Jcivera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7835753/publications.pdf

Version: 2024-02-01

56	3,763	15	30
papers	citations	h-index	g-index
5 7	F 7	5 7	2022
57	57 docs citations	57	2922
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Bayesian Deep Neural Networks for Supervised Learning of Single-View Depth. IEEE Robotics and Automation Letters, 2022, 7, 2565-2572.	5.1	5
2	Model for Multi-View Residual Covariances Based on Perspective Deformation. IEEE Robotics and Automation Letters, 2022, 7, 1960-1967.	5.1	2
3	Jacobian Computation for Cumulative B-Splines on SE(3) and Application to Continuous-Time Object Tracking. IEEE Robotics and Automation Letters, 2022, 7, 7132-7139.	5.1	4
4	Danish Airs and Grounds: A Dataset for Aerial-to-Street-Level Place Recognition and Localization. IEEE Robotics and Automation Letters, 2022, 7, 9207-9214.	5.1	1
5	Situational Graphs for Robot Navigation in Structured Indoor Environments. IEEE Robotics and Automation Letters, 2022, 7, 9107-9114.	5.1	11
6	Endo-Depth-and-Motion: Reconstruction and Tracking in Endoscopic Videos Using Depth Networks and Photometric Constraints. IEEE Robotics and Automation Letters, 2021, 6, 7225-7232.	5.1	42
7	Rotation-Only Bundle Adjustment. , 2021, , .		5
8	Information-Driven Direct RGB-D Odometry. , 2020, , .		15
9	Visual-inertial teach and repeat. Robotics and Autonomous Systems, 2020, 131, 103577.	5.1	4
10	Corners for Layout: End-to-End Layout Recovery From 360 Images. IEEE Robotics and Automation Letters, 2020, 5, 1255-1262.	5.1	60
11	From Points to Planes - Adding Planar Constraints to Monocular SLAM Factor Graphs. , 2020, , .		12
12	Incremental Learning of Object Models From Natural Human–Robot Interactions. IEEE Transactions on Automation Science and Engineering, 2020, 17, 1883-1900.	5.2	8
13	The Rosario dataset: Multisensor data for localization and mapping in agricultural environments. International Journal of Robotics Research, 2019, 38, 633-641.	8.5	46
14	CAM-Convs: Camera-Aware Multi-Scale Convolutions for Single-View Depth. , 2019, , .		63
15	Loosely-Coupled Semi-Direct Monocular SLAM. IEEE Robotics and Automation Letters, 2019, 4, 399-406.	5.1	47
16	RGB-D Odometry and SLAM. Advances in Computer Vision and Pattern Recognition, 2019, , 117-144.	1.3	7
17	Visual-Inertial SLAM Initialization: A General Linear Formulation and a Gravity-Observing Non-Linear Optimization. , 2018, , .		9
18	Performance Evaluation of the Dyna-Q algorithm for Robot Navigation. , 2018, , .		3

#	Article	IF	CITATIONS
19	Real-time dense map fusion for stereo SLAM. Robotica, 2018, 36, 1510-1526.	1.9	10
20	DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes. IEEE Robotics and Automation Letters, 2018, 3, 4076-4083.	5.1	547
21	Guest Editorial Special Issue on Wearable and Ego-Vision Systems for Augmented Experience. IEEE Transactions on Human-Machine Systems, 2017, 47, 1-5.	3.5	2
22	S-PTAM: Stereo Parallel Tracking and Mapping. Robotics and Autonomous Systems, 2017, 93, 27-42.	5.1	135
23	Single-View and Multi-View Depth Fusion. IEEE Robotics and Automation Letters, 2017, 2, 1994-2001.	5.1	20
24	A multimodal dataset for object model learning from natural human-robot interaction. , 2017, , .		3
25	RGBDTAM: A cost-effective and accurate RGB-D tracking and mapping system. , 2017, , .		28
26	Big Data on Robotics. Big Data, 2016, 4, 195-196.	3.4	2
27	Call for Papers: Special Issue on Big Data in Robotics. Big Data, 2016, 4, 1-2.	3.4	1
28	Dealing with small data and training blind spots in the Manhattan world., 2016,,.		5
29	Visual-inertial direct SLAM. , 2016, , .		58
30	Incorporating scene priors to dense monocular mapping. Autonomous Robots, 2015, 39, 279-292.	4.8	15
31	Real-time localization and dense mapping in underwater environments from a monocular sequence. , 2015, , .		11
32	Stereo parallel tracking and mapping for robot localization. , 2015, , .		78
33	DPPTAM: Dense piecewise planar tracking and mapping from a monocular sequence. , 2015, , .		99
34	An evaluation of robust cost functions for RGB direct mapping. , 2015, , .		9
35	Layout aware visual tracking and mapping. , 2015, , .		11
36	Guest Editorial Special Issue on Cloud Robotics and Automation. IEEE Transactions on Automation Science and Engineering, 2015, 12, 396-397.	5.2	8

#	Article	IF	Citations
37	C2TAM: A Cloud framework for cooperative tracking and mapping. Robotics and Autonomous Systems, 2014, 62, 401-413.	5.1	249
38	Using superpixels in monocular SLAM. , 2014, , .		46
39	Learning object class detectors from weakly annotated video. , 2012, , .		310
40	Creating and using RoboEarth object models. , 2012, , .		12
41	Impact of Landmark Parametrization on Monocular EKF-SLAM with Points and Lines. International Journal of Computer Vision, 2012, 97, 339-368.	15.6	113
42	Dense multi-planar scene estimation from a sparse set of images. , 2011, , .		6
43	Towards semantic SLAM using a monocular camera. , 2011, , .		14
44	RoboEarth. IEEE Robotics and Automation Magazine, 2011, 18, 69-82.	2.0	381
45	Towards semantic SLAM using a monocular camera. , 2011, , .		114
46	EKF monocular SLAM with relocalization for laparoscopic sequences. , $2011, \ldots$		48
47	1â∈Point RANSAC for extended Kalman filtering: Application to realâ€time structure from motion and visual odometry. Journal of Field Robotics, 2010, 27, 609-631.	6.0	226
48	1-point RANSAC for EKF-based Structure from Motion. , 2009, , .		75
49	Drift-Free Real-Time Sequential Mosaicing. International Journal of Computer Vision, 2009, 81, 128-137.	15.6	32
50	Camera self-calibration for sequential Bayesian structure from motion., 2009,,.		37
51	Inverse Depth Parametrization for Monocular SLAM. IEEE Transactions on Robotics, 2008, 24, 932-945.	10.3	577
52	Interacting multiple model monocular SLAM. , 2008, , .		20
53	Inverse Depth to Depth Conversion for Monocular SLAM. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	60
54	Dimensionless Monocular SLAM. Lecture Notes in Computer Science, 2007, , 412-419.	1.3	23

#	Article	IF	CITATIONS
55	Manhattan and Piecewise-Planar Constraints for Dense Monocular Mapping. , 0, , .		21
56	Finding Regions of Interest from Multimodal Human-Robot Interactions. , 0, , .		1