Mary B Kennedy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7836180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The rat brain postsynaptic density fraction contains a homolog of the drosophila discs-large tumor suppressor protein. Neuron, 1992, 9, 929-942.	8.1	1,139
2	A Synaptic Ras-GTPase Activating Protein (p135 SynGAP) Inhibited by CaM Kinase II. Neuron, 1998, 20, 895-904.	8.1	554
3	The postsynaptic density at glutamatergic synapses. Trends in Neurosciences, 1997, 20, 264-268.	8.6	426
4	Identification of Proteins in the Postsynaptic Density Fraction by Mass Spectrometry. Journal of Neuroscience, 2000, 20, 4069-4080.	3.6	380
5	Interaction of ion channels and receptors with PDZ domain proteins. Current Opinion in Neurobiology, 1997, 7, 368-373.	4.2	343
6	Spine architecture and synaptic plasticity. Trends in Neurosciences, 2005, 28, 182-187.	8.6	310
7	Identification of a Phosphorylation Site for Calcium/Calmodulindependent Protein Kinase II in the NR2B Subunit of the N-Methyl-D-aspartate Receptor. Journal of Biological Chemistry, 1996, 271, 31670-31678.	3.4	277
8	Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2+-independent activity. Neuron, 1988, 1, 593-604.	8.1	271
9	Tetanic Stimulation Leads to Increased Accumulation of Ca ²⁺ /Calmodulin-Dependent Protein Kinase II via Dendritic Protein Synthesis in Hippocampal Neurons. Journal of Neuroscience, 1999, 19, 7823-7833.	3.6	271
10	Integration of biochemical signalling in spines. Nature Reviews Neuroscience, 2005, 6, 423-434.	10.2	255
11	Visualization of the Distribution of Autophosphorylated Calcium/Calmodulin-Dependent Protein Kinase II after Tetanic Stimulation in the CA1 Area of the Hippocampus. Journal of Neuroscience, 1997, 17, 5416-5427.	3.6	209
12	Densin-180 Forms a Ternary Complex with the α-Subunit of Ca ²⁺ /Calmodulin-Dependent Protein Kinase II and α-Actinin. Journal of Neuroscience, 2001, 21, 423-433.	3.6	188
13	Regulation of synaptic transmission in the central nervous system: Long-term potentiation. Cell, 1989, 59, 777-787.	28.9	182
14	SynGAP Regulates Spine Formation. Journal of Neuroscience, 2004, 24, 8862-8872.	3.6	179
15	C-Terminal Truncation of NR2A Subunits Impairs Synaptic But Not Extrasynaptic Localization of NMDA Receptors. Journal of Neuroscience, 2000, 20, 4573-4581.	3.6	176
16	Signal transduction molecules at the glutamatergic postsynaptic membrane1Published on the World Wide Web on 24 October 1997.1. Brain Research Reviews, 1998, 26, 243-257.	9.0	173
17	Citron Binds to PSD-95 at Glutamatergic Synapses on Inhibitory Neurons in the Hippocampus. Journal of Neuroscience, 1999, 19, 96-108.	3.6	173
18	Interactions between the NR2B Receptor and CaMKII Modulate Synaptic Plasticity and Spatial Learning. Journal of Neuroscience, 2007, 27, 13843-13853.	3.6	169

MARY B KENNEDY

#	Article	IF	CITATIONS
19	Characterization of Densin-180, a New Brain-Specific Synaptic Protein of the <i>O</i> -Sialoglycoprotein Family. Journal of Neuroscience, 1996, 16, 6839-6852.	3.6	148
20	Conserved and variable regions in the subunits of brain type II Ca2+/calmodulin-dependent protein kinase. Neuron, 1988, 1, 63-72.	8.1	143
21	The postsynaptic density. Current Opinion in Neurobiology, 1993, 3, 732-737.	4.2	135
22	Synaptic Signaling in Learning and Memory. Cold Spring Harbor Perspectives in Biology, 2016, 8, a016824.	5.5	127
23	Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13968-13973.	7.1	122
24	SynGAP Regulates Steady-State and Activity-Dependent Phosphorylation of Cofilin. Journal of Neuroscience, 2008, 28, 13673-13683.	3.6	119
25	Regulation of the Neuron-specific Ras GTPase-activating Protein, synGAP, by Ca2+/Calmodulin-dependent Protein Kinase II. Journal of Biological Chemistry, 2004, 279, 17980-17988.	3.4	105
26	Hippocampal Neurons Predisposed to Neurofibrillary Tangle Formation Are Enriched in Type II Calcium/Calmodulin-Dependent Protein Kinase. Journal of Neuropathology and Experimental Neurology, 1990, 49, 49-63.	1.7	103
27	Lysophosphatidyl choline facilitates labeling of CNS projections with horseradish peroxidase. Journal of Neuroscience Methods, 1980, 2, 183-189.	2.5	101
28	Hippocampal Synaptic Plasticity in Mice Overexpressing an Embryonic Subunit of the NMDA Receptor. Journal of Neuroscience, 1998, 18, 4177-4188.	3.6	95
29	A Dynamic Model of Interactions of Ca2+, Calmodulin, and Catalytic Subunits of Ca2+/Calmodulin-Dependent Protein Kinase II. PLoS Computational Biology, 2010, 6, e1000675.	3.2	80
30	The Huntington's disease mutation impairs Huntingtin's role in the transport of NF-κB from the synapse to the nucleus. Human Molecular Genetics, 2010, 19, 4373-4384.	2.9	77
31	The α subunit of type II Ca2+/calmodulin-dependent protein kinase is highly conserved in Drosophila. Neuron, 1991, 7, 439-450.	8.1	72
32	Phosphorylation of Synaptic GTPase-activating Protein (synGAP) by Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) and Cyclin-dependent Kinase 5 (CDK5) Alters the Ratio of Its GAP Activity toward Ras and Rap GTPases. Journal of Biological Chemistry, 2015, 290, 4908-4927.	3.4	72
33	Collective nomenclature for LAP proteins. Nature Cell Biology, 2000, 2, E114-E114.	10.3	64
34	Computational reconstitution of spine calcium transients from individual proteins. Frontiers in Synaptic Neuroscience, 2015, 7, 17.	2.5	63
35	Deletion of Densin-180 Results in Abnormal Behaviors Associated with Mental Illness and Reduces mGluR5 and DISC1 in the Postsynaptic Density Fraction. Journal of Neuroscience, 2011, 31, 16194-16207.	3.6	62
36	A model for regulation by SynGAP-α1 of binding of synaptic proteins to PDZ-domain 'Slots' in the postsynaptic density. ELife, 2016, 5, .	6.0	54

MARY B KENNEDY

#	Article	IF	CITATIONS
37	A role for synGAP in regulating neuronal apoptosis. European Journal of Neuroscience, 2005, 21, 611-621.	2.6	52
38	Synaptic memory molecules. Nature, 1988, 335, 770-772.	27.8	39
39	Structural Modeling of Protein Interactions by Analogy: Application to PSD-95. PLoS Computational Biology, 2006, 2, e153.	3.2	39
40	Detailed state model of CaMKII activation and autophosphorylation. European Biophysics Journal, 2008, 38, 83-98.	2.2	39
41	Multi-state Modeling of Biomolecules. PLoS Computational Biology, 2014, 10, e1003844.	3.2	39
42	Densin-180 Controls the Trafficking and Signaling of L-Type Voltage-Gated Ca _v 1.2 Ca ²⁺ Channels at Excitatory Synapses. Journal of Neuroscience, 2017, 37, 4679-4691.	3.6	38
43	Subcellular organization of camkii in rat hippocampal pyramidal neurons. Journal of Comparative Neurology, 2013, 521, 3570-3583.	1.6	31
44	Molecular and behavioral changes associated with adult hippocampus-specific SynGAP1 knockout. Learning and Memory, 2012, 19, 268-281.	1.3	23
45	Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. PLoS Computational Biology, 2020, 16, e1008015.	3.2	18
46	Phosphorylation of synaptic GTPase-activating protein (synGAP) by polo-like kinase (Plk2) alters the ratio of its GAP activity toward HRas, Rap1 and Rap2 GTPases. Biochemical and Biophysical Research Communications, 2018, 503, 1599-1604.	2.1	14
47	Molecules underlying memory. Nature, 1987, 329, 15-16.	27.8	13
48	The Pierian Spring. Current Biology, 1992, 2, 511-514.	3.9	13
49	A multi-state model of the CaMKII dodecamer suggests a role for calmodulin in maintenance of autophosphorylation. PLoS Computational Biology, 2019, 15, e1006941.	3.2	13
50	A sex difference in the response of the rodent postsynaptic density to synGAP haploinsufficiency. ELife, 2020, 9, .	6.0	12
51	PDZ affinity chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands. Protein Expression and Purification, 2014, 98, 46-62.	1.3	11
52	Visualization of autophosphorylation of protein kinase II in hippocampal slices. Journal of Neuroscience Methods, 1996, 68, 61-70.	2.5	9
53	Identification of Functionally Significant Phosphorylation Sites on Neuronal Proteins and Preparation of Antibodies That Recognize Them. Methods in Neurosciences, 1991, 6, 158-176.	0.5	7
54	Characterization of calcium/calmodulin-dependent protein kinase II activity in the nervous system of the lobster,Panulirus interruptus. Invertebrate Neuroscience, 1998, 3, 335-345.	1.8	6

MARY B KENNEDY

#	Article	IF	CITATIONS
55	The Protein Biochemistry of the Postsynaptic Density in Glutamatergic Synapses Mediates Learning in Neural Networks. Biochemistry, 2018, 57, 4005-4009.	2.5	6
56	Amplification of neurotoxic HTTex1 assemblies in human neurons. Neurobiology of Disease, 2021, 159, 105517.	4.4	6
57	Protein Purification Using PDZ Affinity Chromatography. Current Protocols in Protein Science, 2015, 80, 9.10.1-9.10.37.	2.8	5
58	Liquid Phase Transition in the Postsynaptic Density?. Trends in Biochemical Sciences, 2017, 42, 2-4.	7.5	5
59	Do Activity-Dependent Changes in Expression of Regulatory Proteins Play a Role in the Progression of Central Nervous System Neural Degeneration?. Annals of the New York Academy of Sciences, 1989, 568, 193-197.	3.8	3
60	Biochemistry and neuroscience: the twain need to meet. Current Opinion in Neurobiology, 2017, 43, 79-86.	4.2	2
61	Response to "Problems with LAP nomenclature― Nature Cell Biology, 2001, 3, E90-E90.	10.3	1
62	Reflections. Neuron, 2008, 60, 401-402.	8.1	1
63	Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. , 2020, 16, e1008015.		Ο
64	Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. , 2020, 16, e1008015.		0
65	Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. , 2020, 16, e1008015.		0
66	Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. , 2020, 16, e1008015.		0
67	Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. , 2020, 16, e1008015.		0
68	Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. , 2020, 16, e1008015.		0