
Daniela Carulli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7834589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain, 2010, 133, 2331-2347.	7.6	411
2	Composition of Perineuronal Net Extracellular Matrix in Rat Brain. Journal of Biological Chemistry, 2006, 281, 17789-17800.	3.4	311
3	Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. Journal of Comparative Neurology, 2006, 494, 559-577.	1.6	273
4	Chondroitin sulfate proteoglycans in neural development and regeneration. Current Opinion in Neurobiology, 2005, 15, 116-120.	4.2	271
5	Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia. European Journal of Neuroscience, 2005, 21, 378-390.	2.6	169
6	Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascinâ€R in the rat spinal cord. European Journal of Neuroscience, 2008, 27, 1373-1390.	2.6	166
7	Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. Journal of Comparative Neurology, 2007, 501, 83-94.	1.6	147
8	<i>In vitro</i> modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. Journal of Neurochemistry, 2010, 114, 1447-1459.	3.9	127
9	Autistic-Like Traits and Cerebellar Dysfunction in Purkinje Cell PTEN Knock-Out Mice. Neuropsychopharmacology, 2016, 41, 1457-1466.	5.4	116
10	The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Molecular and Cellular Neurosciences, 2013, 56, 186-200.	2.2	108
11	Experience-Dependent Plasticity and Modulation of Growth Regulatory Molecules at Central Synapses. PLoS ONE, 2011, 6, e16666.	2.5	103
12	The hyaluronan and proteoglycan link proteins: Organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity. Experimental Neurology, 2015, 274, 134-144.	4.1	96
13	Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neuroscience and Biobehavioral Reviews, 2016, 60, 1-11.	6.1	95
14	Reparative mechanisms in the cerebellar cortex. Progress in Neurobiology, 2004, 72, 373-398.	5.7	65
15	Cerebellar plasticity and associative memories are controlled by perineuronal nets. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6855-6865.	7.1	65
16	An Extracellular Perspective on CNS Maturation: Perineuronal Nets and the Control of Plasticity. International Journal of Molecular Sciences, 2021, 22, 2434.	4.1	62
17	Noninvasive Strategies to Promote Functional Recovery after Stroke. Neural Plasticity, 2013, 2013, 1-16.	2.2	60
18	Semaphorins in Adult Nervous System Plasticity and Disease. Frontiers in Synaptic Neuroscience, 2021, 13, 672891.	2.5	52

DANIELA CARULLI

#	Article	IF	CITATIONS
19	Modulation of semaphorin3A in perineuronal nets during structural plasticity in the adult cerebellum. Molecular and Cellular Neurosciences, 2013, 57, 10-22.	2.2	48
20	The cerebellum on cocaine: plasticity and metaplasticity. Addiction Biology, 2015, 20, 941-955.	2.6	46
21	Cerebellar perineuronal nets in cocaine-induced pavlovian memory: Site matters. Neuropharmacology, 2017, 125, 166-180.	4.1	35
22	Perineuronal Nets and CNS Plasticity and Repair. Neural Plasticity, 2016, 2016, 1-2.	2.2	32
23	Activity-Dependent Plasticity and Gene Expression Modifications in the Adult CNS. Frontiers in Molecular Neuroscience, 2011, 4, 50.	2.9	31
24	Extrinsic regulation of injury/growth-related gene expression in the inferior olive of the adult rat. European Journal of Neuroscience, 2003, 18, 2146-2158.	2.6	30
25	Cocaine-induced plasticity in the cerebellum of sensitised mice. Psychopharmacology, 2015, 232, 4455-4467.	3.1	30
26	Regenerative and survival capabilities of Purkinje cells overexpressing c-Jun. European Journal of Neuroscience, 2002, 16, 105-118.	2.6	29
27	Modifications of perineuronal nets and remodelling of excitatory and inhibitory afferents during vestibular compensation in the adult mouse. Brain Structure and Function, 2016, 221, 3193-3209.	2.3	20
28	Influence of the environment on adult CNS plasticity and repair. Cell and Tissue Research, 2012, 349, 161-167.	2.9	18
29	Overexpression of GAPâ€43 modifies the distribution of the receptors for myelinâ€associated growthâ€inhibitory proteins in injured Purkinje axons. European Journal of Neuroscience, 2009, 30, 1837-1848.	2.6	16
30	NPY-Y1 receptor signaling controls spatial learning and perineuronal net expression. Neuropharmacology, 2021, 184, 108425.	4.1	15
31	Nestin expression and reactive phenomena in the mouse cochlea after kanamycin ototoxicity. European Journal of Neuroscience, 2014, 39, 1729-1741.	2.6	8
32	MAPK Activation in Cerebellar Basket Cell Terminals after Harmaline Treatment. Annals of the New York Academy of Sciences, 2005, 1048, 411-417.	3.8	2
33	Reparative mechanisms in the cerebellar cortex. Progress in Neurobiology, 2004, 72, 373-373.	5.7	0
34	Intensive Remodeling of Purkinje Cell Spines after Climbing Fibers Deafferentation Does Not Involve MAPK and Akt Activation. Annals of the New York Academy of Sciences, 2007, 1096, 230-238.	3.8	0