MagalÃ- Lingenfelder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7833278/publications.pdf

Version: 2024-02-01

304743 254184 3,071 47 22 43 citations h-index g-index papers 51 51 51 3643 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nature Materials, 2004, 3, 229-233.	27.5	653
2	Germanene: the germanium analogue of graphene. Journal of Physics Condensed Matter, 2015, 27, 443002.	1.8	304
3	Supramolecular control of the magnetic anisotropy inÂtwo-dimensional high-spin Fe arrays at a metalÂinterface. Nature Materials, 2009, 8, 189-193.	27.5	262
4	Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides. Angewandte Chemie - International Edition, 2019, 58, 10295-10299.	13.8	224
5	Towards Surface-Supported Supramolecular Architectures: Tailored Coordination Assembly of 1,4-Benzenedicarboxylate and Fe on Cu(100). Chemistry - A European Journal, 2004, 10, 1913-1919.	3.3	189
6	Deprotonation-Driven Phase Transformations in Terephthalic Acid Self-Assembly on Cu(100). Journal of Physical Chemistry B, 2004, 108, 19392-19397.	2.6	156
7	Tracking the Chiral Recognition of Adsorbed Dipeptides at the Single-Molecule Level. Angewandte Chemie - International Edition, 2007, 46, 4492-4495.	13.8	148
8	Hydrogen and Coordination Bonding Supramolecular Structures of Trimesic Acid on Cu(110). Journal of Physical Chemistry A, 2007, 111, 12589-12603.	2.5	118
9	Density Functional Theory Analysis of Carboxylate-Bridged Diiron Units in Two-Dimensional Metalâ^'Organic Grids. Journal of the American Chemical Society, 2006, 128, 5634-5635.	13.7	93
10	Mimicking Enzymatic Active Sites on Surfaces for Energy Conversion Chemistry. Accounts of Chemical Research, 2015, 48, 2132-2139.	15.6	87
11	Reversible Local and Global Switching in Multicomponent Supramolecular Networks: Controlled Guest Release and Capture at the Solution/Solid Interface. ACS Nano, 2015, 9, 11608-11617.	14.6	72
12	Local Conformational Switching of Supramolecular Networks at the Solid/Liquid Interface. ACS Nano, 2015, 9, 5544-5550.	14.6	67
13	Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides. Angewandte Chemie, 2019, 131, 10401-10405.	2.0	63
14	Ordering of Dipeptide Chains on Cu Surfaces through 2D Cocrystallization. Journal of the American Chemical Society, 2007, 129, 15742-15743.	13.7	62
15	Emergence of Potential-Controlled Cu-Nanocuboids and Graphene-Covered Cu-Nanocuboids under <i>Operando</i> CO ₂ Electroreduction. Nano Letters, 2021, 21, 2059-2065.	9.1	54
16	Design of Extended Surface-Supported Chiral Metal-Organic Arrays Comprising Mononuclear Iron Centers. Langmuir, 2004, 20, 4799-4801.	3.5	53
17	Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes. Nature Communications, 2022, 13, .	12.8	48
18	Asymmetry Induction by Cooperative Intermolecular Hydrogen Bonds in Surface-Anchored Layers of Achiral Molecules. ChemPhysChem, 2006, 7, 2197-2204.	2.1	46

#	Article	IF	CITATIONS
19	Van der Waals interactions in the self-assembly of 5-amino [6] helicene on $Cu(100)$ and $Au(111)$. Chemical Communications, 2014, 50, 13907-13909.	4.1	36
20	Structure and Energetics of Diphenylalanine Self-Assembling on Cu(110). Journal of Physical Chemistry A, 2007, 111, 12740-12748.	2.5	34
21	Varying molecular interactions by coverage in supramolecular surface chemistry. Chemical Communications, 2012, 48, 534-536.	4.1	34
22	Intrinsic luminescence blinking from plasmonic nanojunctions. Nature Communications, 2021, 12, 2731.	12.8	25
23	Synthesis, Properties, and Twoâ€Dimensional Adsorption Characteristics of 5â€Amino[6]hexahelicene. Chemistry - A European Journal, 2016, 22, 1484-1492.	3.3	21
24	Programming Hierarchical Supramolecular Nanostructures by Molecular Design. Journal of Physical Chemistry C, 2013, 117, 3440-3445.	3.1	20
25	Super-resolved Optical Mapping of Reactive Sulfur-Vacancies in Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 2021, 15, 7168-7178.	14.6	20
26	Comparative Study of the Adsorption of Thiols and Selenols on Au(111) and Au(100). Langmuir, 2017, 33, 13733-13739.	3.5	19
27	The STM bias voltage-dependent polymorphism of a binary supramolecular network. Chemical Communications, 2017, 53, 11430-11432.	4.1	18
28	Chiral expression of adsorbed (MP) 5-amino[6]helicenes: from random structures to dense racemic crystals by surface alloying. Chemical Communications, 2017, 53, 130-133.	4.1	17
29	Dynamically resolved self-assembly of S-layer proteins on solid surfaces. Chemical Communications, 2018, 54, 10264-10267.	4.1	17
30	Contrasting Chemistry of Block Copolymer Films Controls the Dynamics of Protein Self-Assembly at the Nanoscale. ACS Nano, 2019, 13, 4018-4027.	14.6	16
31	The van der Waals Interactions of <i>n</i> â€Alkanethiolâ€Covered Surfaces: From Planar to Curved Surfaces. Angewandte Chemie - International Edition, 2017, 56, 16526-16530.	13.8	12
32	Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities. ACS Photonics, 2021, 8, 1863-1872.	6.6	11
33	A Chiral Selfâ€Assembled Monolayer Derived from a Resolving Agent and its Performance as a Crystallization Template for an Organic Compound from Organic Solvents. Chemistry - A European Journal, 2012, 18, 15984-15993.	3.3	7
34	Catalyst Proximity-Induced Functionalization of h-BN with Quat Derivatives. Nano Letters, 2019, 19, 5998-6004.	9.1	7
35	Reactivity of Bioinspired Magnesium–Organic Networks under CO ₂ and O ₂ Exposure. ACS Omega, 2019, 4, 9850-9859.	3.5	6
36	Building two-dimensional metal–organic networks with tin. Chemical Communications, 2019, 55, 345-348.	4.1	5

#	Article	IF	CITATIONS
37	The van der Waals Interactions of <i>n</i> àê€Alkanethiolâ€Covered Surfaces: From Planar to Curved Surfaces. Angewandte Chemie, 2017, 129, 16753-16757.	2.0	4
38	Mn–Cu Transmetalation as a Strategy for the Assembly of Decoupled Metal–Organic Networks on Sn/Cu(001) Surface Alloys. Journal of Physical Chemistry C, 2020, 124, 18993-19002.	3.1	4
39	Localized Crystallization of Enantiomeric Organic Compounds on Chiral Microâ€patterns from Various Organic Solutions. Chemistry - A European Journal, 2014, 20, 10466-10474.	3.3	3
40	Stabilization of high-spin Mn ions in tetra-pyrrolic configuration on copper. Applied Surface Science, 2021, 551, 149307.	6.1	3
41	Supramolecular Engineering Of Metal-Organic Networks At Surfaces. AIP Conference Proceedings, 2003, , .	0.4	2
42	Carboxylate Groups: Deprotonation of Carboxylic Acids and Formation of Coordination Networks., 2018, , 24-31.		1
43	2-D assembly of supramolecular nanoarchitectures on Mg(0001). Chemical Communications, 2019, 55, 1793-1796.	4.1	1
44	Cover Picture: Tracking the Chiral Recognition of Adsorbed Dipeptides at the Single-Molecule Level (Angew. Chem. Int. Ed. 24/2007). Angewandte Chemie - International Edition, 2007, 46, 4405-4405.	13.8	0
45	Controlled crystallization of organic molecules on micro-patterned surfaces. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C819-C819.	0.3	0
46	What can in-situ surface science reveal about the "devil" face of your electrocatalyst?., 0,,.		0
47	Magnetic Enhancement of Electrocatalysis: Universality and Limitations. , 0, , .		0