Itzhak Mizrahi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/783295/publications.pdf

Version: 2024-02-01

69 papers 6,428 citations

33 h-index 65 g-index

81 all docs

81 docs citations

81 times ranked 6645 citing authors

#	Article	IF	CITATIONS
1	GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser. Nature Methods, 2022, 19, 134-136.	19.0	35
2	Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities. Nature Biotechnology, 2022, 40, 711-719.	17. 5	99
3	Concepts and Consequences of a Core Gut Microbiota for Animal Growth and Development. Annual Review of Animal Biosciences, 2022, 10, 177-201.	7.4	16
4	Protozoa populations are ecosystem engineers that shape prokaryotic community structure and function of the rumen microbial ecosystem. ISME Journal, 2022, 16, 1187-1197.	9.8	25
5	Mammalian gut metabolomes mirror microbiome composition and host phylogeny. ISME Journal, 2022, 16, 1262-1274.	9.8	12
6	Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nature Biotechnology, 2021, 39, 169-173.	17.5	78
7	A method to the madness. EMBO Reports, 2021, 22, e52269.	4.5	2
8	The rumen microbiome: balancing food security and environmental impacts. Nature Reviews Microbiology, 2021, 19, 553-566.	28.6	143
9	SCAPP: an algorithm for improved plasmid assembly in metagenomes. Microbiome, 2021, 9, 144.	11.1	31
10	Unravelling plasmidome distribution and interaction with its hosting microbiome. Environmental Microbiology, 2020, 22, 32-44.	3.8	22
11	Antibiotic effect and microbiome persistence vary along the European seabass gut. Scientific Reports, 2020, 10, 10003.	3.3	31
12	Context-dependent dynamics lead to the assembly of functionally distinct microbial communities. Nature Communications, 2020, 11, 1440.	12.8	73
13	Rapid adaptation for fibre degradation by changes in plasmid stoichiometry within <i>Lactobacillus plantarum </i> at the synthetic community level. Microbial Biotechnology, 2020, 13, 1748-1764.	4.2	5
14	Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nature Communications, 2020, 11, 1904.	12.8	117
15	PlasClass improves plasmid sequence classification. PLoS Computational Biology, 2020, 16, e1007781.	3.2	67
16	Host-rumen microbiome interactions and influences on feed conversion efficiency (FCE), methane production and other productivity traits. Burleigh Dodds Series in Agricultural Science, 2020, , 547-566.	0.2	2
17	Modeling the temporal dynamics of the gut microbial community in adults and infants. PLoS Computational Biology, 2019, 15, e1006960.	3.2	42
18	A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Science Advances, 2019, 5, eaav8391.	10.3	218

#	Article	IF	CITATIONS
19	Core gut microbial communities are maintained by beneficial interactions and strain variability in fish. Nature Microbiology, 2019, 4, 2456-2465.	13.3	98
20	Short- and long-term low-salinity acclimation effects on the branchial and intestinal gene expression in the European seabass (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part A, Molecular & Dicentrative Physiology, 2019, 231, 11-18.	1.8	32
21	Cell-surface display of designer cellulosomes by Lactobacillus plantarum. Methods in Enzymology, 2019, 617, 241-263.	1.0	6
22	The Road Not Taken: The Rumen Microbiome, Functional Groups, and Community States. Trends in Microbiology, 2019, 27, 538-549.	7.7	92
23	FEAST: fast expectation-maximization for microbial source tracking. Nature Methods, 2019, 16, 627-632.	19.0	275
24	Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nature Communications, 2019, 10, 2595.	12.8	141
25	Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiology Reviews, 2019, 43, 362-379.	8.6	88
26	Transcriptome Analysis Reveals Common and Differential Response to Low Temperature Exposure Between Tolerant and Sensitive Blue Tilapia (Oreochromis aureus). Frontiers in Genetics, 2019, 10, 100.	2.3	43
27	Man-made microbial resistances in built environments. Nature Communications, 2019, 10, 968.	12.8	128
28	Segregational Drift and the Interplay between Plasmid Copy Number and Evolvability. Molecular Biology and Evolution, 2019, 36, 472-486.	8.9	46
29	Assembly of Synthetic Functional Cellulosomal Structures onto the Cell Surface of Lactobacillus plantarum, a Potent Member of the Gut Microbiome. Applied and Environmental Microbiology, 2018, 84,	3.1	33
30	Diet Supplementation With Pomegranate Peel Extract Altered Odorants Emission From Fresh and Incubated Calves' Feces. Frontiers in Sustainable Food Systems, 2018, 2, .	3.9	11
31	Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Frontiers in Microbiology, 2018, 9, 2161.	3.5	255
32	Dietary salt levels affect digestibility, intestinal gene expression, and the microbiome, in Nile tilapia (Oreochromis niloticus). PLoS ONE, 2018, 13, e0202351.	2.5	20
33	Insights Into Culturomics of the Rumen Microbiome. Frontiers in Microbiology, 2018, 9, 1999.	3.5	35
34	Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects. ISME Journal, 2018, 12, 2446-2457.	9.8	66
35	Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. ELife, 2018, 7, .	6.0	113
36	Recycler: an algorithm for detecting plasmids from <i>de novo</i> assembly graphs. Bioinformatics, 2017, 33, 475-482.	4.1	117

#	Article	IF	CITATIONS
37	Heritable Bovine Rumen Bacteria Are Phylogenetically Related and Correlated with the Cow's Capacity To Harvest Energy from Its Feed. MBio, 2017, 8, .	4.1	110
38	Compositional and functional dynamics of the bovine rumen methanogenic community across different developmental stages. Environmental Microbiology, 2017, 19, 3365-3373.	3.8	43
39	Broad phylogeny and functionality of cellulosomal components in the bovine rumen microbiome. Environmental Microbiology, 2017, 19, 185-197.	3.8	32
40	Dietâ€induced changes of redox potential underlie compositional shifts in the rumen archaeal community. Environmental Microbiology, 2017, 19, 174-184.	3.8	53
41	Effect of feeding ensiled mixture of pomegranate pulp and drier feeds on digestibility and milk performance in dairy cows. Journal of Dairy Research, 2016, 83, 35-41.	1.4	25
42	Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME Journal, 2016, 10, 2958-2972.	9.8	564
43	Lysozyme activity of the <scp><i>R</i></scp> <i>uminococcus champanellensis</i> Environmental Microbiology, 2016, 18, 5112-5122.	3.8	19
44	Tracking heavy water (D ₂ O) incorporation for identifying and sorting active microbial cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E194-203.	7.1	359
45	Functional phylotyping approach for assessing intraspecific diversity of Ruminococcus albus within the rumen microbiome. FEMS Microbiology Letters, 2015, 362, 1-10.	1.8	12
46	Potential Role of the Bovine Rumen Microbiome in Modulating Milk Composition and Feed Efficiency. PLoS ONE, 2014, 9, e85423.	2.5	417
47	Evaluation of Automated Ribosomal Intergenic Spacer Analysis for Bacterial Fingerprinting of Rumen Microbiome Compared to Pyrosequencing Technology. Pathogens, 2014, 3, 109-120.	2.8	31
48	A combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarumcells. Biotechnology for Biofuels, 2014, 7, 112.	6.2	40
49	Towards lactic acid bacteria-based biorefineries. Biotechnology Advances, 2014, 32, 1216-1236.	11.7	152
50	A method for purifying high quality and high yield plasmid DNA for metagenomic and deep sequencing approaches. Journal of Microbiological Methods, 2013, 95, 272-279.	1.6	38
51	Rumen Symbioses. , 2013, , 533-544.		33
52	Exploring the bovine rumen bacterial community from birth to adulthood. ISME Journal, 2013, 7, 1069-1079.	9.8	799
53	Establishment of a Simple Lactobacillus plantarum Cell Consortium for Cellulase-Xylanase Synergistic Interactions. Applied and Environmental Microbiology, 2013, 79, 5242-5249.	3.1	42

Involvement of dietary salt in shaping bacterial communities in European sea bass (Dicentrarchus) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

#	Article	IF	Citations
55	Rumen Plasmids. , 2013, , 105-120.		3
56	The rumen plasmidome. Mobile Genetic Elements, 2012, 2, 152-153.	1.8	7
57	The Role of the Rumen Microbiota in Determining the Feed Efficiency of Dairy Cows. , 2012, , 203-210.		8
58	Insights into the bovine rumen plasmidome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5452-5457.	7.1	145
59	Similarity of the ruminal bacteria across individual lactating cows. Anaerobe, 2012, 18, 338-343.	2.1	49
60	Composition and Similarity of Bovine Rumen Microbiota across Individual Animals. PLoS ONE, 2012, 7, e33306.	2.5	508
61	Scalable Production of Cardiomyocytes Derived from c-Myc Free Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2011, 17, 1027-1037.	3.1	15
62	Calcium Handling in Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. PLoS ONE, 2011, 6, e18037.	2.5	165
63	Differential effects of co-chaperonin homologs on cpn60 oligomers. Cell Stress and Chaperones, 2009, 14, 509-519.	2.9	20
64	Involvement of the Pta-AckA pathway in protein folding and aggregation. Research in Microbiology, 2009, 160, 80-84.	2.1	19
65	Potential Use of Toxic Thermolabile Proteins To Study Protein Quality Control Systems. Applied and Environmental Microbiology, 2007, 73, 5951-5953.	3.1	5
66	Tools for the study of protein quality control systems: Use of truncated homoserine trans-succinylase as a model substrate for ATP-dependent proteolysis in Escherichia coli. Journal of Microbiological Methods, 2007, 70, 82-85.	1.6	1
67	Requirement for the acetyl phosphate pathway in Escherichia coli ATP-dependent proteolysis. Molecular Microbiology, 2006, 62, 201-211.	2.5	16
68	On the oligomeric state of chloroplast chaperonin 10 and chaperonin 20. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1651, 76-84.	2.3	28
69	Nanoscale resolution of microbial fiber degradation in action. ELife, 0, $11, \ldots$	6.0	5