
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7832477/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrothermal liquefaction of sugarcane bagasse to bio-oils: Effect of liquefaction solvents on bio-oil stability. Fuel, 2022, 312, 122793.	6.4	14
2	Closing the loop: Valorizing pyrolyzed waste tyre residue into functional carbon materials, SiO2 with exceptionally high silanol groups, and Zn salt. Waste Management, 2022, 140, 110-120.	7.4	2
3	One step liquefaction of hardwood lignin to oligomers soluble in polymerizable solvents. Industrial Crops and Products, 2021, 162, 113259.	5.2	4
4	Transforming Cotton Gin Trash to Engineered Functional Carbon Structures. Advanced Sustainable Systems, 2021, 5, 2100061.	5.3	2
5	Conversion of pilot plant derived 2G ethanol cellulosic stillage to value-added chemicals. Industrial Crops and Products, 2021, 171, 113839.	5.2	4
6	Structural features of cotton gin trash derived carbon material as a catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Fuel, 2021, 306, 121670.	6.4	14
7	External Solventâ€Free Catalytic Hydrodeoxygenation of Softwood Lignin to Aromatics over Carbon–ZrO ₂ Supported Ni/MoS ₂ Catalysts. Advanced Sustainable Systems, 2021, 5, 2000243.	5.3	7
8	Microwave aided conversion of cellulose to glucose using polyoxometalate as catalyst. RSC Advances, 2021, 11, 34558-34563.	3.6	8
9	Nanoconfined Synthesis of Nitrogen-Rich Metal-Free Mesoporous Carbon Nitride Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 1439-1447.	5.1	29
10	The catalytic activity of KMoCo carbon spheres for higher alcohols synthesis from syngas. Applied Catalysis A: General, 2020, 605, 117803.	4.3	6
11	Thermocatalytic Hydrodeoxygenation and Depolymerization of Waste Lignin to Oxygenates and Biofuels in a Continuous Flow Reactor at Atmospheric Pressure. ACS Sustainable Chemistry and Engineering, 2020, 8, 13195-13205.	6.7	12
12	Heterogeneous Catalytic Conversion of Sugars Into 2,5-Furandicarboxylic Acid. Frontiers in Chemistry, 2020, 8, 659.	3.6	40
13	Surface engineering of carbon supported CoMoS– an effective nanocatalyst for selective deoxygenation of lignin derived phenolics to arenes. Applied Catalysis A: General, 2020, 606, 117811.	4.3	17
14	Self-sustaining smouldering combustion of waste: A review on applications, key parameters and potential resource recovery. Fuel Processing Technology, 2020, 205, 106425.	7.2	56
15	Microwave-assisted catalytic conversion of glucose to 5-hydroxymethylfurfural using "three dimensional―graphene oxide hybrid catalysts. RSC Advances, 2020, 10, 11727-11736.	3.6	18
16	Nanostructured NiMoS2/Carbon Catalysts for Syngas Conversion to Higher Alcohols. Journal of Nanoscience and Nanotechnology, 2020, 20, 5260-5266.	0.9	0
17	Effect of HCOOK/Ethanol on Fe/HUSY, Ni/HUSY, and Ni–Fe/HUSY Catalysts on Lignin Depolymerization to Benzyl Alcohols and Bioaromatics. ACS Omega, 2019, 4, 16980-16993.	3.5	10
18	Role of promoters and catalyst supports for selective synthesis of higher alcohols over molybdenum carbides. Canadian Journal of Chemical Engineering, 2019, 97, 2077-2085.	1.7	2

#	Article	IF	CITATIONS
19	Valorization of native sugarcane bagasse lignin to bio-aromatic esters/monomers <i>via</i> a one pot oxidation–hydrogenation process. Green Chemistry, 2019, 21, 861-873.	9.0	31
20	Catalytic Wet Air Oxidation (CWAO) of Phenol in a Fixed Bed Reactor Using Supported Ru and Ruâ€Au Catalysts: Effect of Gold and Ce Loading. ChemistrySelect, 2019, 4, 1275-1284.	1.5	8
21	Highly active and robust Ni–MoS ₂ supported on mesoporous carbon: a nanocatalyst for hydrodeoxygenation reactions. RSC Advances, 2019, 9, 17194-17202.	3.6	21
22	The selective cleavage of lignin aliphatic C–O linkages by solvent-assisted fast pyrolysis (SAFP). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 94, 297-307.	1.6	7
23	Effect of gold addition by the recharge method on silver supported catalysts in the catalytic wet air oxidation (CWAO) of phenol. RSC Advances, 2019, 9, 11123-11134.	3.6	6
24	Thermocatalytic cleavage of C–C and C–O bonds in model compounds and kraft lignin by NiMoS ₂ /C nanocatalysts. Sustainable Energy and Fuels, 2019, 3, 1317-1328.	4.9	42
25	TiNâ€Cu Heterogeneous Nanocatalysts for Effective Depolymerisation of Oxidised Lignin. ChemistrySelect, 2018, 3, 3379-3385.	1.5	14
26	Cleaner hydrothermal hydrogenolysis of glycerol to 1,2-propanediol over Cu/oxide catalysts without addition of external hydrogen. Molecular Catalysis, 2017, 432, 274-284.	2.0	37
27	Silver nanoparticles supported on zirconia–ceria for the catalytic wet air oxidation of methyl tert-butyl ether. RSC Advances, 2017, 7, 3599-3610.	3.6	33
28	Enabling Process Intensification by 3 D Printing of Catalytic Structures. ChemCatChem, 2017, 9, 4132-4138.	3.7	39
29	Alkali Promoted Cu-Cr-O Catalyst for the Dehydrocyclization of Crude Glycerol and 1,2-Propanediamine: Effect of Thermal Treatment on the Activity and Product Selectivity. Current Catalysis, 2017, 6, 135-143.	0.5	3
30	High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catalysis Science and Technology, 2016, 6, 6257-6266.	4.1	74
31	C–H bond cyanation of arenes using N,N-dimethylformamide and NH ₄ HCO ₃ as a CN source over a hydroxyapatite supported copper catalyst. Catalysis Science and Technology, 2016, 6, 8055-8062.	4.1	15
32	Low-temperature hydrogen desorption from Mg(BH4)2 catalysed by ultrafine Ni nanoparticles in a mesoporous carbon matrix. International Journal of Hydrogen Energy, 2016, 41, 20573-20582.	7.1	26
33	Catalytic functionalities of nano Ru catalysts supported on TiO2–ZrO2 mixed oxide for vapor phase hydrogenolysis of glycerol to propanediols. Applied Petrochemical Research, 2016, 6, 73-87.	1.3	9
34	Direct Production of 5â€Hydroxymethylfurfural via Catalytic Conversion of Simple and Complex Sugars over Phosphated TiO ₂ . ChemSusChem, 2015, 8, 2907-2916.	6.8	85
35	Catalytic Conversion of Glucose to 5â€Hydroxymethylâ€furfural with a Phosphated TiO ₂ Catalyst. ChemCatChem, 2015, 7, 781-790.	3.7	81
36	Effect of the Pt oxidation state and Ce3+/Ce4+ ratio on the Pt/TiO2-CeO2 catalysts in the phenol degradation by catalytic wet air oxidation (CWAO). Catalysis Today, 2015, 250, 145-154.	4.4	62

#	Article	IF	CITATIONS
37	Guaiacol hydrodeoxygenation reaction catalyzed by highly dispersed, single layered MoS ₂ /C. Catalysis Science and Technology, 2015, 5, 4422-4432.	4.1	67
38	Recent advances in hybrid periodic mesostructured organosilica materials: opportunities from fundamental to biomedical applications. RSC Advances, 2015, 5, 79129-79151.	3.6	35
39	Catalytic behaviour of TiO2–ZrO2 binary oxide synthesized by sol–gel process for glucose conversion to 5-hydroxymethylfurfural. RSC Advances, 2015, 5, 80346-80352.	3.6	46
40	Catalytic nanoconfinement effect of in-situ synthesized Ni-containing mesoporous carbon scaffold (Ni-MCS) on the hydrogen storage properties of LiAlH 4. International Journal of Hydrogen Energy, 2014, 39, 18280-18290.	7.1	36
41	Nano―and Microscale Engineering of the Molybdenum Disulfideâ€Based Catalysts for Syngas to Ethanol Conversion. ChemCatChem, 2014, 6, 2394-2402.	3.7	33
42	Transfer Hydrogenation of Celluloseâ€based Oligomers over Carbonâ€supported Ruthenium Catalyst in a Fixedâ€bed Reactor. ChemCatChem, 2014, 6, 1349-1356.	3.7	19
43	Mechanical depolymerisation of acidulated cellulose: understanding the solubility of high molecular weight oligomers. Green Chemistry, 2013, 15, 2761.	9.0	113
44	Degradation of methyl tert-butyl ether by catalytic wet air oxidation over Rh/TiO2–CeO2 catalysts. Catalysis Today, 2013, 212, 2-9.	4.4	21
45	Effects of nano-confinement on the hydrogen desorption properties of MgH2. Nano Energy, 2013, 2, 98-104.	16.0	120
46	Microporous silica membranes: fundamentals and applications in membrane reactors for hydrogen separation. , 2013, , 337-369.		3
47	Synthesis and Hydrogen Storage Properties of Magnesium Nanoparticles with Core/Shell Structure. Materials Science Forum, 2012, 736, 120-126.	0.3	1
48	Conversion of cellulose to polyols over promoted nickel catalysts. Catalysis Science and Technology, 2012, 2, 1852.	4.1	79
49	Porous MgH2/C composite with fast hydrogen storage kinetics. International Journal of Hydrogen Energy, 2012, 37, 8370-8378.	7.1	30
50	Selective oxidation of biorenewable glycerol with molecular oxygen over Cu-containing layered double hydroxide-based catalysts. Catalysis Science and Technology, 2011, 1, 111.	4.1	69
51	Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chemical Society Reviews, 2011, 40, 5588.	38.1	1,174
52	Diesel-like Hydrocarbons from Catalytic Deoxygenation of Stearic Acid over Supported Pd Nanoparticles on SBA-15 Catalysts. Catalysis Letters, 2010, 134, 250-257.	2.6	91
53	A magnetic zeolitic nanocomposite from occlusion of silica-coated iron species by crystalline titanosilicate-1. Materials Letters, 2010, 64, 2752-2754.	2.6	5
54	A review of catalytic hydrogen production processes from biomass. Renewable and Sustainable Energy Reviews, 2010, 14, 166-182.	16.4	319

#	Article	IF	CITATIONS
55	Structure and catalytic properties of Sn-containing layered double hydroxides synthesized in the presence of dodecylsulfate and dodecylamine. Applied Clay Science, 2010, 48, 569-574.	5.2	54
56	Transforming Triglycerides and Fatty Acids into Biofuels. ChemSusChem, 2009, 2, 1109-1119.	6.8	232
57	Hydrogen production by aqueous phase reforming of sorbitol using bimetallic Ni–Pt catalysts: metal support interaction. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 65, 83-88.	1.6	41
58	Catalytic Deoxygenation of Stearic Acid and Palmitic Acid in Semibatch Mode. Catalysis Letters, 2009, 130, 48-51.	2.6	110
59	Catalytic Deoxygenation of Stearic Acid in a Continuous Reactor over a Mesoporous Carbon-Supported Pd Catalyst. Energy & Fuels, 2009, 23, 3842-3845.	5.1	123
60	Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chemical Society Reviews, 2008, 37, 527-549.	38.1	1,493
61	Effect of Pt and Pd promoter on Ni supported catalysts—A TPR/TPO/TPD and microcalorimetry study. Journal of Catalysis, 2008, 258, 366-377.	6.2	162
62	Improved performance of naphtha reforming process by the use of metal zeolite composite catalysts. Studies in Surface Science and Catalysis, 2008, 174, 1235-1238.	1.5	1
63	Catalytic deoxygenation of stearic acid over palladium supported on acid modified mesoporous silica. Studies in Surface Science and Catalysis, 2008, 174, 1339-1342.	1.5	7
64	Prediction of catalyst stability in naphtha reforming. Journal of Chemical Technology and Biotechnology, 2007, 32, 445-453.	0.2	11
65	Synthesis, characterization and catalytic activity of Titania and Vanadium grafted and substituted on mesoporous silicas. Studies in Surface Science and Catalysis, 2007, 165, 135-138.	1.5	0
66	Hydrogen generation from liquid phase catalytic reforming of sugar solutions using metal-supported catalysts. International Journal of Hydrogen Energy, 2007, 32, 717-724.	7.1	72
67	Preparation and Characterization of Mesoporous Ni/Zr-laponite for the Catalytic Deoxygenation of Vegetable Oils into Liquid Hydrocarbons. , 2006, , .		2
68	Catalytic conversion of municipal waste plastic into gasoline-range products over mesoporous materials. Particuology: Science and Technology of Particles, 2006, 4, 80-82.	0.4	4
69	An analysis of the Peclet and Damkohler numbers for dehydrogenation reactions using molecular sieve silica (MSS) membrane reactors. Catalysis Today, 2006, 116, 12-17.	4.4	66
70	Effect of the preparation technique on the catalytic properties of mesoporous V-HMS for the oxidation of toluene. Microporous and Mesoporous Materials, 2006, 88, 91-100.	4.4	24
71	Effect of Promoter on Mesoporous Supports for Increased H/sub 2/ Production from Sugar Reforming. , 2006, , .		2
72	Oxidation of Toluene in Waste Gas Streams Using Mesoporous Ti-Hexagonal Mesoporous Silica. Journal of Environmental Engineering, ASCE, 2004, 130, 356-359.	1.4	3

#	Article	IF	CITATIONS
73	Recent Advances in Catalysts for Methanol Synthesis via Hydrogenation of CO and CO2. Industrial & Engineering Chemistry Research, 2003, 42, 6518-6530.	3.7	465
74	Catalytic properties of heteropolyacids supported on MCM-41 mesoporous silica for hydrocarbon cracking reactions. Studies in Surface Science and Catalysis, 2003, 146, 653-656.	1.5	1
75	Characterization of tungstophosphoric acid supported on MCM-41 mesoporous silica using n-hexane cracking, benzene adsorption, and X-ray diffraction. Applied Catalysis A: General, 2001, 207, 159-171.	4.3	74
76	Improvement in the performance of naphtha reforming catalysts by the addition of pentasil zeolite. Studies in Surface Science and Catalysis, 1996, 100, 465-475.	1.5	2
77	Kinetics of deactivation of bifunctional Pt/Al2O3Cl catalysts by coking. AICHE Journal, 1991, 37, 845-854.	3.6	31
78	Deactivation of the Metal and Acid Functions of Pt/Al2O3-Cl Reforming Catalyst by Coke Formation. Studies in Surface Science and Catalysis, 1991, , 119-126.	1.5	6
79	Temperature programmed analysis and its applications in catalytic systems. Catalysis Today, 1990, 7, 309-438.	4.4	112
80	Role of sulfur in catalytic reforming of hydrocarbons on platinum-rhenium/alumina. Industrial & Engineering Chemistry Research, 1990, 29, 1801-1807.	3.7	12
81	Stability of bimetallic reforming catalysts. Journal of Catalysis, 1988, 112, 357-365.	6.2	60
82	Optimum Chlorine on Naphtha Reforming Catalyst Regarding Deactivation by Coke Formation. Studies in Surface Science and Catalysis, 1980, , 571-576.	1.5	18
83	Evaluation of activity, selectivity and stability of catalysts for naphtha reforming. Journal of Chemical Technology and Biotechnology, 1980, 30, 374-383.	0.2	35