

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7833694/publications.pdf Version: 2024-02-01

DA HE

#	Article	IF	CITATIONS
1	Ultrathin PtPdTe Nanowires as Superior Catalysts for Methanol Electrooxidation. Angewandte Chemie - International Edition, 2013, 52, 7472-7476.	13.8	206
2	Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation. Energy and Environmental Science, 2016, 9, 1794-1802.	30.8	136
3	Hematiteâ€Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono―and Multilayers of Iridium Oxygenâ€Evolution Catalysts. Angewandte Chemie - International Edition, 2015, 54, 11428-11432.	13.8	121
4	Catalysts in electro-, photo- and photoelectrocatalytic CO2 reduction reactions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 117-149.	11.6	101
5	Selective CO Production by Photoelectrochemical Methane Oxidation on TiO ₂ . ACS Central Science, 2018, 4, 631-637.	11.3	56
6	Role of H ₂ 0 in CO ₂ Electrochemical Reduction As Studied in a Water-in-Salt System. ACS Central Science, 2019, 5, 1461-1467.	11.3	46
7	Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. CheM, 2021, 7, 2101-2117.	11.7	42
8	Tunable Syngas Formation from Electrochemical CO ₂ Reduction on Copper Nanowire Arrays. ACS Applied Energy Materials, 2020, 3, 9841-9847.	5.1	41
9	Understanding the role of co-catalysts on silicon photocathodes using intensity modulated photocurrent spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 29653-29659.	2.8	40
10	CO ₂ reduction with Re(<scp>i</scp>)–NHC compounds: driving selective catalysis with a silicon nanowire photoelectrode. Chemical Communications, 2016, 52, 14258-14261.	4.1	32
11	Photoelectrochemical CO ₂ Reduction by a Molecular Cobalt(II) Catalyst on Planar and Nanostructured Si Surfaces. Chemistry - A European Journal, 2016, 22, 13064-13067.	3.3	27
12	Surface Charge Polarization at the Interface: Enhancing the Oxygen Reduction via Precise Synthesis of Heterogeneous Ultrathin Pt/PtTe Nanowire. Chemistry of Materials, 2016, 28, 8890-8898.	6.7	24
13	Carboxylation of α,β-Unsaturated Ketones by CO ₂ Fixation through Photoelectro-chemistry. ACS Applied Energy Materials, 2020, 3, 5813-5818.	5.1	21
14	Dependence of interface energetics and kinetics on catalyst loading in a photoelectrochemical system. Nano Research, 2019, 12, 2378-2384.	10.4	15
15	Photoelectrochemical NADH regeneration is highly sensitive to the nature of electrode surface. Journal of Chemical Physics, 2020, 153, 064703.	3.0	8
16	Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie - International Edition, 2021, 60, 7534-7539.	13.8	8
17	Understanding photoelectrochemical kinetics in a model CO ₂ fixation reaction. Physical Chemistry Chemical Physics, 2019, 21, 17517-17520.	2.8	6
18	Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie, 2021, 133, 7612-7617.	2.0	3

Da He

#	Article	IF	CITATIONS
19	Frontispiece: Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie - International Edition, 2021, 60, .	13.8	1
20	Frontispiz: Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie, 2021, 133, .	2.0	0