Martina Minnerop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7834505/publications.pdf

Version: 2024-02-01

331670 315739 1,563 47 21 38 h-index citations g-index papers 49 49 49 2563 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantitative susceptibility mapping reveals alterations of dentate nuclei in common types of degenerative cerebellar ataxias. Brain Communications, 2022, 4, fcab306.	3.3	15
2	Regional changes of brain structure during progression of idiopathic Parkinson's disease – A longitudinal study using deformation based morphometry. Cortex, 2022, 151, 188-210.	2.4	11
3	The CCAS-scale in hereditary ataxias: helpful on the group level, particularly in SCA3, but limited in individual patients. Journal of Neurology, 2022, 269, 4363-4374.	3.6	13
4	System Comparison for Gait and Balance Monitoring Used for the Evaluation of a Home-Based Training. Sensors, 2022, 22, 4975.	3.8	4
5	Neurochemical Differences in Spinocerebellar Ataxia Type 14 and 1. Cerebellum, 2021, 20, 169-178.	2.5	O
6	Spinocerebellar ataxia type 14: refining clinicogenetic diagnosis in a rare adultâ€onset disorder. Annals of Clinical and Translational Neurology, 2021, 8, 774-789.	3.7	13
7	Reference values for the Cerebellar Cognitive Affective Syndrome Scale: age and education matter. Brain, 2021, 144, e20-e20.	7.6	14
8	Investigation of Visual System Involvement in Spinocerebellar Ataxia Type 14. Cerebellum, 2020, 19, 469-482.	2.5	3
9	Cerebellar Involvement in DYT-THAP1 Dystonia. Cerebellum, 2019, 18, 969-971.	2.5	2
10	Reply: Biallelic <i>POLR3A</i> variants confirmed as a frequent cause of hereditary ataxia and spastic paraparesis. Brain, 2019, 142, e13-e13.	7.6	4
11	Tracking the brain in myotonic dystrophies: A 5-year longitudinal follow-up study. PLoS ONE, 2019, 14, e0213381.	2.5	31
12	Reply: POLR3A variants in hereditary spastic paraplegia and ataxia. Brain, 2018, 141, e2-e2.	7.6	10
13	Derivation of Fiber Orientations From Oblique Views Through Human Brain Sections in 3D-Polarized Light Imaging. Frontiers in Neuroanatomy, 2018, 12, 75.	1.7	21
14	Current Progress in CNS Imaging of Myotonic Dystrophy. Frontiers in Neurology, 2018, 9, 646.	2.4	50
15	Expanded phenotype and hippocampal involvement in a novel compound heterozygosity of adult PLA2G6 associated neurodegeneration (PARK14). Parkinsonism and Related Disorders, 2017, 37, 111-113.	2.2	7
16	Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain, 2017, 140, 1561-1578.	7.6	85
17	Accuracy and repeatability of two methods of gait analysis – GaitRite™ und Mobility Lab™ – in subjects with cerebellar ataxia. Gait and Posture, 2016, 48, 194-201.	1.4	59
18	SPECT and PET. , 2016, , 359-365.		0

#	Article	IF	CITATIONS
19	Autosomal Recessive Cerebellar Ataxia 3 Due to Homozygote c.132dupA Mutation Within the <i> ANO 10 < /i > Gene. JAMA Neurology, 2015, 72, 238.</i>	9.0	5
20	Cytoarchitectonic mapping of the human brain cerebellar nuclei in stereotaxic space and delineation of their co-activation patterns. Frontiers in Neuroanatomy, 2015, 09, 54.	1.7	35
21	Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich's ataxia. Brain, 2015, 138, 1182-1197.	7.6	106
22	Cerebellar neurochemical alterations in spinocerebellar ataxia type 14 appear to include glutathione deficiency. Journal of Neurology, 2015, 262, 1927-1935.	3.6	13
23	Studying variability in human brain aging in a population-based German cohort—rationale and design of 1000BRAINS. Frontiers in Aging Neuroscience, 2014, 6, 149.	3.4	97
24	Clinical and Neurophysiological Profile of Four German Families with Spinocerebellar Ataxia Type 14. Cerebellum, 2014, 13, 89-96.	2.5	42
25	Longitudinal changes in brains of patients with fluent primary progressive aphasia. Brain and Language, 2014, 131, 11-19.	1.6	13
26	Reply to: Cognitive dysfunction in spinocerebellar ataxia type 3: Variable topographies and patterns. Movement Disorders, 2014, 29, 157-158.	3.9	3
27	Progressive cognitive dysfunction in spinocerebellar ataxia type 3. Movement Disorders, 2013, 28, 1435-1438.	3.9	36
28	Never Neglect Inspecting the Leg in Movement Disorders. Archives of Neurology, 2012, 69, 782-3.	4.5	0
29	Alexithymia in healthy young men: A voxel-based morphometric study. Journal of Affective Disorders, 2012, 136, 1252-1256.	4.1	24
30	The time course of neurolinguistic and neuropsychological symptoms in three cases of logopenic primary progressive aphasia. Neuropsychologia, 2012, 50, 1708-1718.	1.6	33
31	The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. Brain, 2011, 134, 3530-3546.	7.6	199
32	Stochastic resonance therapy in Parkinson's disease. NeuroRehabilitation, 2011, 28, 353-358.	1.3	33
33	Early signs of VCP-related frontotemporal dementia: a neuropsychological, FDG-PET and fMRI study. Journal of Neurology, 2011, 258, 515-518.	3.6	3
34	Neuropsychological Features of Patients with Spinocerebellar Ataxia (SCA) Types 1, 2, 3, and 6. Cerebellum, 2010, 9, 433-442.	2.5	125
35	Depression in Patients with Spinocerebellar Ataxia Type 3 (SCA3). Cerebellum, 2010, 9, 606-607.	2.5	1
36	Callosal tissue loss in multiple system atrophy—A oneâ€year followâ€up study. Movement Disorders, 2010, 25, 2613-2620.	3.9	24

3

#	Article	IF	CITATIONS
37	In vivo voxel-based relaxometry in amyotrophic lateral sclerosis. Journal of Neurology, 2009, 256, 28-34.	3.6	18
38	Exon deletions and intragenic insertions are not rare in ataxia with oculomotor apraxia 2. BMC Medical Genetics, 2009, 10, 87.	2.1	18
39	Bell's palsy. Journal of Neurology, 2008, 255, 1726-1730.	3.6	49
40	Grey and white matter loss along cerebral midline structures in myotonic dystrophy type 2. Journal of Neurology, 2008, 255, 1904-1909.	3.6	27
41	Smoking upregulates $\hat{l}\pm4\hat{l}^22^*$ nicotinic acetylcholine receptors in the human brain. Neuroscience Letters, 2008, 430, 34-37.	2.1	64
42	REM sleep behavioral disorder in pure autonomic failure (PAF). Neurology, 2006, 66, 608-609.	1.1	34
43	Dopamine Transporter Positron Emission Tomography in Spinocerebellar Ataxias Type 1, 2, 3, and 6. Archives of Neurology, 2005, 62, 1280.	4.5	89
44	Voxel-based analysis of multiple-system atrophy of cerebellar type: complementary results by combining voxel-based morphometry and voxel-based relaxometry. NeuroImage, 2005, 25, 287-293.	4.2	58
45	CNS infection with C. pneumoniae complicated by multiple strokes. Journal of Neurology, 2003, 250, 1128-1128.	3.6	O
46	In Vivo Voxel-Based Morphometry in Multiple System Atrophy of the Cerebellar Type. Archives of Neurology, 2003, 60, 1431.	4.5	66
47	CNS infection with Chlamydia pneumoniae complicated by multiple strokes. Journal of Neurology, 2002, 249, 1329-1331.	3.6	5