
Rolf Urbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7838767/publications.pdf Version: 2024-02-01

POLEHDBACH

#	Article	IF	CITATIONS
1	Nonfluorescent RNA In Situ Hybridization Combined with Antibody Staining to Visualize Multiple Gene Expression Patterns in the Embryonic Brain of Drosophila. Methods in Molecular Biology, 2020, 2047, 97-113.	0.9	2
2	Analysis of Complete Neuroblast Cell Lineages in the Drosophila Embryonic Brain via Dil Labeling. Methods in Molecular Biology, 2020, 2047, 115-135.	0.9	0
3	Genetic regulation and function of epidermal growth factor receptor signalling in patterning of the embryonic <i>Drosophila</i> brain. Open Biology, 2016, 6, 160202.	3.6	7
4	Retinal homeobox promotes cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila brain. Mechanisms of Development, 2016, 142, 50-61.	1.7	20
5	Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of <i>Drosophila</i> . Development (Cambridge), 2016, 143, 1290-1301.	2.5	22
6	Non-fluorescent RNA In Situ Hybridization Combined with Antibody Staining to Visualize Multiple Gene Expression Patterns in the Embryonic Brain of Drosophila. Methods in Molecular Biology, 2014, 1082, 19-35.	0.9	3
7	The p21-activated kinase Mbt is a component of the apical protein complex in central brain neuroblasts and controls cell proliferation. Development (Cambridge), 2013, 140, 1871-1881.	2.5	13
8	Neuroblast pattern and identity in the <i>Drosophila</i> tail region and role of <i>doublesex</i> in the survival of sex-specific precursors. Development (Cambridge), 2013, 140, 1830-1842.	2.5	48
9	Origin of <i>Drosophila</i> mushroom body neuroblasts and generation of divergent embryonic lineages. Development (Cambridge), 2012, 139, 2510-2522.	2.5	77
10	Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo, 2010, 1, 14.	3.2	149
11	Role of en and novel interactions between msh, ind, and vnd in dorsoventral patterning of the Drosophila brain and ventral nerve cord. Developmental Biology, 2010, 346, 332-345.	2.0	17
12	Ems and Nkx6 are central regulators in dorsoventral patterning of the <i>Drosophila</i> brain. Development (Cambridge), 2009, 136, 3937-3947.	2.5	12
13	Dorsoventral Patterning of the Brain: A Comparative Approach. Advances in Experimental Medicine and Biology, 2008, 628, 42-56.	1.6	35
14	A procephalic territory in Drosophila exhibiting similarities and dissimilarities compared to the vertebrate midbrain/hindbrain boundary region. Neural Development, 2007, 2, 23.	2.4	28
15	Generation of cell diversity and segmental pattern in the embryonic central nervous system ofDrosophila. Developmental Dynamics, 2006, 235, 861-869.	1.8	107
16	The columnar gene vnd is required for tritocerebral neuromere formation during embryonic brain development of Drosophila. Development (Cambridge), 2006, 133, 4331-4339.	2.5	18
17	Segment-specific requirements for dorsoventral patterning genes during early brain development in Drosophila. Development (Cambridge), 2006, 133, 4315-4330.	2.5	22
18	Neuroblast formation and patterning during early brain development inDrosophila. BioEssays, 2004, 26, 739-751.	2.5	123

Rolf Urbach

#	Article	IF	CITATIONS
19	Early steps in building the insect brain: neuroblast formation and segmental patterning in the developing brain of different insect species. Arthropod Structure and Development, 2003, 32, 103-123.	1.4	88
20	Spatial and temporal pattern of neuroblasts, proliferation, and Engrailed expression during early brain development in Tenebrio molitor L. (Coleoptera). Arthropod Structure and Development, 2003, 32, 125-140.	1.4	23
21	Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development (Cambridge), 2003, 130, 3621-3637.	2.5	205
22	The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila. Development (Cambridge), 2003, 130, 3589-3606.	2.5	112
23	Segment polarity and DV patterning gene expression reveals segmental organization of theDrosophilabrain. Development (Cambridge), 2003, 130, 3607-3620.	2.5	95