience, 2019, 13, 419.	2.8	42
17	Protein-functionalized nanoparticles derived from end-functional polymers and polymer prodrugs for crossing the blood-brain barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 70-82.	4.3	26
18	A New Approach for Glyco-Functionalization of Collagen-Based Biomaterials. International Journal of Molecular Sciences, 2019, 20, 1747.	4.1	7

FRANCESCA RE

#	Article	IF	CITATIONS
19	The synergistic effect of chlorotoxin-mApoE in boosting drug-loaded liposomes across the BBB. Journal of Nanobiotechnology, 2019, 17, 115.	9.1	20
20	Differential Exchange of Multifunctional Liposomes Between Glioblastoma Cells and Healthy Astrocytes via Tunneling Nanotubes. Frontiers in Bioengineering and Biotechnology, 2019, 7, 403.	4.1	24
21	Phage-displayed peptides targeting specific tissues and organs. Journal of Drug Targeting, 2019, 27, 555-565.	4.4	26
22	Nanomedicine for the Treatment of Alzheimer's Disease. Journal of Biomedical Nanotechnology, 2019, 15, 1997-2024.	1.1	36
23	The ability of liposomes, tailored for blood–brain barrier targeting, to reach the brain is dramatically affected by the disease state. Nanomedicine, 2018, 13, 585-594.	3.3	11
24	Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer's disease-like transgenic mouse model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 609-618.	3.3	109
25	Evolution of Nanoparticle Protein Corona across the Blood–Brain Barrier. ACS Nano, 2018, 12, 7292-7300.	14.6	137
26	Modulation of the intrinsic neuronal excitability by multifunctional liposomes tailored for the treatment of Alzheimer's disease. International Journal of Nanomedicine, 2018, Volume 13, 4059-4071.	6.7	18
27	Multifunctional liposomes interact with Abeta in human biological fluids: Therapeutic implications for Alzheimer's disease. Neurochemistry International, 2017, 108, 60-65.	3.8	26
28	Multifunctional liposomes delay phenotype progression and prevent memory impairment in a presymptomatic stage mouse model of Alzheimer disease. Journal of Controlled Release, 2017, 258, 121-129.	9.9	40
29	Applicability of [11 C]PIB micro-PET imaging for inÂvivo follow-up of anti-amyloid treatment effects in APP23 mouse model. Neurobiology of Aging, 2017, 57, 84-94.	3.1	17
30	Retro-inverso peptide inhibitor nanoparticles as potent inhibitors of aggregation of the Alzheimer's Aβ peptide. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 723-732.	3.3	47
31	Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner. International Journal of Nanomedicine, 2017, Volume 12, 3547-3559.	6.7	46
32	18 F-labeling syntheses and preclinical evaluation of functionalized nanoliposomes for Alzheimer's disease. European Journal of Pharmaceutical Sciences, 2016, 88, 257-266.	4.0	6
33	Pulmonary administration of functionalized nanoparticles significantly reduces beta-amyloid in the brain of an Alzheimer's disease murine model. Nano Research, 2016, 9, 2190-2201.	10.4	13
34	Fluorimetric detection of the earliest events in amyloid β oligomerization and its inhibition by pharmacologically active liposomes. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 746-756.	2.4	11
35	Novel Antitransferrin Receptor Antibodies Improve the Blood–Brain Barrier Crossing Efficacy of Immunoliposomes. Journal of Pharmaceutical Sciences, 2016, 105, 276-283.	3.3	22
36	The hunt for brain AÎ ² oligomers by peripherally circulating multi-functional nanoparticles: Potential therapeutic approach for Alzheimer disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 43-52.	3.3	46

Francesca Re

#	Article	IF	CITATIONS
37	Investigation of Functionalized Poly(<i>N</i> , <i>N</i> â€dimethylacrylamide)â€ <i>block</i> â€polystyrene Nanoparticles As Novel Drug Delivery System to Overcome the Blood–Brain Barrier In Vitro. Macromolecular Bioscience, 2015, 15, 1687-1697.	4.1	24
38	Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PS1 transgenic mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 421-430.	3.3	68
39	Multifunctional Liposomes Reduce Brain β-Amyloid Burden and Ameliorate Memory Impairment in Alzheimer's Disease Mouse Models. Journal of Neuroscience, 2014, 34, 14022-14031.	3.6	141
40	Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood–brain-barrier: Implications for therapy of Alzheimer disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1583-1590.	3.3	121
41	Liposomes functionalized to overcome the blood–brain barrier and to target amyloid-β peptide: the chemical design affects the permeability across an in vitro model. International Journal of Nanomedicine, 2013, 8, 1749.	6.7	54
42	Effect of nanoparticles binding ß-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages. International Journal of Nanomedicine, 2013, 8, 1335.	6.7	11
43	Applications of Surface Plasmon Resonance (SPR) for the Characterization of Nanoparticles Developed for Biomedical Purposes. Sensors, 2012, 12, 16420-16432.	3.8	59
44	Self-Assembled Electrical Biodetector Based on Reduced Graphene Oxide. ACS Nano, 2012, 6, 5514-5520.	14.6	44
45	Nanotechnology for neurodegenerative disorders. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, S51-S58.	3.3	68
46	Nanotechnology for neurodegenerative disorders. Maturitas, 2012, 73, 45-51.	2.4	107
47	Functionalization with ApoE-derived peptides enhances the interaction with brain capillary endothelial cells of nanoliposomes binding amyloid-beta peptide. Journal of Biotechnology, 2011, 156, 341-346.	3.8	92
48	Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 551-559.	3.3	149
49	Liposomes functionalized with acidic lipids rescue Al²-induced toxicity in murine neuroblastoma cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 560-571.	3.3	27
50	Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer's Al² peptide. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 541-550.	3.3	122
51	Abeta Peptide Toxicity is Reduced After Treatments Decreasing Phosphatidylethanolamine Content in Differentiated Neuroblastoma Cells. Neurochemical Research, 2011, 36, 863-869.	3.3	21
52	The binding affinity of anti-Aβ1-42ÂMAb-decorated nanoliposomes to Aβ1-42Âpeptides inÂvitro and to amyloid deposits in post-mortem tissue. Biomaterials, 2011, 32, 5489-5497.	11.4	76
53	Lipid-based nanoparticles with high binding affinity for amyloid-β1–42 peptide. Biomaterials, 2010, 31, 6519-6529.	11.4	190
54	TrkA pathway activation induced by amyloid-beta (Abeta). Molecular and Cellular Neurosciences, 2009, 40, 365-373.	2.2	32

FRANCESCA RE

#	Article	IF	CITATIONS
55	Prion protein structure is affected by pHâ€dependent interaction with membranes: A study in a model system. FEBS Letters, 2008, 582, 215-220.	2.8	25
56	Enhanced folate binding of cultured fibroblasts from Alzheimer's disease patients. Neuroscience Letters, 2008, 436, 317-320.	2.1	8
57	Membrane Features and Activity of CPI-Anchored Enzymes: Alkaline Phosphatase Reconstituted in Model Membranes. Biochemistry, 2008, 47, 5433-5440.	2.5	32
58	β-amyloid (25–35) enhances lipid metabolism and protein ubiquitination in cultured neurons. Journal of Neuroscience Research, 2007, 85, 2253-2261.	2.9	6