Zhibin Guan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7836732/publications.pdf

Version: 2024-02-01

87888 123424 7,844 61 38 61 h-index citations g-index papers 66 66 66 7413 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Electrically Fueled Active Supramolecular Materials. Journal of the American Chemical Society, 2022, 144, 7844-7851.	13.7	30
2	$\label{thm:multifunctional} \textbf{Multifunctional Dendronized Polypeptides for Controlled Adjuvanticity. Biomacromolecules, 2021, , .}$	5.4	5
3	Redox Chemicalâ€Fueled Dissipative Selfâ€Assembly of Active Materials. ChemSystemsChem, 2020, 2, e1900030.	2.6	45
4	Double-Linear Insertion Mode of \hat{l}_{\pm} , \hat{l}_{\pm} . Dienes Enabled by Thio-imino-quinoline Iron Catalyst. ACS Catalysis, 2020, 10, 15092-15103.	11,2	7
5	Chemothermally Driven Outâ€ofâ€Equilibrium Materials for Macroscopic Motion. ChemSystemsChem, 2020, 2, e2000024.	2.6	6
6	Multivalent Peptide-Functionalized Bioreducible Polymers for Cellular Delivery of Various RNAs. Biomacromolecules, 2020, 21, 1613-1624.	5.4	16
7	Self-healing magnetic nanocomposites with robust mechanical properties and high magnetic actuation potential prepared from commodity monomers $\langle i \rangle via \langle i \rangle$ graft-from approach. Polymer Chemistry, 2020, 11, 1292-1297.	3.9	12
8	Direct Silyl Ether Metathesis for Vitrimers with Exceptional Thermal Stability. Journal of the American Chemical Society, 2019, 141, 16595-16599.	13.7	198
9	A Threeâ€Armed Polymer with Tunable Selfâ€Assembly and Selfâ€Healing Properties Based on Benzeneâ€1,3,5â€tricarboxamide and Metal–Ligand Interactions. Macromolecular Rapid Communications, 2019, 40, e1800909.	3.9	30
10	Dendritic peptide bolaamphiphiles for siRNA delivery to primary adipocytes. Biomaterials, 2018, 178, 458-466.	11.4	26
11	Immunomodulation of the NLRP3 Inflammasome through Structure-Based Activator Design and Functional Regulation via Lysosomal Rupture. ACS Central Science, 2018, 4, 982-995.	11.3	42
12	Recyclable, Strong, and Highly Malleable Thermosets Based on Boroxine Networks. Journal of the American Chemical Society, 2018, 140, 6217-6220.	13.7	265
13	Large Continuous Mechanical Gradient Formation via Metal–Ligand Interactions. Angewandte Chemie - International Edition, 2017, 56, 15575-15579.	13.8	43
14	Silyl Ether as a Robust and Thermally Stable Dynamic Covalent Motif for Malleable Polymer Design. Journal of the American Chemical Society, 2017, 139, 14881-14884.	13.7	385
15	Large Continuous Mechanical Gradient Formation via Metal–Ligand Interactions. Angewandte Chemie, 2017, 129, 15781-15785.	2.0	11
16	Phosphine-Iminoquinoline Iron Complexes for Ethylene Polymerization and Copolymerization. Organometallics, 2017, 36, 3758-3764.	2.3	17
17	Antisense oligonucleotide and thyroid hormone conjugates for obesity treatment. Scientific Reports, 2017, 7, 9307.	3.3	11
18	Focused Library Approach to Discover Discrete Dipeptide Bolaamphiphiles for siRNA Delivery. Biomacromolecules, 2016, 17, 3138-3144.	5.4	15

#	Article	IF	CITATIONS
19	Fluorocarbon Modified Low-Molecular-Weight Polyethylenimine for siRNA Delivery. Bioconjugate Chemistry, 2016, 27, 1784-1788.	3.6	39
20	Tuning Dynamic Mechanical Response in Metallopolymer Networks through Simultaneous Control of Structural and Temporal Properties of the Networks. Macromolecules, 2016, 49, 6310-6321.	4.8	124
21	Biodegradable Dendronized Polymers for Efficient mRNA Delivery. ChemistrySelect, 2016, 1, 4413-4417.	1.5	8
22	Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Science Advances, 2016, 2, e1501591.	10.3	268
23	<i>In situ</i> ultra-small-angle X-ray scattering study under uniaxial stretching of colloidal crystals prepared by silica nanoparticles bearing hydrogen-bonding polymer grafts. IUCrJ, 2016, 3, 211-218.	2.2	16
24	Mechanically Robust and Selfâ∈Healable Superlattice Nanocomposites by Selfâ∈Assembly of Singleâ∈Component â∈œStickyâ∈•Polymerâ∈Grafted Nanoparticles. Advanced Materials, 2015, 27, 3934-3941.	21.0	111
25	Multivalent dendritic polyglycerolamine with arginine and histidine end groups for efficient siRNA transfection. Beilstein Journal of Organic Chemistry, 2015, 11, 763-772.	2.2	9
26	Amino Acid-Functionalized Dendritic Polyglycerol for Safe and Effective siRNA Delivery. Biomacromolecules, 2015, 16, 3869-3877.	5.4	19
27	Enhanced Glassy State Mechanical Properties of Polymer Nanocomposites via Supramolecular Interactions. Nano Letters, 2015, 15, 5465-5471.	9.1	54
28	Enhancing Mechanical Performance of a Covalent Self-Healing Material by Sacrificial Noncovalent Bonds. Journal of the American Chemical Society, 2015, 137, 4846-4850.	13.7	367
29	Forced Unfolding of Single-Chain Polymeric Nanoparticles. Journal of the American Chemical Society, 2015, 137, 6880-6888.	13.7	89
30	Malleable and Self-Healing Covalent Polymer Networks through Tunable Dynamic Boronic Ester Bonds. Journal of the American Chemical Society, 2015, 137, 6492-6495.	13.7	768
31	Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nature Materials, 2015, 14, 1210-1216.	27.5	375
32	Structure-Based Design of Dendritic Peptide Bolaamphiphiles for siRNA Delivery. ACS Central Science, 2015, 1, 303-312.	11.3	57
33	Catalytic acceptorless dehydrogenations: Ru-Macho catalyzed construction of amides and imines. Tetrahedron, 2014, 70, 4213-4218.	1.9	67
34	Self-Healing Multiphase Polymers via Dynamic Metal–Ligand Interactions. Journal of the American Chemical Society, 2014, 136, 16128-16131.	13.7	467
35	Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers. Nature Materials, 2014, 13, 1055-1062.	27.5	107
36	Multifunctional Dendronized Peptide Polymer Platform for Safe and Effective siRNA Delivery. Journal of the American Chemical Society, 2013, 135, 4962-4965.	13.7	136

#	Article	IF	CITATIONS
37	Direct observation of a cationic ruthenium complex for ethylene insertion polymerization. Chemical Science, 2013, 4, 2902.	7.4	6
38	Maintaining functional islets through encapsulation in an injectable saccharide–peptide hydrogel. Biomaterials, 2013, 34, 3984-3991.	11.4	39
39	Self-assembly of core–shell nanoparticles for self-healing materials. Polymer Chemistry, 2013, 4, 4885.	3.9	51
40	"Clicked―fluoropolymer elastomers as robust materials for potential microfluidic device applications. Journal of Materials Chemistry, 2012, 22, 1100-1106.	6.7	24
41	Making Insoluble Polymer Networks Malleable via Olefin Metathesis. Journal of the American Chemical Society, 2012, 134, 8424-8427.	13.7	475
42	Olefin Metathesis for Effective Polymer Healing via Dynamic Exchange of Strong Carbon–Carbon Double Bonds. Journal of the American Chemical Society, 2012, 134, 14226-14231.	13.7	444
43	Multiphase design of autonomic self-healing thermoplastic elastomers. Nature Chemistry, 2012, 4, 467-472.	13.6	1,021
44	Recent Progress of Catalytic Polymerization for Controlling Polymer Topology. Chemistry - an Asian Journal, 2010, 5, 1058-1070.	3.3	67
45	Foldamers as Cross-Links for Tuning the Dynamic Mechanical Property of Methacrylate Copolymers. Macromolecules, 2010, 43, 6185-6192.	4.8	24
46	Cascade Chain-Walking Polymerization to Generate Large Dendritic Nanoparticles. Macromolecules, 2010, 43, 4829-4832.	4.8	28
47	Effect of Ligand Electronics on the Stability and Chain Transfer Rates of Substituted Pd(II) α-Diimine Catalysts. Macromolecules, 2010, 43, 4091-4097.	4.8	126
48	Nickel(II) and Palladium(II) Polymerization Catalysts Bearing a Fluorinated Cyclophane Ligand: Stabilization of the Reactive Intermediate. Organometallics, 2009, 28, 4452-4463.	2.3	125
49	Supramolecular design in biopolymers and biomimetic polymers for advanced mechanical properties. Polymer International, 2007, 56, 467-473.	3.1	46
50	Saccharide-Peptide Hybrid Copolymers as Biomaterials. Angewandte Chemie - International Edition, 2005, 44, 6529-6533.	13.8	87
51	Bio-inspired Design of Modular Multi-domain Polymers for Advanced Biomaterials. Materials Research Society Symposia Proceedings, 2005, 873, 1.	0.1	0
52	Nickel(II) and Palladium(II) Complexes with an Alkane-Bridged Macrocyclic Ligand:Â Synthesis, Characterization, and Polymerization Tests. Organometallics, 2005, 24, 4933-4939.	2.3	40
53	Living Polymerization of $\hat{I}\pm$ -Olefins at Elevated Temperatures Catalyzed by a Highly Active and Robust Cyclophane-Based Nickel Catalyst. Macromolecules, 2005, 38, 2544-2546.	4.8	130
54	Ligand Electronic Effects on Late Transition Metal Polymerization Catalysts. Organometallics, 2005, 24, 1145-1155.	2.3	189

ZHIBIN GUAN

#	Article	IF	CITATION
55	Modular Domain Structure:  A Biomimetic Strategy for Advanced Polymeric Materials. Journal of the American Chemical Society, 2004, 126, 2058-2065.	13.7	125
56	Control of polymer topology through late-transition-metal catalysis. Journal of Polymer Science Part A, 2003, 41, 3680-3692.	2.3	84
57	Late-Transition-Metal Complexes with Bisazaferrocene Ligands for Ethylene Oligomerization. Organometallics, 2003, 22, 5033-5046.	2.3	75
58	Control of Polymer Topology through Transition-Metal Catalysis:Â Synthesis of Hyperbranched Polymers by Cobalt-Mediated Free Radical Polymerization. Journal of the American Chemical Society, 2002, 124, 5616-5617.	13.7	95
59	Synthesis of New Phosphine Imine Ligands and Their Effects on the Thermal Stability of Late-Transition-Metal Olefin Polymerization Catalysts. Organometallics, 2002, 21, 3580-3586.	2.3	120
60	Control of Polymer Topology by Chain-Walking Catalysts. Chemistry - A European Journal, 2002, 8, 3086.	3.3	169
61	Bioinspired Supramolecular Design in Polymers for Advanced Mechanical Properties. , 0, , 235-258.		1