
John C Rothwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7835525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theta Burst Stimulation of the Human Motor Cortex. Neuron, 2005, 45, 201-206.	3.8	3,223
2	Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalography and Clinical Neurophysiology, 1994, 91, 79-92.	0.3	2,685
3	Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology, 2015, 126, 1071-1107.	0.7	1,957
4	Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clinical Neurophysiology, 2014, 125, 2150-2206.	0.7	1,647
5	Transcranial magnetic stimulation in cognitive neuroscience – virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 2000, 10, 232-237.	2.0	808
6	How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?. European Journal of Neuroscience, 2005, 22, 495-504.	1.2	681
7	Transcranial magnetic stimulation: new insights into representational cortical plasticity. Experimental Brain Research, 2003, 148, 1-16.	0.7	665
8	Variability in Response to Transcranial Direct Current Stimulation of the Motor Cortex. Brain Stimulation, 2014, 7, 468-475.	0.7	662
9	Preconditioning of Low-Frequency Repetitive Transcranial Magnetic Stimulation with Transcranial Direct Current Stimulation: Evidence for Homeostatic Plasticity in the Human Motor Cortex. Journal of Neuroscience, 2004, 24, 3379-3385.	1.7	659
10	Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology, 2003, 114, 600-604.	0.7	648
11	Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nature Reviews Neurology, 2014, 10, 597-608.	4.9	644
12	The Role of Interneuron Networks in Driving Human Motor Cortical Plasticity. Cerebral Cortex, 2013, 23, 1593-1605.	1.6	624
13	Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy. Movement Disorders, 2017, 32, 1264-1310.	2.2	608
14	Is there a future for therapeutic use of transcranial magnetic stimulation?. Nature Reviews Neuroscience, 2007, 8, 559-567.	4.9	594
15	A common polymorphism in the brainâ€derived neurotrophic factor gene (<i>BDNF</i>) modulates human cortical plasticity and the response to rTMS. Journal of Physiology, 2008, 586, 5717-5725.	1.3	592
16	Stimulation of the human motor cortex through the scalp. Experimental Physiology, 1991, 76, 159-200.	0.9	587
17	Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. Journal of Neuroscience Methods, 1997, 74, 113-122.	1.3	564
18	Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clinical Neurophysiology, 2021, 132, 269-306.	0.7	553

#	Article	IF	CITATIONS
19	Consensus: Motor cortex plasticity protocols. Brain Stimulation, 2008, 1, 164-182.	0.7	529
20	Human Fetal Dopamine Neurons Grafted Into the Striatum in Two Patients With Severe Parkinson's Disease. Archives of Neurology, 1989, 46, 615.	4.9	511
21	The after-effect of human theta burst stimulation is NMDA receptor dependent. Clinical Neurophysiology, 2007, 118, 1028-1032.	0.7	486
22	Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease. Annals of Neurology, 1997, 42, 283-291.	2.8	485
23	The physiological basis of transcranial motor cortex stimulation in conscious humans. Clinical Neurophysiology, 2004, 115, 255-266.	0.7	485
24	Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. Journal of Physiology, 2008, 586, 325-351.	1.3	480
25	The cortical topography of human swallowing musculature in health and disease. Nature Medicine, 1996, 2, 1217-1224.	15.2	477
26	Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology, 2005, 65, 466-468.	1.5	441
27	Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nature Neuroscience, 1998, 1, 64-68.	7.1	432
28	A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition. Nature Reviews Neuroscience, 2015, 16, 719-732.	4.9	427
29	Intracortical Inhibition and Facilitation in Different Representations of the Human Motor Cortex. Journal of Neurophysiology, 1998, 80, 2870-2881.	0.9	419
30	Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson's disease. Annals of Neurology, 1994, 35, 172-180.	2.8	412
31	Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. European Journal of Neuroscience, 2004, 19, 1950-1962.	1.2	408
32	Ten Years of Theta Burst Stimulation in Humans: Established Knowledge, Unknowns and Prospects. Brain Stimulation, 2016, 9, 323-335.	0.7	397
33	Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1998, 109, 397-401.	1.4	390
34	Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clinical Neurophysiology, 2000, 111, 794-799.	0.7	382
35	Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Experimental Brain Research, 1998, 122, 79-84.	0.7	369
36	Driving Plasticity in Human Adult Motor Cortex Is Associated with Improved Motor Function after Brain Injury. Neuron, 2002, 34, 831-840.	3.8	369

#	Article	IF	CITATIONS
37	Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain, 2006, 129, 809-819.	3.7	369
38	Transplantation of fetal dopamine neurons in Parkinson's disease: One-year clinical and neurophysiological observations in two patients with putaminal implants. Annals of Neurology, 1992, 31, 155-165.	2.8	359
39	Cortical Correlate of the Piper Rhythm in Humans. Journal of Neurophysiology, 1998, 80, 2911-2917.	0.9	348
40	Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Experimental Brain Research, 2002, 143, 240-248.	0.7	347
41	State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimulation, 2008, 1, 151-163.	0.7	342
42	Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Experimental Brain Research, 2000, 135, 455-461.	0.7	339
43	Identification of the Cerebral Loci Processing Human Swallowing With H ₂ ¹⁵ O PET Activation. Journal of Neurophysiology, 1999, 81, 1917-1926.	0.9	338
44	Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson's disease. Annals of Neurology, 1997, 42, 95-107.	2.8	331
45	Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. Journal of Physiology, 2011, 589, 5845-5855.	1.3	324
46	Patterned ballistic movements triggered by a startle in healthy humans. Journal of Physiology, 1999, 516, 931-938.	1.3	321
47	Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology, 2001, 57, 449-455.	1.5	311
48	Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1997, 105, 340-344.	1.4	310
49	Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses?. Clinical Neurophysiology, 2001, 112, 2138-2145.	0.7	306
50	Task-specific hand dystonia: can too much plasticity be bad for you?. Trends in Neurosciences, 2006, 29, 192-199.	4.2	306
51	Lateropulsion, pushing and verticality perception in hemisphere stroke: a causal relationship?. Brain, 2008, 131, 2401-2413.	3.7	303
52	Theta-burst transcranial magnetic stimulation to the prefrontal cortex impairs metacognitive visual awareness. Cognitive Neuroscience, 2010, 1, 165-175.	0.6	303
53	Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biological Psychiatry, 2004, 56, 634-639.	0.7	302
54	Consensus paper: Combining transcranial stimulation with neuroimaging. Brain Stimulation, 2009, 2, 58-80.	0.7	299

#	Article	IF	CITATIONS
55	The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1994, 93, 138-146.	2.0	298
56	Postural electromyographic responses in the arm and leg following galvanic vestibular stimulation in man. Experimental Brain Research, 1993, 94, 143-51.	0.7	285
57	The dissociable effects of punishment and reward on motor learning. Nature Neuroscience, 2015, 18, 597-602.	7.1	284
58	Speech Facilitation by Left Inferior Frontal Cortex Stimulation. Current Biology, 2011, 21, 1403-1407.	1.8	278
59	Effect of Physiological Activity on an NMDA-Dependent Form of Cortical Plasticity in Human. Cerebral Cortex, 2008, 18, 563-570.	1.6	277
60	Plasticity induced by non-invasive transcranial brain stimulation: A position paper. Clinical Neurophysiology, 2017, 128, 2318-2329.	0.7	276
61	Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clinical Neurophysiology, 2017, 128, 589-603.	0.7	275
62	Differential Modulation of Motor Cortical Plasticity and Excitability in Early and Late Phases of Human Motor Learning. Journal of Neuroscience, 2007, 27, 12058-12066.	1.7	274
63	Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study. Neuropsychologia, 2001, 39, 415-419.	0.7	273
64	How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex, 2009, 45, 1035-1042.	1.1	272
65	THE COEXISTENCE OF BRADYKINESIA AND CHOREA IN HUNTINGTON'S DISEASE AND ITS IMPLICATIONS FOR THEORIES OF BASAL GANGLIA CONTROL OF MOVEMENT. Brain, 1988, 111, 223-244.	3.7	270
66	Tonic vibration reflex and muscle afferent block in writer's cramp. Annals of Neurology, 1995, 38, 155-162.	2.8	269
67	Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Experimental Brain Research, 2004, 156, 439-443.	0.7	269
68	Acute Remapping within the Motor System Induced by Low-Frequency Repetitive Transcranial Magnetic Stimulation. Journal of Neuroscience, 2003, 23, 5308-5318.	1.7	262
69	Reciprocal inhibition between the muscles of the human forearm Journal of Physiology, 1984, 349, 519-534.	1.3	261
70	Stages of Motor Output Reorganization after Hemispheric Stroke Suggested by Longitudinal Studies of Cortical Physiology. Cerebral Cortex, 2008, 18, 1909-1922.	1.6	257
71	Frequency peaks of tremor, muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human finger muscle contraction may reflect rhythmicities of central neural firing. Experimental Brain Research, 1997, 114, 525-541.	0.7	256
72	Explaining oropharyngeal dysphagia after unilateral hemispheric stroke. Lancet, The, 1997, 350, 686-692.	6.3	254

#	Article	IF	CITATIONS
73	Neurochemical Effects of Theta Burst Stimulation as Assessed by Magnetic Resonance Spectroscopy. Journal of Neurophysiology, 2009, 101, 2872-2877.	0.9	250
74	Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Experimental Brain Research, 1999, 124, 520-524.	0.7	248
75	Trial-by-Trial Fluctuations in the Event-Related Electroencephalogram Reflect Dynamic Changes in the Degree of Surprise. Journal of Neuroscience, 2008, 28, 12539-12545.	1.7	248
76	Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortex. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1996, 101, 263-272.	1.4	243
77	Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature, 2001, 414, 302-305.	13.7	242
78	BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. NeuroImage, 2005, 28, 22-29.	2.1	242
79	Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke. Clinical Neurophysiology, 2007, 118, 333-342.	0.7	239
80	Arm function after stroke: Neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clinical Neurophysiology, 2006, 117, 1641-1659.	0.7	235
81	Dynamic changes in corticospinal excitability during motor imagery. Experimental Brain Research, 1999, 125, 75-81.	0.7	233
82	Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. NeuroImage, 2003, 20, 1685-1696.	2.1	228
83	Repetitive transcranial magnetic stimulation or transcranial direct current stimulation?. Brain Stimulation, 2009, 2, 241-245.	0.7	228
84	Consensus: Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation?. Brain Stimulation, 2008, 1, 363-369.	0.7	225
85	Natural history and syndromic associations of orthostatic tremor: A review of 41 patients. Movement Disorders, 2004, 19, 788-795.	2.2	224
86	Distinguishing SWEDDs patients with asymmetric resting tremor from Parkinson's disease: A clinical and electrophysiological study. Movement Disorders, 2010, 25, 560-569.	2.2	223
87	Dystonia. Nature Reviews Disease Primers, 2018, 4, 25.	18.1	223
88	Transcranial Magnetic Stimulation Can Be Used to Test Connections to Primary Motor Areas from Frontal and Medial Cortex in Humans. NeuroImage, 2001, 14, 1444-1453.	2.1	222
89	Strength in Parkinson's disease: Relationshp to rate of force generation and clinical status. Annals of Neurology, 1996, 39, 79-88.	2.8	220
90	I-Waves in Motor Cortex. Journal of Clinical Neurophysiology, 2000, 17, 397-405.	0.9	219

#	Article	IF	CITATIONS
91	Subthreshold low-frequency repetitive transcranial magnetic stimulation over the premotor cortex modulates writer's cramp. Brain, 2004, 128, 104-115.	3.7	218
92	The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse. Clinical Neurophysiology, 2004, 115, 1076-1082.	0.7	215
93	Pathophysiology of somatosensory abnormalities in Parkinson disease. Nature Reviews Neurology, 2013, 9, 687-697.	4.9	215
94	Corticospinal activity evoked and modulated by nonâ€invasive stimulation of the intact human motor cortex. Journal of Physiology, 2014, 592, 4115-4128.	1.3	215
95	The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clinical Neurophysiology, 2011, 122, 1011-1018.	0.7	214
96	The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Experimental Brain Research, 2001, 138, 268-273.	0.7	211
97	Motorcortical Excitability and Synaptic Plasticity Is Enhanced in Professional Musicians. Journal of Neuroscience, 2007, 27, 5200-5206.	1.7	207
98	Time Course of Functional Connectivity between Dorsal Premotor and Contralateral Motor Cortex during Movement Selection. Journal of Neuroscience, 2006, 26, 7452-7459.	1.7	202
99	Focal Stimulation of the Posterior Parietal Cortex Increases the Excitability of the Ipsilateral Motor Cortex. Journal of Neuroscience, 2007, 27, 6815-6822.	1.7	202
100	Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 2011, 105, 1141-1149.	0.9	202
101	Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. Brain, 2008, 131, 3147-3155.	3.7	201
102	Mapping causal interregional influences with concurrent TMS–fMRI. Experimental Brain Research, 2008, 191, 383-402.	0.7	197
103	A checklist for assessing the methodological quality of studies using transcranial magnetic stimulation to study the motor system: An international consensus study. Clinical Neurophysiology, 2012, 123, 1698-1704.	0.7	196
104	Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain, 2005, 128, 1943-1950.	3.7	193
105	Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive TMS of the dorsal premotor cortex. Brain, 2003, 126, 2710-2725.	3.7	191
106	Pathophysiological differences between musician's dystonia and writer's cramp. Brain, 2005, 128, 918-931.	3.7	190
107	The Role of Contralesional Dorsal Premotor Cortex after Stroke as Studied with Concurrent TMS-fMRI. Journal of Neuroscience, 2010, 30, 11926-11937.	1.7	190
108	Differential effect of muscle vibration on intracortical inhibitory circuits in humans. Journal of Physiology, 2003, 551, 649-660.	1.3	188

#	Article	IF	CITATIONS
109	Interhemispheric interaction between human dorsal premotor and contralateral primary motor cortex. Journal of Physiology, 2004, 561, 331-338.	1.3	186
110	Treatment of post-stroke dysphagia with repetitive transcranial magnetic stimulation. Acta Neurologica Scandinavica, 2009, 119, 155-161.	1.0	185
111	Origin of Facilitation of Motor-Evoked Potentials After Paired Magnetic Stimulation: Direct Recording of Epidural Activity in Conscious Humans. Journal of Neurophysiology, 2006, 96, 1765-1771.	0.9	181
112	Interactions between areas of the cortical grasping network. Current Opinion in Neurobiology, 2011, 21, 565-570.	2.0	179
113	Cerebellar Transcranial Direct Current Stimulation (ctDCS). Neuroscientist, 2016, 22, 83-97.	2.6	177
114	The variability of intracortical inhibition and facilitation. Clinical Neurophysiology, 2003, 114, 2362-2369.	0.7	175
115	Dorsal Premotor Cortex Exerts State-Dependent Causal Influences on Activity in Contralateral Primary Motor and Dorsal Premotor Cortex. Cerebral Cortex, 2008, 18, 1281-1291.	1.6	173
116	Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clinical Neurophysiology, 2004, 115, 456-460.	0.7	171
117	Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix. Journal of Electromyography and Kinesiology, 2020, 53, 102438.	0.7	170
118	Transcranial magnetic stimulation studies of cognition: an emerging field. Experimental Brain Research, 2000, 131, 1-9.	0.7	165
119	Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex, 2009, 45, 1050-1057.	1.1	163
120	Causal Connectivity between the Human Anterior Intraparietal Area and Premotor Cortex during Grasp. Current Biology, 2010, 20, 176-181.	1.8	160
121	Adjunctive Functional Pharyngeal Electrical Stimulation Reverses Swallowing Disability After Brain Lesions. Gastroenterology, 2010, 138, 1737-1746.e2.	0.6	158
122	A Randomized, Controlled Trial With 6-Month Follow-Up of Repetitive Transcranial Magnetic Stimulation and Electroconvulsive Therapy for Severe Depression. American Journal of Psychiatry, 2007, 164, 73-81.	4.0	157
123	Endogenous control of waking brain rhythms induces neuroplasticity in humans. European Journal of Neuroscience, 2010, 31, 770-778.	1.2	156
124	The effect of short-duration bursts of high-frequency, low-intensity transcranial magnetic stimulation on the human motor cortex. Clinical Neurophysiology, 2004, 115, 1069-1075.	0.7	155
125	The Physiology of Orthostatic Tremor. Archives of Neurology, 1986, 43, 584-587.	4.9	154
126	Transcranial magnetic stimulation of medial–frontal cortex impairs the processing of angry facial expressions. Nature Neuroscience, 2001, 4, 17-18.	7.1	154

‡	#	Article	IF	CITATIONS
1	127	Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson's disease. Movement Disorders, 2006, 21, 2201-2205.	2.2	153
1	128	What do reflex and voluntary mean? Modern views on an ancient debate. Experimental Brain Research, 2000, 130, 417-432.	0.7	151
1	129	Effects on the right motor handâ€area excitability produced by lowâ€frequency rTMS over human contralateral homologous cortex. Journal of Physiology, 2003, 551, 563-573.	1.3	151
1	130	Role of the Cerebellum in Externally Paced Rhythmic Finger Movements. Journal of Neurophysiology, 2007, 98, 145-152.	0.9	151
1	131	The interpretation of electromyographic responses to electrical stimulation of the motor cortex in diseases of the upper motor neurone. Journal of the Neurological Sciences, 1987, 80, 91-110.	0.3	149
1	132	The effect of age on task-related modulation of interhemispheric balance. Experimental Brain Research, 2008, 186, 59-66.	0.7	147
1	133	Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. ELife, 2017, 6, .	2.8	147
1	134	Repeated premotor rTMS leads to cumulative plastic changes of motor cortex excitability in humans. NeuroImage, 2003, 20, 550-560.	2.1	146
1	135	ABNORMALITIES IN CENTRAL MOTOR PATHWAY CONDUCTION IN MULTIPLE SCLEROSIS. Lancet, The, 1984, 324, 304-307.	6.3	145
1	136	Shaping the excitability of human motor cortex with premotor rTMS. Journal of Physiology, 2004, 554, 483-495.	1.3	145
1	137	The Bereitschaftspotential, I-DOPA and parkinson's disease. Electroencephalography and Clinical Neurophysiology, 1987, 66, 263-274.	0.3	144
1	138	The effect of sensory input and attention on the sensorimotor organization of the hand area of the human motor cortex. Journal of Physiology, 2004, 561, 307-320.	1.3	144
1	139	Different patterns of electrophysiological deficits in manifesting and non-manifesting carriers of the DYT1 gene mutation. Brain, 2003, 126, 2074-2080.	3.7	141
1	140	Afferent input and cortical organisation: a study with magnetic stimulation. Experimental Brain Research, 1999, 126, 536-544.	0.7	140
1	141	Motor unit excitability changes mediating vestibulocollic reflexes in the sternocleidomastoid muscle. Clinical Neurophysiology, 2004, 115, 2567-2573.	0.7	140
1	142	Habituation and conditioning of the human long latency stretch reflex. Experimental Brain Research, 1986, 63, 197-204.	0.7	139
1	143	Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways. Journal of Physiology, 2006, 572, 857-868.	1.3	139
1	144	FETAL DOPAMINE-RICH MESENCEPHALIC GRAFTS IN PARKINSON'S DISEASE. Lancet, The, 1988, 332, 1483-1484.	6.3	138

#	Article	IF	CITATIONS
145	Comparison of descending volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex in conscious humans. Experimental Brain Research, 2001, 141, 121-127.	0.7	138
146	Neural correlates of age-related changes in cortical neurophysiology. NeuroImage, 2008, 40, 1772-1781.	2.1	138
147	Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation. Brain Stimulation, 2015, 8, 442-454.	0.7	138
148	Abnormalities in motor cortical plasticity differentiate manifesting and nonmanifesting DYT1 carriers. Movement Disorders, 2006, 21, 2181-2186.	2.2	137
149	The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. European Journal of Neuroscience, 2007, 25, 1865-1873.	1.2	136
150	Cerebellar modulation of human associative plasticity. Journal of Physiology, 2012, 590, 2365-2374.	1.3	133
151	Control of Human Voluntary Movement. , 1994, , .		132
152	Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex. Journal of Physiology, 2008, 586, 5147-5159.	1.3	132
153	Disrupting the experience of control in the human brain: pre-supplementary motor area contributes to the sense of agency. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2503-2509.	1.2	132
154	Moving toward "laboratoryâ€supported―criteria for psychogenic tremor. Movement Disorders, 2011, 26, 2509-2515.	2.2	132
155	Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimulation, 2008, 1, 370-382.	0.7	131
156	Effect of Anodal Versus Cathodal Transcranial Direct Current Stimulation on Stroke Rehabilitation. Neurorehabilitation and Neural Repair, 2013, 27, 592-601.	1.4	131
157	Tremor in inflammatory neuropathies. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1282-1287.	0.9	129
158	Theta burst stimulation induces afterâ€effects on contralateral primary motor cortex excitability in humans. Journal of Physiology, 2008, 586, 4489-4500.	1.3	128
159	Influence of Uncertainty and Surprise on Human Corticospinal Excitability during Preparation for Action. Current Biology, 2008, 18, 775-780.	1.8	128
160	Disentangling EEG responses to TMS due to cortical and peripheral activations. Brain Stimulation, 2021, 14, 4-18.	0.7	126
161	Clinical applications of transcranial magnetic stimulation in patients with movement disorders. Lancet Neurology, The, 2008, 7, 827-840.	4.9	125
162	The Future of Restorative Neurosciences in Stroke: Driving the Translational Research Pipeline From Basic Science to Rehabilitation of People After Stroke. Neurorehabilitation and Neural Repair, 2009, 23, 97-107.	1.4	125

#	Article	IF	CITATIONS
163	Unilateral suppression of pharyngeal motor cortex to repetitive transcranial magnetic stimulation reveals functional asymmetry in the hemispheric projections to human swallowing. Journal of Physiology, 2007, 585, 525-538.	1.3	124
164	Transcranial magnetic stimulation of the brain: What is stimulated? – A consensus and critical position paper. Clinical Neurophysiology, 2022, 140, 59-97.	0.7	124
165	Low-frequency Electric Cortical Stimulation Has an Inhibitory Effect on Epileptic Focus in Mesial Temporal Lobe Epilepsy. Epilepsia, 2002, 43, 491-495.	2.6	123
166	In vivo definition of parieto-motor connections involved in planning of grasping movements. NeuroImage, 2010, 51, 300-312.	2.1	123
167	Believing is perceiving: mismatch between self-report and actigraphy in psychogenic tremor. Brain, 2012, 135, 117-123.	3.7	123
168	Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. Clinical Neurophysiology, 2007, 118, 1033-1043.	0.7	122
169	Shaping reversibility? Long-term deep brain stimulation in dystonia: the relationship between effects on electrophysiology and clinical symptoms. Brain, 2011, 134, 2106-2115.	3.7	122
170	Two Distinct Interneuron Circuits in Human Motor Cortex Are Linked to Different Subsets of Physiological and Behavioral Plasticity. Journal of Neuroscience, 2014, 34, 12837-12849.	1.7	122
171	Primary orthostatic tremor: further observations in six cases. Journal of Neurology, 1992, 239, 209-217.	1.8	121
172	Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex. NeuroImage, 2005, 26, 164-176.	2.1	121
173	Consolidation of Dynamic Motor Learning Is Not Disrupted by rTMS of Primary Motor Cortex. Current Biology, 2004, 14, 252-256.	1.8	120
174	Correlation between cortical plasticity, motor learning and BDNF genotype in healthy subjects. Experimental Brain Research, 2011, 212, 91-99.	0.7	120
175	Theta Burst Stimulation in the Rehabilitation of the Upper Limb. Neurorehabilitation and Neural Repair, 2012, 26, 976-987.	1.4	120
176	The associative brain at work: Evidence from paired associative stimulation studies in humans. Clinical Neurophysiology, 2017, 128, 2140-2164.	0.7	120
177	tDCS changes in motor excitability are specific to orientation of current flow. Brain Stimulation, 2018, 11, 289-298.	0.7	120
178	Short-term reduction of intracortical inhibition in the human motor cortex induced by repetitive transcranial magnetic stimulation. Experimental Brain Research, 2002, 147, 108-113.	0.7	119
179	Stimulus intensity and coil characteristics influence the efficacy of rTMS to suppress cortical excitability. Clinical Neurophysiology, 2006, 117, 2292-2301.	0.7	119
180	Motor cortex excitability following short trains of repetitive magnetic stimuli. Experimental Brain Research, 2001, 140, 453-459.	0.7	118

#	Article	IF	CITATIONS
181	Induction of long-term plasticity in human swallowing motor cortex following repetitive cortical stimulation. Clinical Neurophysiology, 2004, 115, 1044-1051.	0.7	118
182	Functional Interplay between Posterior Parietal and Ipsilateral Motor Cortex Revealed by Twin-Coil Transcranial Magnetic Stimulation during Reach Planning toward Contralateral Space. Journal of Neuroscience, 2008, 28, 5944-5953.	1.7	118
183	Abnormal Motor Cortex Excitability in Preclinical and Very Early Huntington's Disease. Biological Psychiatry, 2009, 65, 959-965.	0.7	118
184	Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1996, 101, 58-66.	1.4	117
185	The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Experimental Brain Research, 2004, 158, 366-72.	0.7	117
186	Excitability of motor cortex inhibitory circuits in Tourette syndrome before and after single dose nicotine. Brain, 2005, 128, 1292-1300.	3.7	114
187	Cortical excitability is abnormal in patients with the "fixed dystonia―syndrome. Movement Disorders, 2008, 23, 646-652.	2.2	111
188	Deep brain stimulation effects in dystonia: Time course of electrophysiological changes in early treatment. Movement Disorders, 2011, 26, 1913-1921.	2.2	111
189	Abnormal bidirectional plasticity-like effects in Parkinson's disease. Brain, 2011, 134, 2312-2320.	3.7	110
190	The role of the cerebellum in the pathogenesis of cortical myoclonus. Movement Disorders, 2014, 29, 437-443.	2.2	110
191	Interference with Performance of a Response Selection Task that has no Working Memory Component: An rTMS Comparison of the Dorsolateral Prefrontal and Medial Frontal Cortex. Journal of Cognitive Neuroscience, 2001, 13, 1097-1108.	1.1	109
192	Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex. European Journal of Neuroscience, 2006, 23, 822-829.	1.2	109
193	The use of peripheral feedback in the control of movement. Trends in Neurosciences, 1984, 7, 253-257.	4.2	108
194	Repetitive transcranial magnetic stimulation for Tourette syndrome. Neurology, 2002, 59, 1789-1791.	1.5	108
195	Brain state and polarity dependent modulation of brain networks by transcranial direct current stimulation. Human Brain Mapping, 2019, 40, 904-915.	1.9	108
196	Duration of the first agonist EMG burst in ballistic arm movements. Brain Research, 1984, 304, 183-187.	1.1	107
197	Increased corticospinal excitability after 5 Hz rTMS over the human supplementary motor area. Journal of Physiology, 2005, 562, 295-306.	1.3	106
198	What Makes the Muscle Twitch: Motor System Connectivity and TMS-Induced Activity. Cerebral Cortex, 2015, 25, 2346-2353.	1.6	106

#	Article	IF	CITATIONS
199	Noninvasive Stimulation of the Human Brain: Activation of Multiple Cortical Circuits. Neuroscientist, 2018, 24, 246-260.	2.6	105
200	Secondary and primary dystonia: pathophysiological differences. Brain, 2013, 136, 2038-2049.	3.7	104
201	Sensory functions in dystonia: Insights from behavioral studies. Movement Disorders, 2009, 24, 1427-1436.	2.2	103
202	Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation. Brain Stimulation, 2015, 8, 993-1006.	0.7	103
203	Further observations on the facilitation of muscle responses to cortical stimulation by voluntary contraction. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1991, 81, 397-402.	2.0	102
204	Inhibitory action of forearm flexor muscle afferents on corticospinal outputs to antagonist muscles in humans. Journal of Physiology, 1998, 511, 947-956.	1.3	102
205	Organization and reorganization of human swallowing motor cortex: implications for recovery after stroke*. Clinical Science, 2000, 99, 151-157.	1.8	102
206	The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric coherence. Clinical Neurophysiology, 2002, 113, 1279-1285.	0.7	102
207	Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: A review and meta-analysis. Clinical Neurophysiology, 2016, 127, 946-955.	0.7	102
208	Associative Plasticity in Human Motor Cortex During Voluntary Muscle Contraction. Journal of Neurophysiology, 2006, 96, 1337-1346.	0.9	99
209	Effect of coil orientation on strength–duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation. Clinical Neurophysiology, 2016, 127, 675-683.	0.7	99
210	Pulse Duration as Well as Current Direction Determines the Specificity of Transcranial Magnetic Stimulation of Motor Cortex during Contraction. Brain Stimulation, 2017, 10, 106-115.	0.7	99
211	Neurophysiological correlates of bradykinesia in Parkinson's disease. Brain, 2018, 141, 2432-2444.	3.7	99
212	Direct demonstration of the effects of repetitive transcranial magnetic stimulation on the excitability of the human motor cortex. Experimental Brain Research, 2002, 144, 549-553.	0.7	98
213	Hyperkinetic disorders and loss of synaptic downscaling. Nature Neuroscience, 2016, 19, 868-875.	7.1	98
214	Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans. Journal of Physiology, 2002, 540, 367-376.	1.3	96
215	Does brain stimulation after stroke have a future?. Current Opinion in Neurology, 2006, 19, 543-550.	1.8	95
216	TMS investigations into the task-dependent functional interplay between human posterior parietal and motor cortex. Behavioural Brain Research, 2009, 202, 147-152.	1.2	95

#	Article	IF	CITATIONS
217	Variability in neural excitability and plasticity induction in the human cortex: A brain stimulation study. Brain Stimulation, 2017, 10, 588-595.	0.7	95
218	Consensus for experimental design in electromyography (CEDE) project: Electrode selection matrix. Journal of Electromyography and Kinesiology, 2019, 48, 128-144.	0.7	95
219	Human handedness and asymmetry of the motor cortical silent period. Experimental Brain Research, 1999, 128, 390-396.	0.7	94
220	Organization and reorganization of human swallowing motor cortex: implications for recovery after stroke*. Clinical Science, 2000, 99, 151.	1.8	94
221	Enhanced Long-Term Potentiation-Like Plasticity of the Trigeminal Blink Reflex Circuit in Blepharospasm. Journal of Neuroscience, 2006, 26, 716-721.	1.7	94
222	Direct demonstration of long latency cortico-cortical inhibition in normal subjects and in a patient with vascular parkinsonism. Clinical Neurophysiology, 2002, 113, 1673-1679.	0.7	93
223	Timeâ€varying changes in corticospinal excitability accompanying the triphasic EMG pattern in humans. Journal of Physiology, 2000, 528, 633-645.	1.3	92
224	Abnormal motor cortex plasticity in premanifest and very early manifest Huntington disease. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 267-270.	0.9	92
225	Increase of the Bereitschaftspotential in simultaneous and sequential movements. Neuroscience Letters, 1985, 62, 347-352.	1.0	91
226	Cortical projection to erector spinae muscles in man as assessed by focal transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1992, 85, 382-387.	2.0	91
227	The effect of continuous theta burst stimulation over premotor cortex on circuits in primary motor cortex and spinal cord. Clinical Neurophysiology, 2009, 120, 796-801.	0.7	91
228	Electromyographic Quantification of the Paralysing Effect of Botulinum Toxin in the Sternocleidomastoid Muscle. European Neurology, 2000, 43, 13-16.	0.6	90
229	Identification of psychogenic, dystonic, and other organic tremors by a coherence entrainment test. Movement Disorders, 2004, 19, 253-267.	2.2	90
230	Pallidal stimulation modifies after-effects of paired associative stimulation on motor cortex excitability in primary generalised dystonia. Experimental Neurology, 2007, 206, 80-85.	2.0	90
231	Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest – A bifocal TMS study. Clinical Neurophysiology, 2009, 120, 1724-1731.	0.7	90
232	Further evidence for NMDA-dependence of the after-effects of human theta burst stimulation. Clinical Neurophysiology, 2007, 118, 1649-1651.	0.7	89
233	Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex. Journal of Physiology, 2007, 578, 551-562.	1.3	89
234	Transcranial magnetic stimulation (TMS) of the sensorimotor cortex and medial frontal cortex modifies human pain perception. Clinical Neurophysiology, 2003, 114, 860-866.	0.7	87

#	Article	IF	CITATIONS
235	Relaxation from a voluntary contraction is preceded by increased excitability of motor cortical inhibitory circuits. Journal of Physiology, 2004, 558, 685-695.	1.3	86
236	Validation of "laboratoryâ€supported―criteria for functional (psychogenic) tremor. Movement Disorders, 2016, 31, 555-562.	2.2	86
237	Aging is associated with contrasting changes in local and distant cortical connectivity in the human motor system. NeuroImage, 2006, 32, 747-760.	2.1	85
238	Intracortical circuits modulate transcallosal inhibition in humans. Journal of Physiology, 2007, 583, 99-114.	1.3	85
239	Human reflexes and late responses. Report of an IFCN committee. Electroencephalography and Clinical Neurophysiology, 1994, 90, 393-403.	0.3	84
240	Reduced excitability of the cortico-spinal system during the warning period of a reaction time task. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1998, 109, 489-495.	1.4	84
241	Post-stroke fatigue: a deficit in corticomotor excitability?. Brain, 2015, 138, 136-148.	3.7	84
242	Corticospinal System Excitability at Rest Is Associated with Tic Severity in Tourette Syndrome. Biological Psychiatry, 2008, 64, 248-251.	0.7	83
243	Modulation of Proprioceptive Integration in the Motor Cortex Shapes Human Motor Learning. Journal of Neuroscience, 2012, 32, 9000-9006.	1.7	82
244	Effects of theta burst stimulation protocols on phosphene threshold. Clinical Neurophysiology, 2006, 117, 1808-1813.	0.7	81
245	Age reduces cortical reciprocal inhibition in humans. Experimental Brain Research, 2006, 171, 322-329.	0.7	81
246	Transcranial electric and magnetic stimulation of the leg area of the human motor cortex: single motor unit and surface EMG responses in the tibialis anterior muscle. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1993, 89, 131-137.	2.0	80
247	Low-frequency rTMS inhibitory effects in the primary motor cortex: Insights from TMS-evoked potentials. NeuroImage, 2014, 98, 225-232.	2.1	80
248	Somatosensory Temporal Discrimination Threshold Involves Inhibitory Mechanisms in the Primary Somatosensory Area. Journal of Neuroscience, 2016, 36, 325-335.	1.7	80
249	Selective Suppression of Local Interneuron Circuits in Human Motor Cortex Contributes to Movement Preparation. Journal of Neuroscience, 2018, 38, 1264-1276.	1.7	80
250	The Blink Reflex in Patients With Idiopathic Torsion Dystonia. Archives of Neurology, 1990, 47, 413-416.	4.9	79
251	Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson's disease. European Journal of Neuroscience, 2005, 21, 1394-1402.	1.2	79
252	Regaining Motor Control in Musician's Dystonia by Restoring Sensorimotor Organization. Journal of Neuroscience, 2009, 29, 14627-14636.	1.7	79

#	Article	IF	CITATIONS
253	Human Theta Burst Stimulation Enhances Subsequent Motor Learning and Increases Performance Variability. Cerebral Cortex, 2011, 21, 1627-1638.	1.6	79
254	Membrane resistance and shunting inhibition: where biophysics meets stateâ€dependent human neurophysiology. Journal of Physiology, 2016, 594, 2719-2728.	1.3	78
255	Reward and punishment enhance motor adaptation in stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 730-736.	0.9	78
256	The Ipsilateral Human Motor Cortex Can Functionally Compensate for Acute Contralateral Motor Cortex Dysfunction. Current Biology, 2003, 13, 1201-1205.	1.8	77
257	Short-term high-frequency transcutaneous electrical nerve stimulation decreases human motor cortex excitability. Neuroscience Letters, 2004, 355, 85-88.	1.0	77
258	Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks. Clinical Neurophysiology, 2006, 117, 864-870.	0.7	76
259	TMS Produces Two Dissociable Types of Speech Disruption. NeuroImage, 2001, 13, 472-478.	2.1	75
260	Left posterior BA37 is involved in object recognition: a TMS study. Neuropsychologia, 2001, 39, 1-6.	0.7	75
261	Differential changes in human pharyngoesophageal motor excitability induced by swallowing, pharyngeal stimulation, and anesthesia. American Journal of Physiology - Renal Physiology, 2003, 285, G137-G144.	1.6	75
262	Repetitive transcranial magnetic stimulation for levodopaâ€induced dyskinesias in Parkinson's disease. Movement Disorders, 2009, 24, 246-253.	2.2	75
263	Reversal of a Virtual Lesion in Human Pharyngeal Motor Cortex by High Frequency Contralesional Brain Stimulation. Gastroenterology, 2009, 137, 841-849.e1.	0.6	75
264	Sensorimotor modulation of human cortical swallowing pathways. Journal of Physiology, 1998, 506, 857-866.	1.3	74
265	Subthreshold rTMS over pre-motor cortex has no effect on tics in patients with Gilles de la Tourette syndrome. Clinical Neurophysiology, 2005, 116, 764-768.	0.7	74
266	Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex. American Journal of Physiology - Renal Physiology, 2009, 297, G1035-G1040.	1.6	74
267	Suppression of motor cortical excitability by electrical stimulation over the cerebellum in ataxia. Annals of Neurology, 1994, 36, 90-96.	2.8	73
268	Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury. European Journal of Neuroscience, 2011, 34, 1839-1846.	1.2	72
269	Abnormal Access of Axial Vibrotactile Input to Deafferented Somatosensory Cortex in Human Upper Limb Amputees. Journal of Neurophysiology, 1997, 77, 2753-2764.	0.9	71
270	Targeting Unlesioned Pharyngeal Motor Cortex Improves Swallowing in Healthy Individuals and After Dysphagic Stroke. Gastroenterology, 2012, 142, 29-38.	0.6	71

#	Article	IF	CITATIONS
271	Effects of motor cortex stimulation on spinal interneurones in intact man. Experimental Brain Research, 1984, 54, 382-4.	0.7	70
272	Uncoupling of contingent negative variation and alpha band event-related desynchronization in a go/no-go task. Clinical Neurophysiology, 2001, 112, 1307-1315.	0.7	70
273	The role of dorsal premotor area in reaction task: comparing the "virtual lesion―effect of paired pulse or theta burst transcranial magnetic stimulation. Experimental Brain Research, 2005, 167, 414-421.	0.7	70
274	Oneâ€year follow up of patients with chronic tinnitus treated with left temporoparietal rTMS. European Journal of Neurology, 2009, 16, 404-408.	1.7	70
275	Information about the Weight of Grasped Objects from Vision and Internal Models Interacts within the Primary Motor Cortex. Journal of Neuroscience, 2010, 30, 6984-6990.	1.7	70
276	The Physiology of Idiopathic Dystonia. Canadian Journal of Neurological Sciences, 1987, 14, 521-527.	0.3	69
277	The effect of transcranial magnetic stimulation on median nerve somatosensory evoked potentials. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1993, 89, 227-234.	2.0	69
278	Transcranial magnetic stimulation selectively impairs interhemispheric transfer of visuo-motor information in humans. Experimental Brain Research, 1998, 118, 435-438.	0.7	69
279	Reduction of Intracortical Inhibition in Soleus Muscle During Postural Activity. Journal of Neurophysiology, 2006, 96, 1711-1717.	0.9	69
280	Effects of motor preparation and spatial attention on corticospinal excitability in a delayed-response paradigm. Experimental Brain Research, 2007, 182, 125-129.	0.7	69
281	Muscle and Timing-specific Functional Connectivity between the Dorsolateral Prefrontal Cortex and the Primary Motor Cortex. Journal of Cognitive Neuroscience, 2013, 25, 558-570.	1.1	69
282	Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping. Journal of Neural Engineering, 2014, 11, 056023.	1.8	69
283	Botulinum toxin injections reduce associative plasticity in patients with primary dystonia. Movement Disorders, 2011, 26, 1282-1289.	2.2	67
284	Neurophysiological correlates of abnormal somatosensory temporal discrimination in dystonia. Movement Disorders, 2017, 32, 141-148.	2.2	67
285	Restoration of motor inhibition through an abnormal premotorâ€motor connection in dystonia. Movement Disorders, 2010, 25, 696-703.	2.2	66
286	The time constants of motor and sensory peripheral nerve fibers measured with the method of latent addition. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1994, 93, 147-154.	2.0	65
287	Chapter 18 The startle reflex, voluntary movement, and the reticulospinal tract. Supplements To Clinical Neurophysiology, 2006, 58, 223-231.	2.1	65
288	Saliency Detection as a Reactive Process: Unexpected Sensory Events Evoke Corticomuscular Coupling. Journal of Neuroscience, 2018, 38, 2385-2397.	1.7	65

#	Article	IF	CITATIONS
289	Variability and Predictors of Response to Continuous Theta Burst Stimulation: A TMS-EEG Study. Frontiers in Neuroscience, 2018, 12, 400.	1.4	64
290	The topographic representation of esophageal motor function on the human cerebral cortex. Gastroenterology, 1996, 111, 855-862.	0.6	63
291	Effects of voluntary contraction on descending volleys evoked by transcranial electrical stimulation over the motor cortex hand area in conscious humans. Experimental Brain Research, 1999, 124, 525-528.	0.7	63
292	Acute Changes in Frontoparietal Activity after Repetitive Transcranial Magnetic Stimulation over the Dorsolateral Prefrontal Cortex in a Cued Reaction Time Task. Journal of Neuroscience, 2006, 26, 9629-9638.	1.7	63
293	Reversal of plasticity-like effects in the human motor cortex. Journal of Physiology, 2010, 588, 3683-3693.	1.3	63
294	Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Human Movement Science, 2011, 30, 906-915.	0.6	63
295	A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robotÂtherapy for the impaired upper limb inÂsub-acute and chronic stroke. NeuroRehabilitation, 2015, 37, 181-191.	0.5	63
296	Gut feelings about recovery after stroke: the organization and reorganization of human swallowing motor cortex. Trends in Neurosciences, 1998, 21, 278-282.	4.2	62
297	TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex. Journal of Physiology, 2009, 587, 4281-4292.	1.3	62
298	Contralateral versus ipsilateral rTMS of temporoparietal cortex for the treatment of chronic unilateral tinnitus: comparative study. European Journal of Neurology, 2010, 17, 976-983.	1.7	62
299	Automatic and â€~voluntary' responses compensating for disturbances of human thumb movements. Brain Research, 1982, 248, 33-41.	1.1	61
300	What can man do without basal ganglia motor output? The effect of combined unilateral subthalamotomy and pallidotomy in a patient with Parkinson's disease. Experimental Neurology, 2009, 220, 283-292.	2.0	61
301	Effects of pulse width, waveform and current direction in the cortex: A combined cTMS-EEG study. Brain Stimulation, 2018, 11, 1063-1070.	0.7	61
302	Cortical potentials related to the nogo decision. Experimental Brain Research, 2000, 132, 411-415.	0.7	60
303	Consistent Chronostasis Effects across Saccade Categories Imply a Subcortical Efferent Trigger. Journal of Cognitive Neuroscience, 2004, 16, 839-847.	1.1	60
304	Comparison of different methods for estimating motor threshold with transcranial magnetic stimulation. Clinical Neurophysiology, 2007, 118, 2120-2122.	0.7	60
305	Bidirectional Modulation of Primary Visual Cortex Excitability: A Combined tDCS and rTMS Study. , 2007, 48, 5782.		60
306	The Physiological Effects of Pallidal Deep Brain Stimulation in Dystonia. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15, 166-172.	2.7	60

#	Article	IF	CITATIONS
307	Dopamine levels after repetitive transcranial magnetic stimulation of motor cortex in patients with Parkinson's disease: Preliminary results. Movement Disorders, 2007, 22, 1046-1050.	2.2	59
308	Decreased cortical inhibition and yet cerebellar pathology in â€~familial cortical myoclonic tremor with epilepsy'. Movement Disorders, 2007, 22, 2378-2385.	2.2	59
309	Cerebral potentials and electromyographic responses evoked by stretch of wrist muscles in man. Experimental Brain Research, 1985, 58, 544-51.	0.7	58
310	Short-latency trigemino-cervical ref. Experimental Brain Research, 1995, 102, 474-482.	0.7	58
311	Descending volleys evoked by transcranial magnetic stimulation of the brain in conscious humans: effects of coil shape. Clinical Neurophysiology, 2002, 113, 114-119.	0.7	58
312	High-frequency transcranial magnetic stimulation of the supplementary motor area reduces bimanual coupling during anti-phase but not in-phase movements. Experimental Brain Research, 2003, 151, 309-317.	0.7	58
313	One-Hz repetitive transcranial magnetic stimulation of the premotor cortex alters reciprocal inhibition in DYT1 dystonia. Movement Disorders, 2004, 19, 54-59.	2.2	58
314	Abnormal plasticity of the sensorimotor cortex to slow repetitive transcranial magnetic stimulation in patients with writer's cramp. Movement Disorders, 2007, 22, 81-90.	2.2	58
315	Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb. Brain Stimulation, 2011, 4, 90-96.	0.7	57
316	Cerebellar–Motor Cortex Connectivity: One or Two Different Networks?. Journal of Neuroscience, 2020, 40, 4230-4239.	1.7	57
317	Transmission in the spinal reciprocal Ia inhibitory pathway preceding willed movements of the human wrist. Neuroscience Letters, 1983, 37, 245-250.	1.0	56
318	Functional organisation of corticonuclear pathways to motoneurones of lower facial muscles in man. Experimental Brain Research, 1994, 101, 465-72.	0.7	56
319	Releasing the brakes before pressing the gas pedal. Neurology, 1999, 53, 664-664.	1.5	56
320	Pre-movement gating of short-latency somatosensory evoked potentials. NeuroReport, 1999, 10, 2457-2460.	0.6	56
321	Manual Chronostasis. Current Biology, 2003, 13, 1134-1139.	1.8	56
322	The Contribution of Primary Motor Cortex is Essential for Probabilistic Implicit Sequence Learning: Evidence from Theta Burst Magnetic Stimulation. Journal of Cognitive Neuroscience, 2010, 22, 427-436.	1.1	56
323	Nonâ€invasive magnetic stimulation of the human cerebellum facilitates corticoâ€bulbar projections in the swallowing motor system. Neurogastroenterology and Motility, 2011, 23, 831.	1.6	56
324	Cerebellar theta burst stimulation impairs eyeblink classical conditioning. Journal of Physiology, 2012, 590, 887-897.	1.3	55

#	Article	IF	CITATIONS
325	Transcranial magnetic stimulation followâ€up study in early Parkinson's disease: A decline in compensation with disease progression?. Movement Disorders, 2015, 30, 1098-1106.	2.2	55
326	Developing a Tool for Remote Digital Assessment of Parkinson's Disease. Movement Disorders Clinical Practice, 2016, 3, 59-64.	0.8	55
327	Rapid rate transcranial magnetic stimulation – a safety study. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1997, 105, 422-429.	1.4	54
328	rTMS over the cerebellum can increase corticospinal excitability through a spinal mechanism involving activation of peripheral nerve fibres. Clinical Neurophysiology, 2002, 113, 1435-1440.	0.7	54
329	Parietal Magnetic Stimulation Delays Visuomotor Mental Rotation at Increased Processing Demands. NeuroImage, 2002, 17, 1512-1520.	2.1	54
330	Slow frequency repetitive transcranial magnetic stimulation affects reaction times, but not priming effects, in a masked prime task. Clinical Neurophysiology, 2003, 114, 1272-1277.	0.7	54
331	Pattern-specific role of the current orientation used to deliver Theta Burst Stimulation. Clinical Neurophysiology, 2007, 118, 1815-1823.	0.7	54
332	Selective modulation of intracortical inhibition by low-intensity Theta Burst Stimulation. Clinical Neurophysiology, 2009, 120, 820-826.	0.7	54
333	TMS of primary motor cortex with a biphasic pulse activates two independent sets of excitable neurones. Brain Stimulation, 2018, 11, 558-565.	0.7	54
334	Changes in finger coordination and responses to single pulse TMS of motor cortex during practice of a multifinger force production task. Experimental Brain Research, 2003, 151, 60-71.	0.7	53
335	Low-Frequency Transcranial Magnetic Stimulation over Left Dorsal Premotor Cortex Improves the Dynamic Control of Visuospatially Cued Actions. Journal of Neuroscience, 2010, 30, 9216-9223.	1.7	53
336	The effect of longâ€ŧerm TENS on persistent neuroplastic changes in the human cerebral cortex. Human Brain Mapping, 2011, 32, 872-882.	1.9	53
337	The reliability of commonly used electrophysiology measures. Brain Stimulation, 2017, 10, 1102-1111.	0.7	53
338	Movements not involved in posture are abnormal in Parkinson's disease. Neuroscience Letters, 1984, 47, 47-50.	1.0	52
339	Charting the excitability of premotor to motor connections while withholding or initiating a selected movement. European Journal of Neuroscience, 2010, 32, 1771-1779.	1.2	52
340	Exploring brainstem function in multiple sclerosis by combining brainstem reflexes, evoked potentials, clinical and MRI investigations. Clinical Neurophysiology, 2014, 125, 2286-2296.	0.7	52
341	Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson's disease. Movement Disorders, 2017, 32, 1174-1182.	2.2	52
342	Stimulating cognition in schizophrenia: A controlled pilot study of the effects of prefrontal transcranial direct current stimulation upon memory and learning. Brain Stimulation, 2017, 10, 560-566.	0.7	52

#	Article	IF	CITATIONS
343	Voluntary inhibitory motor control over involuntary tic movements. Movement Disorders, 2018, 33, 937-946.	2.2	52
344	Transcallosal sensorimotor integration: Effects of sensory input on cortical projections to the contralateral hand. Clinical Neurophysiology, 2006, 117, 855-863.	0.7	51
345	Slow (1 Hz) repetitive transcranial magnetic stimulation (rTMS) induces a sustained change in cortical excitability in patients with Parkinson's disease. Clinical Neurophysiology, 2010, 121, 1129-1137.	0.7	51
346	Inhibitory dysfunction contributes to some of the motor and non-motor symptoms of movement disorders and psychiatric disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160198.	1.8	51
347	Short-interval intracortical inhibition: Comparison between conventional and threshold-tracking techniques. Brain Stimulation, 2018, 11, 806-817.	0.7	51
348	Motor strategies involved in the performance of sequential movements. Experimental Brain Research, 1986, 63, 585-595.	0.7	50
349	Effects of paired pulse TMS of primary somatosensory cortex on perception of a peripheral electrical stimulus. Experimental Brain Research, 2006, 172, 416-424.	0.7	50
350	An improvement in perception of self-generated tactile stimuli following theta-burst stimulation of primary motor cortex. Neuropsychologia, 2007, 45, 2712-2717.	0.7	50
351	Cerebellum-dependent associative learning deficits in primary dystonia are normalized by rTMS and practice. European Journal of Neuroscience, 2013, 38, 2166-2171.	1.2	50
352	Cerebellar stimulation fails to modulate motor cortex plasticity in writing dystonia. Movement Disorders, 2014, 29, 1304-1307.	2.2	50
353	Unmyelinated Peripheral Nerves Can Be Stimulated inÂVitro Using Pulsed Ultrasound. Ultrasound in Medicine and Biology, 2017, 43, 2269-2283.	0.7	50
354	Non-invasive suppression of essential tremor via phase-locked disruption of its temporal coherence. Nature Communications, 2021, 12, 363.	5.8	50
355	The contribution of transcortical pathways to long-latency stretch and tactile reflexes in human hand muscles. Experimental Brain Research, 1996, 108, 147-54.	0.7	49
356	Neurophysiological investigations in patients with primary writing tremor. Movement Disorders, 2002, 17, 1336-1340.	2.2	49
357	Effects of rTMS Conditioning over the Fronto-parietal Network on Motor versus Visual Attention. Journal of Cognitive Neuroscience, 2007, 19, 513-524.	1.1	49
358	Modulation of somatosensory evoked potentials using transcranial magnetic intermittent theta burst stimulation. Clinical Neurophysiology, 2007, 118, 2506-2511.	0.7	49
359	Informing Dose-Finding Studies of Repetitive Transcranial Magnetic Stimulation to Enhance Motor Function: A Qualitative Systematic Review. Neurorehabilitation and Neural Repair, 2008, 22, 228-249.	1.4	49
360	New insights into cortico-basal-cerebellar connectome: clinical and physiological considerations. Brain, 2019, 143, 396-406.	3.7	49

#	Article	IF	CITATIONS
361	The polarity of the induced electric field influences magnetic coil inhibition of human visual cortex: implications for the site of excitation. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1994, 93, 21-26.	2.0	48
362	Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal inhibition of human pharyngeal motor cortex on swallowing. Journal of Physiology, 2014, 592, 695-709.	1.3	48
363	The use of transcranial magnetic stimulation as a treatment for movement disorders: A critical review. Movement Disorders, 2019, 34, 769-782.	2.2	48
364	Short-lasting impairment of tactile perception by 0.9Hz-rTMS of the sensorimotor cortex. Neurology, 2003, 60, 1045-1047.	1.5	47
365	Abnormal cortical and spinal inhibition in paroxysmal kinesigenic dyskinesia. Brain, 2004, 128, 291-299.	3.7	47
366	D2 Receptor Block Abolishes Theta Burst Stimulation-Induced Neuroplasticity in the Human Motor Cortex. Neuropsychopharmacology, 2011, 36, 2097-2102.	2.8	47
367	Chapter 83 Neural transplantation in Parkinson's disease: the Swedish experience. Progress in Brain Research, 1990, 82, 729-734.	0.9	46
368	Altered dorsal premotor–motor interhemispheric pathway activity in focal arm dystonia. Movement Disorders, 2008, 23, 660-668.	2.2	46
369	Modulatory effects of 5Hz rTMS over the primary somatosensory cortex in focal dystonia—An fMRIâ€TMS study. Movement Disorders, 2010, 25, 76-83.	2.2	46
370	The Effect of High-Frequency Repetitive Transcranial Magnetic Stimulation on Advancing Parkinson's Disease With Dysphagia: Double Blind Randomized Clinical Trial. Neurorehabilitation and Neural Repair, 2019, 33, 442-452.	1.4	46
371	A Sound-Evoked Vestibulomasseteric Reflex in Healthy Humans. Journal of Neurophysiology, 2005, 93, 2739-2751.	0.9	46
372	Central EMG and tests of motor control. Report of an IFCN committee. Electroencephalography and Clinical Neurophysiology, 1994, 90, 404-432.	0.3	45
373	Posterior parietal rTMS disrupts human Path Integration during a vestibular navigation task. Neuroscience Letters, 2008, 437, 88-92.	1.0	45
374	Differing effects of intracortical circuits on plasticity. Experimental Brain Research, 2009, 193, 555-563.	0.7	45
375	Normal cortical excitability in Myoclonus-Dystonia — A TMS study. Experimental Neurology, 2009, 216, 300-305.	2.0	45
376	High frequency somatosensory stimulation increases sensori-motor inhibition and leads to perceptual improvement in healthy subjects. Clinical Neurophysiology, 2017, 128, 1015-1025.	0.7	45
377	A Short Latency Vestibulomasseteric Reflex Evoked by Electrical Stimulation Over the Mastoid in Healthy Humans. Journal of Physiology, 2003, 553, 267-279.	1.3	44
378	High-frequency repetitive transcranial magnetic stimulation over the hand area of the primary motor cortex disturbs predictive grip force scaling. European Journal of Neuroscience, 2005, 22, 2392-2396.	1.2	44

#	Article	IF	CITATIONS
379	Physiological Evidence Consistent with Reduced Neuroplasticity in Human Adolescents Born Preterm. Journal of Neuroscience, 2012, 32, 16410-16416.	1.7	44
380	Inhibitory theta burst stimulation of affected hemisphere in chronic stroke: A proof of principle, sham-controlled study. Neuroscience Letters, 2013, 553, 148-152.	1.0	44
381	Subcortical Control of Precision Grip after Human Spinal Cord Injury. Journal of Neuroscience, 2014, 34, 7341-7350.	1.7	44
382	Modulation of frontal effective connectivity during speech. NeuroImage, 2016, 140, 126-133.	2.1	44
383	The interindividual variability of transcranial magnetic stimulation effects: Implications for diagnostic use in movement disorders. Movement Disorders, 2019, 34, 936-949.	2.2	44
384	The offset cortical potential: An electrical correlate of movement inhibition in man. Movement Disorders, 1998, 13, 330-335.	2.2	43
385	Striatal Contribution to Cognition: Working Memory and Executive Function in Parkinson's Disease before and after Unilateral Posteroventral Pallidotomy. Journal of Cognitive Neuroscience, 2002, 14, 298-310.	1.1	43
386	Grip force behavior in Gilles de la Tourette syndrome. Movement Disorders, 2005, 20, 217-223.	2.2	43
387	Modulation of human cortical swallowing motor pathways after pleasant and aversive taste stimuli. American Journal of Physiology - Renal Physiology, 2006, 291, G666-G671.	1.6	43
388	Direct demonstration of the effects of repetitive paired-pulse transcranial magnetic stimulation at I-wave periodicity. Clinical Neurophysiology, 2007, 118, 1193-1197.	0.7	43
389	The Influence of Deep Brain Stimulation Intensity and Duration on Symptoms Evolution in an OFF Stimulation Dystonia Study. Brain Stimulation, 2013, 6, 500-505.	0.7	43
390	Failure of explicit movement control in patients with functional motor symptoms. Movement Disorders, 2013, 28, 517-523.	2.2	43
391	Non-invasive brain stimulation as a tool to study cerebellar-M1 interactions in humans. Cerebellum and Ataxias, 2016, 3, 19.	1.9	43
392	A unifying motor control framework for task-specific dystonia. Nature Reviews Neurology, 2018, 14, 116-124.	4.9	43
393	High frequency somatosensory stimulation in dystonia: Evidence fordefective inhibitory plasticity. Movement Disorders, 2018, 33, 1902-1909.	2.2	43
394	Non-invasive brain stimulation to promote motor and functional recovery following spinal cord injury. Neural Regeneration Research, 2017, 12, 1933.	1.6	43
395	Effects of low frequency and low intensity repetitive paired pulse stimulation of the primary motor cortex. Clinical Neurophysiology, 2004, 115, 1259-1263.	0.7	42
396	Action Reprogramming in Parkinson's Disease: Response to Prediction Error Is Modulated by Levels of Dopamine. Journal of Neuroscience, 2012, 32, 542-550.	1.7	42

#	Article	IF	CITATIONS
397	Modulation of the Disturbed Motor Network in Dystonia by Multisession Suppression of Premotor Cortex. PLoS ONE, 2012, 7, e47574.	1.1	42
398	Direct-current-dependent shift of theta-burst-induced plasticity in the human motor cortex. Experimental Brain Research, 2012, 217, 15-23.	0.7	42
399	Comparison of descending volleys evoked by transcranial and epidural motor cortex stimulation in a conscious patient with bulbar pain. Clinical Neurophysiology, 2004, 115, 834-838.	0.7	41
400	Highâ€frequency focal repetitive cerebellar stimulation induces prolonged increases in human pharyngeal motor cortex excitability. Journal of Physiology, 2015, 593, 4963-4977.	1.3	41
401	TMS-evoked long-lasting artefacts: A new adaptive algorithm for EEG signal correction. Clinical Neurophysiology, 2017, 128, 1563-1574.	0.7	41
402	Neurophysiological adaptations in the untrained side in conjunction with cross-education of muscle strength: a systematic review and meta-analysis. Journal of Applied Physiology, 2018, 124, 1502-1518.	1.2	41
403	On the focal nature of inhibition and facilitation in the human motor cortex. Clinical Neurophysiology, 1999, 110, 550-555.	0.7	40
404	Changes in blink reflex excitability after globus pallidus internus stimulation for dystonia. Movement Disorders, 2006, 21, 1650-1655.	2.2	40
405	Modulation of motor cortical excitability following rapid-rate transcranial magnetic stimulation. Clinical Neurophysiology, 2007, 118, 140-145.	0.7	40
406	Cost-effectiveness of transcranial magnetic stimulation vs. electroconvulsive therapy for severe depression: A multi-centre randomised controlled trial. Journal of Affective Disorders, 2008, 109, 273-285.	2.0	40
407	Mapping genetic influences on the corticospinal motor system in humans. Neuroscience, 2009, 164, 156-163.	1.1	40
408	Brain stimulation and brain repair – rTMS: from animal experiment to clinical trials – what do we know?. Restorative Neurology and Neuroscience, 2010, 28, 387-398.	0.4	40
409	The Neurophysiological Features of Myoclonus-Dystonia and Differentiation From Other Dystonias. JAMA Neurology, 2014, 71, 612.	4.5	40
410	Proprioception in motor learning: lessons from a deafferented subject. Experimental Brain Research, 2015, 233, 2449-2459.	0.7	40
411	Interaction between visual and motor cortex: a transcranial magnetic stimulation study. Journal of Physiology, 2015, 593, 2365-2377.	1.3	40
412	Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex and the Pre-SMA Alter Drift Rate and Response Thresholds Respectively During Perceptual Decision-Making. Brain Stimulation, 2016, 9, 601-608.	0.7	40
413	Preconditioning Repetitive Transcranial Magnetic Stimulation of Premotor Cortex Can Reduce But Not Enhance Short-Term Facilitation of Primary Motor Cortex. Journal of Neurophysiology, 2008, 99, 564-570.	0.9	39
414	Cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement. Experimental Brain Research, 2011, 209, 437-442.	0.7	39

#	Article	IF	CITATIONS
415	Sensorimotor Deprivation Induces Interdependent Changes in Excitability and Plasticity of the Human Hand Motor Cortex. Journal of Neuroscience, 2014, 34, 7375-7382.	1.7	39
416	Inter-individual Variation in the After-effect of Paired Associative Stimulation can be Predicted From Short-interval Intracortical Inhibition With the Threshold Tracking Method. Brain Stimulation, 2015, 8, 105-113.	0.7	39
417	Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation. Neuromodulation, 2018, 21, 348-354.	0.4	39
418	Ten‥ear Reflections on the Neurophysiological Abnormalities of Focal Dystonias in Humans. Movement Disorders, 2019, 34, 1616-1628.	2.2	39
419	The effect of salient stimuli on neural oscillations, isometric force, and their coupling. NeuroImage, 2019, 198, 221-230.	2.1	39
420	A propriospinal-like contribution to electromyographic responses evoked in wrist extensor muscles by transcranial stimulation of the motor cortex in man. Experimental Brain Research, 1996, 109, 495-9.	0.7	38
421	The sternocleidomastoid test: an in vivo assay to investigate botulinum toxin antibody formation in humans. Journal of Neurology, 2000, 247, 630-632.	1.8	38
422	The after effects of motor cortex rTMS depend on the state of contraction when rTMS is applied. Clinical Neurophysiology, 2004, 115, 1514-1518.	0.7	38
423	No evidence for a substantial involvement of primary motor hand area in handedness judgements: a transcranial magnetic stimulation study. European Journal of Neuroscience, 2006, 23, 2215-2224.	1.2	38
424	Direct Demonstration That Repetitive Transcranial Magnetic Stimulation Can Enhance Corticospinal Excitability in Stroke. Stroke, 2006, 37, 2850-2853.	1.0	38
425	Biâ€directional modulation of somatosensory mismatch negativity with transcranial direct current stimulation: an event related potential study. Journal of Physiology, 2014, 592, 745-757.	1.3	38
426	All in the blink of an eye: new insight into cerebellar and brainstem function in <scp>DYT</scp> 1 and <scp>DYT</scp> 6 dystonia. European Journal of Neurology, 2015, 22, 762-767.	1.7	38
427	Unravelling the enigma of cortical tremor and other forms of cortical myoclonus. Brain, 2020, 143, 2653-2663.	3.7	38
428	Training in the practice of noninvasive brain stimulation: Recommendations from an IFCN committee. Clinical Neurophysiology, 2021, 132, 819-837.	0.7	38
429	Interference in Ballistic Motor Learning: Specificity and Role of Sensory Error Signals. PLoS ONE, 2011, 6, e17451.	1.1	38
430	Cerebellar axial postural tremor. Movement Disorders, 1997, 12, 977-984.	2.2	37
431	Caffeine has no effect on measures of cortical excitability. Clinical Neurophysiology, 2005, 116, 308-314.	0.7	37
432	Distinct Influence of Hand Posture on Cortical Activity during Human Grasping. Journal of Neuroscience, 2015, 35, 4882-4889.	1.7	37

#	Article	IF	CITATIONS
433	Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control. Brain Stimulation, 2016, 9, 518-524.	0.7	37
434	Low intensity strength training for ambulatory stroke patients. Disability and Rehabilitation, 2006, 28, 883-889.	0.9	36
435	Alteration of central motor excitability in a patient with hemimasticatory spasm after treatment with botulinum toxin injections. Movement Disorders, 2006, 21, 73-78.	2.2	36
436	Low-frequency repetitive transcranial magnetic stimulation and off-phase motor symptoms in Parkinson's disease. Journal of the Neurological Sciences, 2010, 291, 1-4.	0.3	36
437	Cerebellar repetitive transcranial magnetic stimulation restores pharyngeal brain activity and swallowing behaviour after disruption by a cortical virtual lesion. Journal of Physiology, 2019, 597, 2533-2546.	1.3	36
438	Modulation of esophageal responses to magnetic stimulation of the human brain by swallowing and by vagal stimulation. Gastroenterology, 1995, 109, 1437-1445.	0.6	35
439	Effect of repetitive transcranial magnetic stimulation applied over the premotor cortex on somatosensory-evoked potentials and regional cerebral blood flow. NeuroImage, 2006, 31, 699-709.	2.1	35
440	Effectiveness of a community-based low intensity exercise programme for ambulatory stroke survivors. Disability and Rehabilitation, 2010, 32, 239-247.	0.9	35
441	Cortical oscillatory activity and the induction of plasticity in the human motor cortex. European Journal of Neuroscience, 2011, 33, 1916-1924.	1.2	35
442	History of exposure to dopaminergic medication does not affect motor cortex plasticity and excitability in Parkinson's disease. Clinical Neurophysiology, 2013, 124, 697-707.	0.7	35
443	Effects of Quadripulse Stimulation on Human Motor Cortex Excitability: A Replication Study. Brain Stimulation, 2016, 9, 148-150.	0.7	35
444	The effect of transcranial direct current stimulation on motor sequence learning and upper limb function after stroke. Clinical Neurophysiology, 2017, 128, 1389-1398.	0.7	35
445	Theta burst magnetic stimulation over the pre-supplementary motor area improves motor inhibition. Brain Stimulation, 2017, 10, 944-951.	0.7	35
446	Time-dependent functional role of the contralesional motor cortex after stroke. NeuroImage: Clinical, 2017, 16, 165-174.	1.4	35
447	Impaired automatic but intact volitional inhibition in primary tic disorders. Brain, 2020, 143, 906-919.	3.7	35
448	Inhibition of hand muscle motoneurones by peripheral nerve stimulation in the relaxed human subject. Antidromic versus orthodromic input. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1995, 97, 63-68.	1.4	34
449	A message from the Editors. Brain, 2004, 127, 1-1.	3.7	34
450	A Magnetic Resonance Spectroscopy Study of Brain Glutamate in a Model of Plasticity in Human Pharyngeal Motor Cortex. Gastroenterology, 2009, 136, 417-424.	0.6	34

#	Article	IF	CITATIONS
451	Normal Motor Adaptation in Cervical Dystonia: A Fundamental Cerebellar Computation is Intact. Cerebellum, 2014, 13, 558-567.	1.4	34
452	Direction of TDCS current flow in human sensorimotor cortex influences behavioural learning. Brain Stimulation, 2019, 12, 684-692.	0.7	34
453	Cortical Paired Associative Stimulation Influences Response Inhibition: Cortico-cortical and Cortico-subcortical Networks. Biological Psychiatry, 2019, 85, 355-363.	0.7	34
454	Effects of rTMS on the brain: is there value in variability?. Cortex, 2021, 139, 43-59.	1.1	34
455	Multiple firing of motoneurones is produced by cortical stimulation but not by direct activation of descending motor tracts. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1991, 81, 240-242.	2.0	33
456	Unilateral grip fatigue reduces short interval intracortical inhibition in ipsilateral primary motor cortex. Clinical Neurophysiology, 2009, 120, 198-203.	0.7	33
457	Somatosensory evoked potentials and high frequency oscillations are differently modulated by theta burst stimulation over primary somatosensory cortex in humans. Clinical Neurophysiology, 2010, 121, 2097-2103.	0.7	33
458	A reflection on plasticity research in writing dystonia. Movement Disorders, 2014, 29, 980-987.	2.2	33
459	Testing a Neurobiological Model of Depersonalization Disorder Using Repetitive Transcranial Magnetic Stimulation. Brain Stimulation, 2014, 7, 252-259.	0.7	33
460	Theta burst stimulation over the supplementary motor area in Parkinson's disease. Journal of Neurology, 2015, 262, 357-364.	1.8	33
461	Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation. Clinical Neurophysiology, 2017, 128, 2043-2047.	0.7	33
462	Parkinsonian signs in patients with cervical dystonia treated with pallidal deep brain stimulation. Brain, 2018, 141, 3023-3034.	3.7	33
463	Rapid rate magnetic stimulation of human sacral nerve roots alters excitability within the cortico $\hat{a} \in a$ nal pathway. Neurogastroenterology and Motility, 2008, 20, 1132-1139.	1.6	32
464	Val66Met in Brain-Derived Neurotrophic Factor Affects Stimulus-Induced Plasticity in the Human Pharyngeal Motor Cortex. Gastroenterology, 2011, 141, 827-836.e3.	0.6	32
465	Milestones in clinical neurophysiology. Movement Disorders, 2011, 26, 958-967.	2.2	32
466	Sensory tricks in primary cervical dystonia depend on visuotactile temporal discrimination. Movement Disorders, 2013, 28, 356-361.	2.2	32
467	Impaired intracortical inhibition demonstrated in vivo in people with Dravet syndrome. Neurology, 2017, 88, 1659-1665.	1.5	32
468	Cerebellar transcranial magnetic stimulation: The role of coil type from distinct manufacturers. Brain Stimulation, 2020, 13, 153-156.	0.7	32

#	Article	IF	CITATIONS
469	Consensus Paper: Novel Directions and Next Steps of Non-invasive Brain Stimulation of the Cerebellum in Health and Disease. Cerebellum, 2022, 21, 1092-1122.	1.4	32
470	Pallidotomy and incidental sequence learning in Parkinson's disease. NeuroReport, 2003, 14, 21-24.	0.6	31
471	Spatial attention affects sensorimotor reorganisation in human motor cortex. Experimental Brain Research, 2006, 170, 97-108.	0.7	31
472	Changes in Cortical Potential Associated With Modulation of Peripheral Sympathetic Activity in Patients With Epilepsy. Psychosomatic Medicine, 2009, 71, 84-92.	1.3	31
473	Mental rotation of body parts and sensory temporal discrimination in fixed dystonia. Movement Disorders, 2010, 25, 1061-1067.	2.2	31
474	Standardizing the intensity of upper limb treatment in rehabilitation medicine. Clinical Rehabilitation, 2010, 24, 471-478.	1.0	31
475	Overview of neurophysiology of movement control. Clinical Neurology and Neurosurgery, 2012, 114, 432-435.	0.6	31
476	Reversal of Practice-related Effects on Corticospinal Excitability has no Immediate Effect on Behavioral Outcome. Brain Stimulation, 2015, 8, 603-612.	0.7	31
477	Effects of Anodal High-Definition Transcranial Direct Current Stimulation on Bilateral Sensorimotor Cortex Activation During Sequential Finger Movements: An fNIRS Study. Advances in Experimental Medicine and Biology, 2016, 876, 351-359.	0.8	31
478	Stimulating thought: a functional MRI study of transcranial direct current stimulation in schizophrenia. Brain, 2017, 140, 2490-2497.	3.7	31
479	Twenty years on: Myoclonusâ€dystonia and εâ€sarcoglycan — neurodevelopment, channel, and signaling dysfunction. Movement Disorders, 2019, 34, 1588-1601.	2.2	31
480	Transcranial Evoked Potentials Can Be Reliably Recorded with Active Electrodes. Brain Sciences, 2021, 11, 145.	1.1	31
481	Long-term changes of GABAergic function in the sensorimotor cortex of amputees. Experimental Brain Research, 2000, 133, 552-556.	0.7	30
482	Dissociation of motor preparation from memory and attentional processes using movement-related cortical potentials. Experimental Brain Research, 2000, 135, 231-240.	0.7	30
483	Defective temporal discrimination of passive movements in Parkinson's disease. Neuroscience Letters, 2007, 417, 312-315.	1.0	30
484	Cerebellar learning distinguishes inflammatory neuropathy with and without tremor. Neurology, 2013, 80, 1867-1873.	1.5	30
485	Punishment-Induced Behavioral and Neurophysiological Variability Reveals Dopamine-Dependent Selection of Kinematic Movement Parameters. Journal of Neuroscience, 2013, 33, 3981-3988.	1.7	30
486	Pallidal stimulation for cervical dystonia does not correct abnormal temporal discrimination. Movement Disorders, 2013, 28, 1874-1877.	2.2	30

#	Article	IF	CITATIONS
487	Functional involvement of cerebral cortex in duchenne muscular dystrophy. , 1998, 21, 662-664.		29
488	Role of brainstem-spinal projections in voluntary movement. Movement Disorders, 2002, 17, S27-S29.	2.2	29
489	Systems-level studies of movement disorders in dystonia and Parkinson's disease. Current Opinion in Neurobiology, 2003, 13, 691-695.	2.0	29
490	Sensory timing cues improve akinesia of grasping movements in Parkinson's disease: A comparison to the effects of subthalamic nucleus stimulation. Movement Disorders, 2006, 21, 166-172.	2.2	29
491	Motor cortical physiology in patients and asymptomatic carriers of parkin gene mutations. Movement Disorders, 2008, 23, 1812-1819.	2.2	29
492	Domain-specific suppression of auditory mismatch negativity with transcranial direct current stimulation. Clinical Neurophysiology, 2014, 125, 585-592.	0.7	29
493	Evidence for a Window of Enhanced Plasticity in the Human Motor Cortex Following Ischemic Stroke. Neurorehabilitation and Neural Repair, 2021, 35, 307-320.	1.4	29
494	Consensus for experimental design in electromyography (CEDE) project: Terminology matrix. Journal of Electromyography and Kinesiology, 2021, 59, 102565.	0.7	29
495	Spontaneously changing muscular activation pattern in patients with cervical dystonia. Movement Disorders, 2001, 16, 1091-1097.	2.2	28
496	Origin of sound-evoked EMG responses in human masseter muscles. Journal of Physiology, 2007, 580, 195-209.	1.3	28
497	Intracortical modulation of corticalâ€bulbar responses for the masseter muscle. Journal of Physiology, 2008, 586, 3385-3404.	1.3	28
498	Clinical Applications of Noninvasive Electrical Stimulation. Clinical EEG and Neuroscience, 2012, 43, 209-214.	0.9	28
499	Movement speed is biased by prior experience. Journal of Neurophysiology, 2014, 111, 128-134.	0.9	28
500	Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease. Movement Disorders, 2018, 33, 440-448.	2.2	28
501	The effects of unilateral and bilateral cerebellar rTMS on human pharyngeal motor cortical activity and swallowing behavior. Experimental Brain Research, 2020, 238, 1719-1733.	0.7	28
502	Human anticipatory eye movements may reflect rhythmic central nervous activity. Neuroscience, 1999, 94, 339-350.	1.1	27
503	Cortical potentials related to decision-making. NeuroReport, 1999, 10, 3583-3587.	0.6	27
504	Inter-hemispheric asymmetry of ipsilateral corticofugal projections to proximal muscles in humans. Experimental Brain Research, 2004, 157, 225-33.	0.7	27

#	Article	IF	CITATIONS
505	Action, arousal, and subjective time. Consciousness and Cognition, 2004, 13, 373-390.	0.8	27
506	Corticospinal Facilitation Following Prolonged Proprioceptive Stimulation by Means of Passive Wrist Movement. Journal of Clinical Neurophysiology, 2008, 25, 202-209.	0.9	27
507	Theta Burst Stimulation over the human primary motor cortex modulates neural processes involved in movement preparation. Clinical Neurophysiology, 2009, 120, 1195-1203.	0.7	27
508	THE MOTOR FUNCTIONS OF THE BASAL GANGLIA. Journal of Integrative Neuroscience, 2011, 10, 303-315.	0.8	27
509	Priming Pharyngeal Motor Cortex by Repeated Paired Associative Stimulation. Neurorehabilitation and Neural Repair, 2013, 27, 355-362.	1.4	27
510	Characterization of Corticobulbar Pharyngeal Neurophysiology in Dysphagic Patients With Parkinson's Disease. Clinical Gastroenterology and Hepatology, 2014, 12, 2037-2045.e4.	2.4	27
511	Longterm deep brain stimulation withdrawal: Clinical stability despite electrophysiological instability. Journal of the Neurological Sciences, 2014, 342, 197-199.	0.3	27
512	Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control. Journal of Neuroscience, 2016, 36, 10545-10559.	1.7	27
513	Evidence for a subcortical contribution to intracortical facilitation. European Journal of Neuroscience, 2018, 47, 1311-1319.	1.2	27
514	Modulation of the long-latency reflex to stretch by the supplementary motor area in humans. Neuroscience Letters, 1987, 75, 349-354.	1.0	26
515	Temporal discrimination of two passive movements in writer's cramp. Movement Disorders, 2006, 21, 1131-1135.	2.2	26
516	Intracortical circuits, sensorimotor integration and plasticity in human motor cortical projections to muscles of the lower face. Journal of Physiology, 2013, 591, 1889-1906.	1.3	26
517	The Role of Dopamine in Motor Flexibility. Journal of Cognitive Neuroscience, 2015, 27, 365-376.	1.1	26
518	Dopaminergic treatment modulates sensory attenuation at the onset of the movement in Parkinson's disease: A test of a new framework for bradykinesia. Movement Disorders, 2016, 31, 143-146.	2.2	26
519	High motor variability in DYT1 dystonia is associated with impaired visuomotor adaptation. Scientific Reports, 2018, 8, 3653.	1.6	26
520	Remission in dystonia – Systematic review of the literature and meta-analysis. Parkinsonism and Related Disorders, 2019, 66, 9-15.	1.1	26
521	Only the Fastest Corticospinal Fibers Contribute to Î ² Corticomuscular Coherence. Journal of Neuroscience, 2021, 41, 4867-4879.	1.7	26
522	The Strength of the Corticospinal Tract Not the Reticulospinal Tract Determines Upper-Limb Impairment Level and Capacity for Skill-Acquisition in the Sub-Acute Post-Stroke Period. Neurorehabilitation and Neural Repair, 2021, 35, 812-822.	1.4	26

#	Article	IF	CITATIONS
523	Memory for fingertip forces: passive hand muscle vibration interferes with predictive grip force scaling. Experimental Brain Research, 2004, 156, 444-450.	0.7	25
524	Opposite effects of weak transcranial direct current stimulation on different phases of short interval intracortical inhibition (SICI). Experimental Brain Research, 2013, 225, 321-331.	0.7	25
525	An investigation of cortical neuroplasticity following stroke in adults: is there evidence for a critical window for rehabilitation?. BMC Neurology, 2015, 15, 109.	0.8	25
526	Motor Cortex Plasticity during Unilateral Finger Movement with Mirror Visual Feedback. Neural Plasticity, 2016, 2016, 1-8.	1.0	25
527	Motor cortical excitability during voluntary inhibition of involuntary tic movements. Movement Disorders, 2018, 33, 1804-1809.	2.2	25
528	Similar effect of intermittent theta burst and sham stimulation on corticospinal excitability: A 5â€day repeated sessions study. European Journal of Neuroscience, 2018, 48, 1990-2000.	1.2	25
529	Cerebellar transcranial direct current stimulation does not alter motor surround inhibition. International Journal of Neuroscience, 2013, 123, 425-432.	0.8	24
530	On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. Frontiers in Neurology, 2020, 11, 584664.	1.1	24
531	Physiology and Anatomy of Possible Oscillators in the Central Nervous System. Movement Disorders, 2008, 13, 24-28.	2.2	23
532	How repeatable are the physiological effects of TENS?. Clinical Neurophysiology, 2008, 119, 1834-1839.	0.7	23
533	Novel â€ [~] hunting' method using transcranial magnetic stimulation over parietal cortex disrupts visuospatial sensitivity in relation to motor thresholds. Neuropsychologia, 2009, 47, 3152-3161.	0.7	23
534	The facilitatory effects of intermittent theta burst stimulation on corticospinal excitability are enhanced by nicotine. Clinical Neurophysiology, 2009, 120, 1610-1615.	0.7	23
535	Abnormal explicit but normal implicit sequence learning in premanifest and early Huntington's disease. Movement Disorders, 2010, 25, 1343-1349.	2.2	23
536	Controllable Pulse Parameter TMS and TMS-EEG As Novel Approaches to Improve Neural Targeting with rTMS in Human Cerebral Cortex. Frontiers in Neural Circuits, 2016, 10, 97.	1.4	23
537	Are studies of motor cortex plasticity relevant in human patients with Parkinson's disease?. Clinical Neurophysiology, 2016, 127, 50-59.	0.7	23
538	Cortical inhibitory function in cervical dystonia. Clinical Neurophysiology, 2018, 129, 466-472.	0.7	23
539	Combining reward and M1 transcranial direct current stimulation enhances the retention of newly learnt sensorimotor mappings. Brain Stimulation, 2019, 12, 1205-1212.	0.7	23
540	Concurrent anodal transcranial direct-current stimulation and motor task to influence sensorimotor cortex activation. Brain Research, 2019, 1710, 181-187.	1.1	23

#	Article	IF	CITATIONS
541	Interaction between the long-latency stretch reflex and voluntary electromyographic activity prior to a rapid voluntary motor reaction. Brain Research, 1983, 270, 55-62.	1.1	22
542	The beneficial effects of subthalamic nucleus stimulation on manipulative finger force control in Parkinson's disease. Experimental Neurology, 2005, 193, 427-436.	2.0	22
543	Cortical evoked potentials from pallidal stimulation in patients with primary generalized dystonia. Movement Disorders, 2008, 23, 265-273.	2.2	22
544	Prolonged cortical silent period but normal sensorimotor plasticity in spinocerebellar ataxia 6. Movement Disorders, 2008, 23, 378-385.	2.2	22
545	Reflex responses of masseter muscles to sound. Clinical Neurophysiology, 2010, 121, 1690-1699.	0.7	22
546	Tremor in Charcot-Marie-Tooth disease: No evidence of cerebellar dysfunction. Clinical Neurophysiology, 2015, 126, 1817-1824.	0.7	22
547	Pulse width biases the balance of excitation and inhibition recruited by transcranial magnetic stimulation. Brain Stimulation, 2020, 13, 536-538.	0.7	22
548	The Effects of Midline Cerebellar rTMS on Human Pharyngeal Cortical Activity in the Intact Swallowing Motor System. Cerebellum, 2021, 20, 101-115.	1.4	22
549	Consensus for experimental design in electromyography (CEDE) project: High-density surface electromyography matrix. Journal of Electromyography and Kinesiology, 2022, 64, 102656.	0.7	22
550	Firing patterns of pallidal cells in Parkinsonian patients correlate with their pre-pallidotomy clinical scores. NeuroReport, 2000, 11, 3413-3418.	0.6	21
551	Direct recording of the output of the motor cortex produced by transcranial magnetic stimulation in a patient with cerebral cortex atrophy. Clinical Neurophysiology, 2004, 115, 112-115.	0.7	21
552	Influence of ipsilateral transcranial magnetic stimulation on the triphasic EMG pattern accompanying fast ballistic movements in humans. Journal of Physiology, 2006, 574, 917-928.	1.3	21
553	An unavoidable modulation? Sensory attention and human primary motor cortex excitability. European Journal of Neuroscience, 2014, 40, 2850-2858.	1.2	21
554	A model of poststroke fatigue based on sensorimotor deficits. Current Opinion in Neurology, 2015, 28, 582-586.	1.8	21
555	Overactive visuomotor connections underlie the photoparoxysmal response. A <scp>TMS</scp> study. Epilepsia, 2015, 56, 1828-1835.	2.6	21
556	High frequency repetitive sensory stimulation improves temporal discrimination in healthy subjects. Clinical Neurophysiology, 2016, 127, 817-820.	0.7	21
557	Pathophysiology of spinal myoclonus. Advances in Neurology, 2002, 89, 137-44.	0.8	21
558	Changes in corticospinal motor excitability induced by non-motor linguistic tasks. Experimental Brain Research, 2004, 154, 218-225.	0.7	20

#	Article	IF	CITATIONS
559	Early stages of motor skill learning and the specific relevance of the cortical motor system – a combined behavioural training and theta burst TMS study. Restorative Neurology and Neuroscience, 2012, 30, 199-211.	0.4	20
560	Remote effects of intermittent theta burst stimulation of the human pharyngeal motor system. European Journal of Neuroscience, 2012, 36, 2493-2499.	1.2	20
561	Probing the timing network: A continuous theta burst stimulation study of temporal categorization. Neuroscience, 2017, 356, 167-175.	1.1	20
562	Transcranial brain stimulation: Past and future. Brain and Neuroscience Advances, 2018, 2, 239821281881807.	1.8	20
563	Differential effects of motor skill acquisition on the primary motor and sensory cortices in healthy humans. Journal of Physiology, 2020, 598, 4031-4045.	1.3	20
564	Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation. Brain Stimulation, 2021, 14, 277-283.	0.7	20
565	Transcranial magnetic stimulation as a method for investigating the plasticity of the brain in Parkinson's Disease and dystonia. Parkinsonism and Related Disorders, 2007, 13, S417-S420.	1.1	19
566	Motor sequence learning and motor adaptation in primary cervical dystonia. Journal of Clinical Neuroscience, 2014, 21, 934-938.	0.8	19
567	The effect of frontoparietal paired associative stimulation on decision-making and working memory. Cortex, 2019, 117, 266-276.	1.1	19
568	Role of cutaneous and proprioceptive inputs in sensorimotor integration and plasticity occurring in the facial primary motor cortex. Journal of Physiology, 2020, 598, 839-851.	1.3	19
569	Motor Cortical Network Excitability in Parkinson's Disease. Movement Disorders, 2022, 37, 734-744.	2.2	19
570	Plasticity in the Human Motor System. Folia Phoniatrica Et Logopaedica, 2010, 62, 153-157.	0.5	18
571	Interaction Between Different Interneuron Networks Involved in Human Associative Plasticity. Brain Stimulation, 2014, 7, 658-664.	0.7	18
572	Changes in motor cortical excitability in patients with Sydenham's chorea. Movement Disorders, 2015, 30, 259-262.	2.2	18
573	Natural variation in sensoryâ€motor white matter organization influences manifestations of Huntington's disease. Human Brain Mapping, 2016, 37, 4615-4628.	1.9	18
574	Modulation of iTBS after-effects via concurrent directional TDCS: A proof of principle study. Brain Stimulation, 2017, 10, 744-747.	0.7	18
575	The CloudUPDRS smartphone software in Parkinson's study: cross-validation against blinded human raters. Npj Parkinson's Disease, 2020, 6, 36.	2.5	18
576	Chapter 38 Interruption of motor programmes by electrical or magnetic brain stimulation in man. Progress in Brain Research, 1989, 80, 467-472.	0.9	17

#	Article	IF	CITATIONS
577	Techniques of transcranial magnetic stimulation. , 2003, , 26-61.		17
578	Inhibitory interactions between pairs of subthreshold conditioning stimuli in the human motor cortex. Clinical Neurophysiology, 2004, 115, 755-764.	0.7	17
579	Lack of post-exercise depression of corticospinal excitability in patients with Parkinson's disease. European Journal of Neurology, 2007, 14, 793-796.	1.7	17
580	Losing focus: How paying attention can be bad for movement. Movement Disorders, 2011, 26, 1969-1970.	2.2	17
581	Practiceâ€related reduction of electromyographic mirroring activity depends on basal levels of interhemispheric inhibition. European Journal of Neuroscience, 2012, 36, 3749-3757.	1.2	17
582	Using voluntary motor commands to inhibit involuntary arm movements. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141139.	1.2	17
583	Reappraisal of cortical myoclonus: A retrospective study of clinical neurophysiology. Movement Disorders, 2018, 33, 339-341.	2.2	17
584	Assessing TMS-induced D and I waves with spinal H-reflexes. Journal of Neurophysiology, 2018, 119, 933-943.	0.9	17
585	Modulation of lâ€wave generating pathways by thetaâ€burst stimulation: a model of plasticity induction. Journal of Physiology, 2019, 597, 5963-5971.	1.3	17
586	Temporal Discrimination is Altered in Patients With Isolated Asymmetric and Jerky Upper Limb Tremor. Movement Disorders, 2020, 35, 306-315.	2.2	17
587	SICI during changing brain states: Differences in methodology can lead to different conclusions. Brain Stimulation, 2020, 13, 353-356.	0.7	17
588	Influence of theta-burst transcranial magnetic stimulation over the dorsolateral prefrontal cortex on emotion processing in healthy volunteers. Cognitive, Affective and Behavioral Neuroscience, 2020, 20, 1278-1293.	1.0	17
589	Defective Somatosensory Inhibition and Plasticity Are Not Required to Develop Dystonia. Movement Disorders, 2021, 36, 1015-1021.	2.2	17
590	Phase relationships between cortical and muscle oscillations in cortical myoclonus: electrocorticographic assessment in a single case. Clinical Neurophysiology, 2000, 111, 2170-2174.	0.7	16
591	Bilaterally coherent tremor resembling enhanced physiological tremor: Report of three cases. Movement Disorders, 2002, 17, 387-391.	2.2	16
592	Intracortical inhibition is reduced in a patient with a lesion in the posterolateral thalamus. Movement Disorders, 2002, 17, 208-212.	2.2	16
593	Chapter 10 Trigemino-cervical reflexes: clinical applications and neuroradiological correlations. Supplements To Clinical Neurophysiology, 2006, 58, 110-119.	2.1	16
594	Vibrotactile–Auditory Interactions are Post-Perceptual. Perception, 2008, 37, 1114-1130.	0.5	16

#	Article	IF	CITATIONS
595	Anaesthesia changes perceived finger width but not finger length. Experimental Brain Research, 2015, 233, 1761-1771.	0.7	16
596	Long-interval intracortical inhibition as biomarker for epilepsy: a transcranial magnetic stimulation study. Brain, 2018, 141, 409-421.	3.7	16
597	Plasticity Induced in the Human Spinal Cord by Focal Muscle Vibration. Frontiers in Neurology, 2018, 9, 935.	1.1	16
598	Observing Without Acting: A Balance of Excitation and Suppression in the Human Corticospinal Pathway?. Frontiers in Neuroscience, 2018, 12, 347.	1.4	16
599	The Signature of Primary Writing Tremor Is Dystonic. Movement Disorders, 2021, 36, 1715-1720.	2.2	16
600	Two forms of short-interval intracortical inhibition in human motor cortex. Brain Stimulation, 2021, 14, 1340-1352.	0.7	16
601	Temporal discrimination of two passive movements in humans: a new psychophysical approach to assessing kinaesthesia. Experimental Brain Research, 2005, 166, 184-189.	0.7	15
602	Biases in the perceived timing of perisaccadic perceptual and motor events. Perception & Psychophysics, 2006, 68, 1217-1226.	2.3	15
603	Perceptual Encoding of Self-Motion Duration in Human Posterior Parietal Cortex. Annals of the New York Academy of Sciences, 2009, 1164, 236-238.	1.8	15
604	Adaptation of surround inhibition in the human motor system. Experimental Brain Research, 2012, 222, 211-217.	0.7	15
605	Investigations of motor-cortex cortical plasticity following facilitatory and inhibitory transcranial theta-burst stimulation in schizophrenia: A proof-of-concept study. Journal of Psychiatric Research, 2015, 61, 196-204.	1.5	15
606	Limb Heaviness. Neurorehabilitation and Neural Repair, 2016, 30, 360-362.	1.4	15
607	Chronic Stroke Survivors Improve Reaching Accuracy by Reducing Movement Variability at the Trained Movement Speed. Neurorehabilitation and Neural Repair, 2017, 31, 499-508.	1.4	15
608	Functional Strength Training and Movement Performance Therapy for Upper Limb Recovery Early Poststroke—Efficacy, Neural Correlates, Predictive Markers, and Cost-Effectiveness: FAST-INdiCATE Trial. Frontiers in Neurology, 2017, 8, 733.	1.1	15
609	Long Latency Reflexes of Human Arm Muscles in Health and Disease. , 1990, 41, 251-263.		15
610	Prolonged motor skill learning – a combined behavioural training and theta burst TMS study. Restorative Neurology and Neuroscience, 2012, 30, 213-224.	0.4	14
611	Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 116, 535-542.	1.0	14
612	Transcranial Direct Current Stimulation Effects on Single and Paired Flash Visual Evoked Potentials. Clinical EEG and Neuroscience, 2015, 46, 208-213.	0.9	14

#	Article	IF	CITATIONS
613	Reappraising the role of motor surround inhibition in dystonia. Journal of the Neurological Sciences, 2018, 390, 178-183.	0.3	14
614	The Role of Task Difficulty in Learning a Visuomotor Skill. Medicine and Science in Sports and Exercise, 2018, 50, 1842-1849.	0.2	14
615	Sex differences in Parkinson's disease: A transcranial magnetic stimulation study. Movement Disorders, 2019, 34, 1873-1881.	2.2	14
616	The Effect of 20 Hz versus 1 Hz Repetitive Transcranial Magnetic Stimulation on Motor Dysfunction in Parkinson's Disease: Which Is More Beneficial?. Journal of Parkinson's Disease, 2019, 9, 379-387.	1.5	14
617	Myoclonus and <scp>COVIDâ€19</scp> : A Challenge for the Present, a Lesson for the Future. Movement Disorders Clinical Practice, 2020, 7, 888-890.	0.8	14
618	Ropinirole, a dopamine agonist with high D3 affinity, reduces proactive inhibition: A double-blind, placebo-controlled study in healthy adults. Neuropharmacology, 2020, 179, 108278.	2.0	14
619	Variability of Movement Disorders: The Influence of Sensation, Action, Cognition, and Emotions. Movement Disorders, 2021, 36, 581-593.	2.2	14
620	A Causal Role for the Right Dorsolateral Prefrontal Cortex in Avoidance of Risky Choices and Making Advantageous Selections. Neuroscience, 2021, 458, 166-179.	1.1	14
621	Corticospinal transmission to leg motoneurones in human subjects with deficient glycinergic inhibition. Journal of Physiology, 2002, 544, 631-640.	1.3	13
622	Can Motor Recovery in Stroke Be Improved by Non-invasive Brain Stimulation?. Advances in Experimental Medicine and Biology, 2016, 957, 313-323.	0.8	13
623	Cerebellar Theta-Burst Stimulation Impairs Memory Consolidation in Eyeblink Classical Conditioning. Neural Plasticity, 2018, 2018, 1-8.	1.0	13
624	Cortical excitability and transcallosal inhibition in chronic tinnitus: Transcranial magnetic study. Neurophysiologie Clinique, 2008, 38, 243-248.	1.0	12
625	The dynamic regulation of cortical excitability is altered in episodic ataxia type 2. Brain, 2010, 133, 3519-3529.	3.7	12
626	Cerebellar tDCS dissociates the timing of perceptual decisions from perceptual change in speech. Journal of Neurophysiology, 2016, 116, 2023-2032.	0.9	12
627	Endophenotyping in idiopathic adult onset cervical dystonia. Clinical Neurophysiology, 2017, 128, 1142-1147.	0.7	12
628	Effect of donepezil on transcranial magnetic stimulation parameters in Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2018, 4, 103-107.	1.8	12
629	Interâ€cortical modulation from premotor to motor plasticity. Journal of Physiology, 2018, 596, 4207-4217.	1.3	12
630	A case of congenital hypoplasia of the left cerebellar hemisphere and ipsilateral cortical myoclonus. Movement Disorders, 2019, 34, 1745-1747.	2.2	12

#	Article	IF	CITATIONS
631	Vestibulo masseteric reflex and acoustic masseteric Reflex. Normative data and effects of age and gender. Clinical Neurophysiology, 2019, 130, 1511-1519.	0.7	12
632	Preconditioning Stimulus Intensity Alters Paired-Pulse TMS Evoked Potentials. Brain Sciences, 2021, 11, 326.	1.1	12
633	Functional strength training versus movement performance therapy for upper limb motor recovery early after stroke: a RCT. Efficacy and Mechanism Evaluation, 2018, 5, 1-112.	0.9	12
634	Central nervous system physiology. Clinical Neurophysiology, 2021, 132, 3043-3083.	0.7	12
635	Central motor conduction in neurological disease. Electroencephalography and Clinical Neurophysiology, 1985, 61, S69-S70.	0.3	11
636	Action tremor and weakness in Parkinson's disease: A study of the elbow extensors. Movement Disorders, 1998, 13, 56-60.	2.2	11
637	Motor â€~surround inhibition' is not correlated with activity in surround muscles. European Journal of Neuroscience, 2014, 40, 2541-2547.	1.2	11
638	Possible role of backpropagating action potentials in corticospinal neurons in I-wave periodicity following a TMS pulse. Neuroscience Research, 2020, 156, 234-236.	1.0	11
639	Reversal of Temporal Discrimination in Cervical Dystonia after Lowâ€Frequency Sensory Stimulation. Movement Disorders, 2021, 36, 761-766.	2.2	11
640	Corticospinal excitability modulation by pairing peripheral nerve stimulation with cortical states of movement initiation. Journal of Physiology, 2021, 599, 2471-2482.	1.3	11
641	Neural Correlates of Motor Skill Learning Are Dependent on Both Age and Task Difficulty. Frontiers in Aging Neuroscience, 2021, 13, 643132.	1.7	11
642	Myoclonus in the rat induced by p,p'-DDT and the role of altered monoamine function. Neuropharmacology, 1985, 24, 361-373.	2.0	10
643	Polymyography Combined with Time-Locked Video Recording (Video EMG) for Presurgical Assessment of Patients with Cervical Dystonia. European Neurology, 2001, 45, 222-228.	0.6	10
644	Role of afferent input in motor organization in health and disease. IEEE Engineering in Medicine and Biology Magazine, 2005, 24, 40-44.	1.1	10
645	Corticomotor responses to triple-pulse transcranial magnetic stimulation: Effects of interstimulus interval and stimulus intensity. Brain Stimulation, 2009, 2, 36-40.	0.7	10
646	A distinctive pattern of cortical excitability in patients with the syndrome of dystonia and cerebellar ataxia. Clinical Neurophysiology, 2011, 122, 1816-1819.	0.7	10
647	The role of the cerebellum in â€~real' and â€~imaginary' line bisection explored with 1-Hz repetitive transcranial magnetic stimulation. European Journal of Neuroscience, 2011, 33, 1724-1732.	1.2	10
648	The Brighter Side of Music in Dystonia. Archives of Neurology, 2012, 69, 917-9.	4.9	10

#	Article	IF	CITATIONS
649	Opposing roles of sensory and parietal cortices in awareness in a bistable motion illusion. Neuropsychologia, 2013, 51, 2479-2484.	0.7	10
650	Cerebellar and brainstem functional abnormalities in patients with primary orthostatic tremor. Movement Disorders, 2018, 33, 1024-1025.	2.2	10
651	The unsolved role of heightened connectivity from the unaffected hemisphere to paretic arm muscles in chronic stroke. Clinical Neurophysiology, 2019, 130, 781-788.	0.7	10
652	Failure to Engage Neural Plasticity through Practice of a High-difficulty Task is Accompanied by Reduced Motor Skill Retention in Older Adults. Neuroscience, 2020, 451, 22-35.	1.1	10
653	Chapter 14 Functional connectivity of the human premotor and motor cortex explored with TMS. Supplements To Clinical Neurophysiology, 2003, 56, 160-169.	2.1	9
654	Theta Burst Stimulation. , 2007, , 187-203.		9
655	Cortical processing in vestibular navigation. Progress in Brain Research, 2008, 171, 339-346.	0.9	9
656	Can levodopa-induced dyskinesias go beyond the motor circuit?. Brain, 2015, 138, 242-244.	3.7	9
657	Primary writing tremor is a dystonic trait: Evidence from an instructive family. Journal of the Neurological Sciences, 2015, 356, 210-211.	0.3	9
658	Pathophysiological heterogeneity in Parkinson's disease: Neurophysiological insights from LRRK2 mutations. Movement Disorders, 2017, 32, 1333-1335.	2.2	9
659	Lack of evidence for interhemispheric inhibition in the lower face primary motor cortex. Clinical Neurophysiology, 2019, 130, 1917-1925.	0.7	9
660	Transcranial magnetic stimulation as a tool to understand genetic conditions associated with epilepsy. Epilepsia, 2020, 61, 1818-1839.	2.6	9
661	Chapter 6 Is functional magnetic resonance imaging capable of mapping transcranial magnetic cortex stimulation?. Supplements To Clinical Neurophysiology, 2003, 56, 55-62.	2.1	8
662	Therapeutic use of rTMS. Nature Reviews Neuroscience, 2007, 8, 808-808.	4.9	8
663	Repetitive transcranial magnetic stimulation for treatment of tardive syndromes: double randomized clinical trial. Journal of Neural Transmission, 2019, 126, 183-191.	1.4	8
664	Plasticity induced by pairing brain stimulation with motor-related states only targets a subset of cortical neurones. Brain Stimulation, 2020, 13, 464-466.	0.7	8
665	A Critical Investigation of Cerebellar Associative Learning in Isolated Dystonia. Movement Disorders, 2022, 37, 1187-1192.	2.2	8
666	Transcranial Electrical and Magnetic Stimulation of the Brain: Basic Physiological Mechanisms. , 2005, , 43-60.		7

38

#	Article	IF	CITATIONS
667	Spatial consequences of bridging the saccadic gap. Vision Research, 2006, 46, 545-555.	0.7	7
668	Neurophysiology of rTMS: Important Caveats When Interpreting the Results of Therapeutic Interventions. , 2016, , 1-10.		7
669	Delineating cerebellar mechanisms in DYT11 myoclonusâ€dystonia. Movement Disorders, 2018, 33, 1956-1961.	2.2	7
670	Exploring the connectivity between the cerebellum and facial motor cortex. Brain Stimulation, 2019, 12, 1586-1587.	0.7	7
671	An Exploration of the Application of Noninvasive Cerebellar Stimulation in the Neuro-rehabilitation of Dysphagia after Stroke (EXCITES) Protocol. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 104586.	0.7	7
672	The Phenomenon of Exquisite Motor Control in Tic Disorders and its Pathophysiological Implications. Movement Disorders, 2021, 36, 1308-1315.	2.2	7
673	A predictor of pathology. Nature, 2000, 403, 495-496.	13.7	6
674	Corticospinal involvement in volitional contractions. Journal of Physiology, 2007, 584, 363-363.	1.3	6
675	Chapter 4 Meet the Brain. International Review of Neurobiology, 2009, 86, 51-65.	0.9	6
676	Associative plasticity in surround inhibition circuits in human motor cortex. European Journal of Neuroscience, 2014, 40, 3704-3710.	1.2	6
677	Motor training reduces surround inhibition in the motor cortex. Clinical Neurophysiology, 2016, 127, 2482-2488.	0.7	6
678	Explicit motor sequence learning with the paretic arm after stroke. Disability and Rehabilitation, 2018, 40, 323-328.	0.9	6
679	TMS excitability study in essential tremor: Absence of gabaergic changes assessed by silent period recordings. Neurophysiologie Clinique, 2019, 49, 309-315.	1.0	6
680	Exploratory Randomized Double-Blind Placebo-Controlled Trial of Botulinum Therapy on Grasp Release After Stroke (PrOMBiS). Neurorehabilitation and Neural Repair, 2020, 34, 51-60.	1.4	6
681	Effects of Multiple Sessions of Cathodal Priming and Anodal HD-tDCS on Visuo Motor Task Plateau Learning and Retention. Brain Sciences, 2020, 10, 875.	1.1	6
682	Voluntary Inhibitory Control of Chorea: A Case Series. Movement Disorders Clinical Practice, 2020, 7, 308-312.	0.8	6
683	Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study. PLoS ONE, 2016, 11, e0151667.	1.1	6
684	Modulation of cortical activity by repetitive transcranial magnetic stimulation (rTMS): a review of functional imaging studies and the potential use in dystonia. Advances in Neurology, 2004, 94, 45-52.	0.8	6

#	Article	IF	CITATIONS
685	Cortical function in progressive muscular atrophy and amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 1994, 124, 72.	0.3	5
686	Patterns of excitability in human esophageal sensorimotor cortex to painful and nonpainful visceral stimulation. American Journal of Physiology - Renal Physiology, 2002, 282, G332-G337.	1.6	5
687	Effects of STN DBS on Memory Guided Force Control in Parkinson's Disease (June 2007). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15, 155-165.	2.7	5
688	Differential effect of linguistic and non-linguistic pen-holding tasks on motor cortex excitability. Experimental Brain Research, 2008, 191, 237-246.	0.7	5
689	1â€Hz repetitive transcranial magnetic stimulation and diphasic dyskinesia in Parkinson's disease. Movement Disorders, 2013, 28, 245-245.	2.2	5
690	FAST INdiCATE Trial Protocol. Clinical Efficacy of Functional Strength Training for Upper Limb Motor Recovery Early after Stroke: Neural Correlates and Prognostic Indicators. International Journal of Stroke, 2014, 9, 240-245.	2.9	5
691	Abnormal blink reflex recovery cycle in manifesting and nonmanifesting carriers of the DYT1 gene mutation. NeuroReport, 2016, 27, 1046-1049.	0.6	5
692	Changes in recruitment of motor cortex excitation and inhibition in patients with drug-induced tardive syndromes. Neurophysiologie Clinique, 2019, 49, 33-40.	1.0	5
693	Tremor and Dysmetria in Multiple Sclerosis: A Neurophysiological Study. Tremor and Other Hyperkinetic Movements, 2021, 11, 30.	1.1	5
694	Comparative Study of a Continuous Train of Theta-Burst Stimulation for a Duration of 20 s (cTBS 300) versus a Duration of 40 s (cTBS 600) in a Pre-Stimulation Relaxed Condition in Healthy Volunteers. Brain Sciences, 2021, 11, 737.	1.1	5
695	The Immediate and Short-Term Effects of Transcutaneous Spinal Cord Stimulation and Peripheral Nerve Stimulation on Corticospinal Excitability. Frontiers in Neuroscience, 2021, 15, 749042.	1.4	5
696	Proactive inhibition is marked by differences in the pattern of motor cortex activity during movement preparation and execution. Journal of Neurophysiology, 2022, 127, 819-828.	0.9	5
697	Therapeutic uses of rTMS. , 2003, , 246-263.		4
698	An urge to act or an urge to suppress?. Cognitive Neuroscience, 2011, 2, 250-251.	0.6	4
699	Secondary cervical dystonia caused by cerebellar cystic lesion – A case study with transcranial magnetic stimulation. Clinical Neurophysiology, 2012, 123, 418-419.	0.7	4
700	P282: Effect of coil orientation on strength-duration time constant with controllable pulse parameter transcranial magnetic stimulation. Clinical Neurophysiology, 2014, 125, S123.	0.7	4
701	Erratum to "Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulationâ€: Brain Stimulation 8 (2015) 442–454. Brain Stimulation, 2015, 8, 992.	0.7	4
702	Cervical dystonia: Normal auditory mismatch negativity and abnormal somatosensory mismatch negativity. Clinical Neurophysiology, 2018, 129, 1947-1954.	0.7	4

#	Article	IF	CITATIONS
703	Noninvasive Brain Stimulation and Noninvasive Peripheral Stimulation for Neglect Syndrome Following Acquired Brain Injury. Neuromodulation, 2020, 23, 312-323.	0.4	4
704	Stimulating the deprived motor â€~hand' area causes facial muscle responses in one-handers. Brain Stimulation, 2021, 14, 347-350.	0.7	4
705	Neurophysiology of epidurally evoked spinal cord reflexes in clinically motor-complete posttraumatic spinal cord injury. Experimental Brain Research, 2021, 239, 2605-2620.	0.7	4
706	Posture. , 1994, , 252-292.		4
707	Dissociation between behavior and motor cortical excitability before and during ballistic wrist flexion and extension in young and old adults. PLoS ONE, 2017, 12, e0186585.	1.1	4
708	Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neurons. Journal of Physiology, 2023, 601, 3187-3199.	1.3	4
709	Is it possible to compare inhibitory and excitatory intracortical circuits in face and hand primary motor cortex?. Journal of Physiology, 2022, 600, 3567-3583.	1.3	4
710	The Stretch Reflex: Human Spinal and Long-Loop Reflexes. , 1984, , 45-75.		3
711	An additional source of potentials recorded from the scalp following magnetic stimulation over the lower occiput and adjoining neck. Journal of Neurology, 1995, 242, 713-714.	1.8	3
712	Comparing biological potencies of Botox and Dysport with a mouse diaphragm model may mislead. Journal of Neurology, 1998, 245, 332-332.	1.8	3
713	C. David Marsden (1938–1998). Trends in Neurosciences, 1999, 22, 1.	4.2	3
714	'Noisy patients'—can signal detection theory help?. Nature Clinical Practice Neurology, 2008, 4, 306-316.	2.7	3
715	16â€A randomised controlled trial of deep brain stimulation in obsessive compulsive disorder: a comparison of ventral capsule/ventral striatum and subthalamic nucleus targets. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A8.2-A9.	0.9	3
716	Measurement of motor-evoked potential resting threshold and amplitude of proximal and distal arm muscles in healthy adults. A reliability study. Journal of Rehabilitation and Assistive Technologies Engineering, 2018, 5, 205566831876540.	0.6	3
717	Changes in the Excitability of Corticobulbar Projections Due to Intraoral Cooling with Ice. Dysphagia, 2019, 34, 708-712.	1.0	3
718	Physiological Differences in Hand and Face Areas of the Primary Motor Cortex in Skilled Wind and String Musicians. Neuroscience, 2021, 455, 141-150.	1.1	3
719	Examining motor evoked potential amplitude and shortâ€interval intracortical inhibition on the upâ€going and downâ€going phases of a transcranial alternating current stimulation (tacs) imposed alpha oscillation. European Journal of Neuroscience, 2021, 53, 2755-2762.	1.2	3
720	Saccadic chronostasis and the continuity of subjective temporal experience across eye movements. , 0, , 149-163.		3

#	Article	IF	CITATIONS
721	Comparing the effects of focal and conventional tDCS on motor skill learning: A proof of principle study. Neuroscience Research, 2022, 178, 83-86.	1.0	3
722	The contribution of C. David Marsden to the study and treatment of myoclonus. Advances in Neurology, 2002, 89, 1-12.	0.8	3
723	Motor control. , 2004, , 3-19.		2
724	Transcranial Magnetic Stimulation: Twenty Years of Stimulating the Human Motor Cortex in Health and Disease. Biocybernetics and Biomedical Engineering, 2011, 31, 81-91.	3.3	2
725	Motor sequence learning and motor adaptation in primary cervical dystonia. Journal of the Neurological Sciences, 2013, 333, e130-e131.	0.3	2
726	Unraveling the mysteries of motor cortical function in Parkinson disease. Neurology, 2013, 80, 1726-1727.	1.5	2
727	Reply to letter: Transcranial magnetic stimulation for Parkinson's disease. Movement Disorders, 2015, 30, 1973-1974.	2.2	2
728	Reply: "Reappraisal of cortical myoclonus: Electrophysiology is the gold standard― Movement Disorders, 2018, 33, 1191-1191.	2.2	2
729	Acute Effect of Subthreshold Low-frequency Repetitive Transcranial Magnetic Stimulation over the Premotor Cortex in Writer's Cramp. , 2007, , .		1
730	Reply: Plasticity and intracortical inhibition in dystoniamethodological reconsiderations. Brain, 2010, 133, e147-e147.	3.7	1
731	Could fatigue be used as a paradoxical intervention to improve motor learning after stroke?. , 2012, , .		1
732	Neurophysiology of the brainstem-structure and function of brainstem circuits. Clinical Neurophysiology, 2012, 123, 2-3.	0.7	1
733	Reply: Pentameric repeat expansions: cortical myoclonus or cortical tremor? and Cortical tremor: a tantalizing conundrum between cortex and cerebellum. Brain, 2020, 143, e88-e88.	3.7	1
734	Happy faces selectively increase the excitability of cortical neurons innervating frowning muscles of the mouth. Experimental Brain Research, 2020, 238, 1043-1049.	0.7	1
735	Comparison between surface electrodes and ultrasound monitoring to measure <scp>TMS</scp> evoked muscle contraction. Muscle and Nerve, 2021, 63, 724-729.	1.0	1
736	Plasticity in the Human Motor System. Perspectives on Swallowing and Swallowing Disorders (Dysphagia), 2010, 19, 10-15.	0.2	1
737	TMS measures and voluntary motor function. , 2012, , .		1

#	Article	IF	CITATIONS
739	Spinal interneurones: re-evaluation and controversy. Advances in Experimental Medicine and Biology, 2002, 508, 259-63.	0.8	1
740	The scaling of muscle activation and movement amplitude in Parkinson's disease. Electroencephalography and Clinical Neurophysiology, 1985, 61, S218-S219.	0.3	0
741	Motor Coordination: Watching the brain think. Current Biology, 1995, 5, 100-102.	1.8	Ο
742	Advances in Neurology (Vol. 74) The Basal Ganglia and New Surgical Approaches for Parkinson's Disease. Trends in Neurosciences, 1998, 21, 364-365.	4.2	0
743	Connections to motor cortex from other areas of the brain studied with transcranial magnetic stimulation. International Congress Series, 2002, 1226, 45-52.	0.2	Ο
744	Chapter 26 Diseases and treatments: Parkinson's disease. Handbook of Clinical Neurophysiology, 2003, 1, 417-435.	0.0	0
745	Chapter 43 Research studies in normal subjects and patients: current and future. Handbook of Clinical Neurophysiology, 2003, 1, 717-723.	0.0	Ο
746	Transcranial magnetic stimulation investigations of reaching and grasping movements. , 0, , 72-83.		0
747	Neurophysiology and computational neuroscience. Experimental Brain Research, 2010, 200, 189-191.	0.7	0
748	Motor Learning: Spare the Rod to Benefit the Child?. Current Biology, 2011, 21, R287-R288.	1.8	0
749	In memoriam – Vahe E. Amassian. Brain Stimulation, 2013, 6, 99-100.	0.7	0
750	The Motor Cortex Modulates the "When―of Tic Generation in the Rat Striatal Disinhibition Model. Movement Disorders, 2016, 31, 637-637.	2.2	0
751	D8â€Tms-eeg markers of inhibitory deficits in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A36.2-A36.	0.9	Ο
752	PO221â€Pathological mechanisms of glycine receptor antibodies. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A70.2-A70.	0.9	0
753	[P3–208]: EFFECT OF DONEPEZIL ON TRANSCRANIAL MAGNETIC STIMULATION PARAMETERS IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P1015.	0.4	Ο
754	Response to the letter to the editor by Reilmann et al referring to our article titled "Motor cortex synchronization influences the rhythm of motor performance in premanifest Huntington's disease― Movement Disorders, 2018, 33, 1371-1371.	2.2	0
755	Multimodal characterization of the visual network in Huntington's disease gene carriers. Clinical Neurophysiology, 2019, 130, 2053-2059.	0.7	Ο
756	Reply to: "A Primary Writing Tremor Is a Form of Dystonic Tremor: Is the Debate Settled?― Movement Disorders, 2021, 36, 1996-1997.	2.2	0

#	Article	IF	CITATIONS
757	Theta Burst TMS. , 2010, , 229-231.		0
758	Physiological Basis of Transcranial Magnetic Stimulation. Frontiers in Neuroscience, 2012, , 41-54.	0.0	0
759	Transcranial Magnetic Stimulation (TCMS) in Rehabilitation. The Japanese Journal of Rehabilitation Medicine, 1998, 35, 17-17.	0.1	0
760	029†Postural instability in DYT-TOR1A dystonia dynamically dependent on sensory feedback. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A110.1-A110.	0.9	0