List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7835322/publications.pdf Version: 2024-02-01

MARC PIECHACZYK

#	Article	IF	CITATIONS
1	c-myc gene is transcribed at high rate in GO-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors. Nature, 1985, 317, 443-445.	27.8	324
2	CNF1 Exploits the Ubiquitin-Proteasome Machinery to Restrict Rho GTPase Activation for Bacterial Host Cell Invasion. Cell, 2002, 111, 553-564.	28.9	268
3	Posttranscriptional mechanisms are responsible for accumulation of truncated c-myc RNAs in murine plasma cell tumors. Cell, 1985, 42, 589-597.	28.9	245
4	Regulation of c-fosgene expression in hamster fibroblasts: initiation and elongation of transcription and mRNA degradation. Nucleic Acids Research, 1987, 15, 5657-5667.	14.5	241
5	Nuclear localization of c-Fos, but not v-Fos proteins, is controlled by extracellular signals. Cell, 1990, 63, 341-351.	28.9	185
6	The HBZ Factor of Human T-cell Leukemia Virus Type I Dimerizes with Transcription Factors JunB and c-Jun and Modulates Their Transcriptional Activity. Journal of Biological Chemistry, 2003, 278, 43620-43627.	3.4	180
7	Down-Regulation of c-Fos/c-Jun AP-1 Dimer Activity by Sumoylation. Molecular and Cellular Biology, 2005, 25, 6964-6979.	2.3	172
8	The AP-1 transcriptional complex: Local switch or remote command?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 11-23.	7.4	165
9	SUMO under stress. Biochemical Society Transactions, 2008, 36, 874-878.	3.4	154
10	Ubiquitinylation Is Not an Absolute Requirement for Degradation of c-Jun Protein by the 26 S Proteasome. Journal of Biological Chemistry, 1995, 270, 11623-11627.	3.4	139
11	c-fos proto-oncogene regulation and function. Critical Reviews in Oncology/Hematology, 1994, 17, 93-131.	4.4	136
12	Ubiquitin-independent degradation of proteins by the proteasome. Biochimica Et Biophysica Acta: Reviews on Cancer, 2008, 1786, 153-177.	7.4	128
13	Development of Cellulose Sulfateâ€based Polyelectrolyte Complex Microcapsules for Medical Applications. Annals of the New York Academy of Sciences, 1999, 875, 46-63.	3.8	107
14	Antiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents?. Trends in Microbiology, 2015, 23, 653-665.	7.7	97
15	SUMOylation regulates nucleo-cytoplasmic shuttling of Elk-1. Journal of Cell Biology, 2004, 165, 767-773.	5.2	89
16	In vivo interleukin 6 gene expression in the tumoral environment in multiple myeloma. European Journal of Immunology, 1991, 21, 1759-1762.	2.9	87
17	Ubiquitin-Independent Proteasomal Degradation of Fra-1 Is Antagonized by Erk1/2 Pathway-Mediated Phosphorylation of a Unique C-Terminal Destabilizer. Molecular and Cellular Biology, 2007, 27, 3936-3950.	2.3	86
18	The ROS/SUMO Axis Contributes to the Response of Acute Myeloid Leukemia Cells to Chemotherapeutic Drugs. Cell Reports, 2014, 7, 1815-1823.	6.4	86

#	Article	IF	CITATIONS
19	Characterization of the transcription products of glyceraldehyde 3-phosphate-dehydrogenase gene in HeLa cells. FEBS Journal, 1984, 145, 299-304.	0.2	79
20	c-Fos Proto-Oncoprotein Is Degraded by the Proteasome Independently of Its Own Ubiquitinylation In Vivo. Molecular and Cellular Biology, 2003, 23, 7425-7436.	2.3	65
21	Regulation and function of JunB in cell proliferation. Biochemical Society Transactions, 2008, 36, 864-867.	3.4	65
22	A Novel Role for PA28Î ³ -Proteasome in Nuclear Speckle Organization and SR Protein Trafficking. Molecular Biology of the Cell, 2008, 19, 1706-1716.	2.1	63
23	Cerebellar granule cell survival and maturation induced by K+ and NMDA correlate with c-fos proto-oncogene expression. Neuroscience Letters, 1989, 107, 55-62.	2.1	60
24	The structural determinants responsible for c-Fos protein proteasomal degradation differ according to the conditions of expression. Oncogene, 2003, 22, 1461-1474.	5.9	60
25	Improvement of Porphyrin Cellular Delivery and Activity by Conjugation to a Carrier Peptide. Bioconjugate Chemistry, 2001, 12, 691-700.	3.6	59
26	PEST motifs are not required for rapid calpain-mediated proteolysis of c-fos protein. Biochemical Journal, 1996, 313, 245-251.	3.7	54
27	c-myc gene regulation still holds its secret. Trends in Genetics, 1987, 3, 47-51.	6.7	52
28	SUMOylation Regulates the Transcriptional Activity of JunB in T Lymphocytes. Journal of Immunology, 2008, 180, 5983-5990.	0.8	52
29	Are there multiple proteolytic pathways contributing to c-Fos, c-Jun and p53 protein degradation in vivo?. Molecular Biology Reports, 1999, 26, 45-51.	2.3	51
30	A Crucial Role for Infected-Cell/Antibody Immune Complexes in the Enhancement of Endogenous Antiviral Immunity by Short Passive Immunotherapy. PLoS Pathogens, 2010, 6, e1000948.	4.7	50
31	Complex mechanisms for c-fos and c-jun degradation. Molecular Biology Reports, 1997, 24, 51-56.	2.3	49
32	Heterodimerization with Jun Family Members Regulates c-Fos Nucleocytoplasmic Traffic. Journal of Biological Chemistry, 2007, 282, 31046-31059.	3.4	47
33	Ubiquitin-independent- versus ubiquitin-dependent proteasomal degradation of the c-Fos and Fra-1 transcription factors: Is there a unique answer?. Biochimie, 2008, 90, 296-305.	2.6	47
34	SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies. Molecules, 2021, 26, 828.	3.8	46
35	Targeting the SUMO Pathway Primes All- <i>trans</i> Retinoic Acid–Induced Differentiation of Nonpromyelocytic Acute Myeloid Leukemias. Cancer Research, 2018, 78, 2601-2613.	0.9	45
36	Targeting Myeloperoxidase Disrupts Mitochondrial Redox Balance and Overcomes Cytarabine Resistance in Human Acute Myeloid Leukemia. Cancer Research, 2019, 79, 5191-5203.	0.9	45

#	Article	IF	CITATIONS
37	Differential directing of c-Fos and c-Jun proteins to the proteasome in serum-stimulated mouse embryo fibroblasts. Oncogene, 1998, 17, 327-337.	5.9	44
38	Molecular characterization of the thermosensitive E1 ubiquitin-activating enzyme cell mutant A31N-ts20. FEBS Journal, 2000, 267, 3712-3722.	0.2	42
39	The sensitivity of c-Jun and c-Fos proteins to calpains depends on conformational determinants of the monomers and not on formation of dimers. Biochemical Journal, 2000, 345, 129-138.	3.7	38
40	Human cyclin C protein is stabilized by its associated kinase cdk8, independently of its catalytic activity. Oncogene, 2001, 20, 551-562.	5.9	38
41	Identification of a C-terminal tripeptide motif involved in the control of rapid proteasomal degradation of c-Fos proto-oncoprotein during the G0-to-S phase transition. Oncogene, 2001, 20, 7563-7572.	5.9	38
42	Converting monoclonal antibody-based immunotherapies from passive to active: bringing immune complexes into play. Emerging Microbes and Infections, 2016, 5, 1-9.	6.5	36
43	Regulatable systemic production of monoclonal antibodies by in vivo muscle electroporation. Genetic Vaccines and Therapy, 2004, 2, 2.	1.5	35
44	Transcriptional complexity and roles of Fra-1/AP-1 at the uPA/Plau locus in aggressive breast cancer. Nucleic Acids Research, 2014, 42, 11011-11024.	14.5	35
45	In VitroandIn VivoSecretion of Cloned Antibodies by Genetically Modified Myogenic Cells. Human Gene Therapy, 1997, 8, 1219-1229.	2.7	34
46	HighIn VivoProduction of a Model Monoclonal Antibody on Adenoviral Gene Transfer. Human Gene Therapy, 2002, 13, 1483-1493.	2.7	34
47	Long-Lasting Protective Antiviral Immunity Induced by Passive Immunotherapies Requires both Neutralizing and Effector Functions of the Administered Monoclonal Antibody. Journal of Virology, 2010, 84, 10169-10181.	3.4	33
48	Long-term expression of the c-fos protein during the in vitro differentiation of cerebellar granule cells induced by potassium or NMDA. Molecular Brain Research, 1992, 12, 249-258.	2.3	32
49	Heterodimerization with Different Jun Proteins Controls c-Fos Intranuclear Dynamics and Distribution. Journal of Biological Chemistry, 2010, 285, 6552-6562.	3.4	32
50	Multiple Degradation Pathways for Fos Family Proteins. Annals of the New York Academy of Sciences, 2002, 973, 426-434.	3.8	31
51	Immunotherapy of a Viral Disease byin VivoProduction of Therapeutic Monoclonal Antibodies. Human Gene Therapy, 2000, 11, 1407-1415.	2.7	30
52	Fos family protein degradation by the proteasome. Biochemical Society Transactions, 2008, 36, 858-863.	3.4	30
53	An NF-κB–Dependent Role for JunB in the Induction of Proinflammatory Cytokines in LPS-Activated Bone Marrow–Derived Dendritic Cells. PLoS ONE, 2010, 5, e9585.	2.5	30
54	The SUMO Pathway in Hematomalignancies and Their Response to Therapies. International Journal of Molecular Sciences, 2019, 20, 3895.	4.1	29

MARC PIECHACZYK

#	Article	IF	CITATIONS
55	Genetically Engineered Antibodies in Gene Transfer and Gene Therapy. Human Gene Therapy, 1998, 9, 2165-2175.	2.7	28
56	Effects of virion surface gp120 density on infection by HIV-1 and viral production by infected cells. Virology, 2005, 332, 418-429.	2.4	27
57	Detection of Protein–Protein Interactions and Posttranslational Modifications Using the Proximity Ligation Assay: Application to the Study of the SUMO Pathway. Methods in Molecular Biology, 2016, 1449, 279-290.	0.9	27
58	Induction of Long-Term Protective Antiviral Endogenous Immune Response by Short Neutralizing Monoclonal Antibody Treatment. Journal of Virology, 2005, 79, 6272-6280.	3.4	25
59	Control of regulatory T cells is necessary for vaccine-like effects of antiviral immunotherapy by monoclonal antibodies. Blood, 2013, 121, 1102-1111.	1.4	25
60	Analysis of the individual contributions of immunoglobulin heavy and light chains to the binding of antigen using cell transfection and plasmon resonance analysis. Journal of Immunological Methods, 1996, 193, 177-187.	1.4	24
61	Efficient Cell Infection by Moloney Murine Leukemia Virus-Derived Particles Requires Minimal Amounts of Envelope Glycoprotein. Journal of Virology, 2000, 74, 8480-8486.	3.4	24
62	JunB Breakdown in Mid-/Late G ₂ Is Required for Down-Regulation of Cyclin A2 Levels and Proper Mitosis. Molecular and Cellular Biology, 2008, 28, 4173-4187.	2.3	22
63	Cell targeting by murine retroviral vectors. Critical Reviews in Oncology/Hematology, 1998, 28, 7-30.	4.4	21
64	Endogenous Cytotoxic T-Cell Response Contributes to the Long-Term Antiretroviral Protection Induced by a Short Period of Antibody-Based Immunotherapy of Neonatally Infected Mice. Journal of Virology, 2008, 82, 1339-1349.	3.4	21
65	c-Fos Protects Neurons Through a Noncanonical Mechanism Involving HDAC3 Interaction: Identification of a 21-Amino Acid Fragment with Neuroprotective Activity. Molecular Neurobiology, 2016, 53, 1165-1180.	4.0	20
66	The regulatory strategies of c-myc and c-fos proto-oncogenes share some common mechanisms. Biochimie, 1988, 70, 877-884.	2.6	18
67	The sensitivity of c-Jun and c-Fos proteins to calpains depends on conformational determinants of the monomers and not on formation of dimers. Biochemical Journal, 2000, 345, 129.	3.7	17
68	Mouse DNA sequences complementary to small nuclear RNA U1. Nucleic Acids Research, 1982, 10, 4627-4640.	14.5	16
69	The effects of N-terminal insertion into VSV-G of an scFv peptide. Virology Journal, 2006, 3, 69.	3.4	16
70	AP-1 Signaling by Fra-1 Directly Regulates HMGA1 Oncogene Transcription in Triple-Negative Breast Cancers. Molecular Cancer Research, 2019, 17, 1999-2014.	3.4	15
71	Fra-1 regulates its target genes via binding to remote enhancers without exerting major control on chromatin architecture in triple negative breast cancers. Nucleic Acids Research, 2021, 49, 2488-2508.	14.5	15
72	Neutrophils are essential for induction of vaccine-like effects by antiviral monoclonal antibody immunotherapies. JCI Insight, 2018, 3, .	5.0	15

MARC PIECHACZYK

#	Article	IF	CITATIONS
73	Role of RNA structures m c-myc and c-fos gene regulations. Gene, 1988, 72, 287-295.	2.2	14
74	Decreased susceptibility to calpains of <scp>v</scp> -FosFBR but not of <scp>v</scp> -FosFBJ or <scp>v</scp> -JunASV17 retroviral proteins compared with their cellular counterparts. Biochemical Journal, 1997, 323, 685-692.	3.7	14
75	Sustained Systemic Delivery of Monoclonal Antibodies by Genetically Modified Skin Fibroblasts. Journal of Investigative Dermatology, 2000, 115, 740-745.	0.7	14
76	Chromatin loop organization of the junb locus in mouse dendritic cells. Nucleic Acids Research, 2013, 41, 8908-8925.	14.5	14
77	Cellular and viral Fos proteins are degraded by different proteolytic systems. Oncogene, 2001, 20, 942-950.	5.9	13
78	Efficient Gene Transfer into Spleen Cells of Newborn Mice by a Replication-Competent Retroviral Vector. Virology, 2002, 293, 328-334.	2.4	13
79	Mechanisms of delivery of ubiquitylated proteins to the proteasome: new target for anti-cancer therapy?. Critical Reviews in Oncology/Hematology, 2005, 54, 31-51.	4.4	13
80	Ubiquitin and SUMO conjugation as biomarkers of acute myeloid leukemias response to chemotherapies. Life Science Alliance, 2020, 3, e201900577.	2.8	13
81	Efficient Mother-to-Child Transfer of Antiretroviral Immunity in the Context of Preclinical Monoclonal Antibody-Based Immunotherapy. Journal of Virology, 2006, 80, 10191-10200.	3.4	12
82	Monoclonal Antibody-based Genetic Immunotherapy. Current Gene Therapy, 2004, 4, 347-356.	2.0	12
83	Interferons and oncogenes in the control of cell growth and differentiation : working hypothesis and experimental facts. Biochimie, 1988, 70, 869-875.	2.6	11
84	Proteolysis of p53 Protein by Ubiquitous Calpains. , 2000, 144, 297-307.		11
85	Degradation of cellular and viral Fos proteins. Biochimie, 2001, 83, 357-362.	2.6	11
86	Skin as a Potential Organ for Ectopic Monoclonal Antibody Production11The authors declared not to have a conflict of interest Journal of Investigative Dermatology, 2002, 118, 288-294.	0.7	11
87	Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. Advances in Experimental Medicine and Biology, 2020, 1233, 29-54.	1.6	11
88	An easy method for the selection of restriction- and modification-deficient mutants of Escherichia coli K-12. Gene, 1980, 11, 173-175.	2.2	9
89	Towards efficient cell targeting by recombinant retroviruses. Trends in Molecular Medicine, 1997, 3, 396-403.	2.6	9
90	Cloning and Expression of a Single-Chain Antibody Fragment Specific for a Monomorphic Determinant of Class I Molecules of the Human Major Histocompatibility Complex. Hybridoma, 1995, 14, 443-451.	0.6	8

#	Article	IF	CITATIONS
91	Antiviral Activity of an Intracellularly Expressed Single-Chain Antibody Fragment Directed against the Murine Leukemia Virus Capsid Protein. Human Gene Therapy, 2000, 11, 389-401.	2.7	8
92	Monoclonal Antibody 667 Recognizes the Variable Region A Motif of the Ecotropic Retrovirus CasBrE Envelope Glycoprotein and Inhibits Env Binding to the Viral Receptor. Journal of Virology, 2003, 77, 10984-10993.	3.4	8
93	Stable expression and function of EBV/C3d receptor following genomic transfection into murine fibroblast L cells. European Journal of Immunology, 1990, 20, 409-416.	2.9	7
94	The insertion of an anti-MHC I ScFv into the N-terminus of an ecotropic MLV glycoprotein does not alter its fusiogenic potential on murine cells. Virus Research, 2002, 83, 57-69.	2.2	7
95	Evasion from proteasomal degradation by mutated Fos proteins expressed from FBJ-MSV and FBR-MSV osteosarcomatogenic retroviruses. Biochemical Pharmacology, 2002, 64, 957-961.	4.4	6
96	Production and Purification of Recombinant SUMOylated Proteins Using Engineered Bacteria. Methods in Molecular Biology, 2016, 1475, 55-65.	0.9	5
97	In Vivo Infection of Mice by Replication-Competent MLV-Based Retroviral Vectors. , 2003, 76, 343-352.		3
98	Affinity of recombinant antibody and antibody fragment binding to human thyroglobulin: potential applications in gene therapy. , 1998, 11, 117-118.		0