List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7832035/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381-385.                                                                                                                                                          | 13.7 | 2,095     |
| 2  | Vapor-assisted deposition of highly efficient, stable black-phase FAPbl <sub>3</sub> perovskite solar cells. Science, 2020, 370, .                                                                                                                        | 6.0  | 530       |
| 3  | Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy. Accounts of Chemical Research, 2013, 46, 1942-1951.                                                                                                                                       | 7.6  | 524       |
| 4  | Surface Enhanced NMR Spectroscopy by Dynamic Nuclear Polarization. Journal of the American<br>Chemical Society, 2010, 132, 15459-15461.                                                                                                                   | 6.6  | 488       |
| 5  | Through-Bond Carbonâ^'Carbon Connectivities in Disordered Solids by NMR. Journal of the American<br>Chemical Society, 1999, 121, 10987-10993.                                                                                                             | 6.6  | 412       |
| 6  | Europium-Doped CsPbI2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells. Joule, 2019,<br>3, 205-214.                                                                                                                                     | 11.7 | 387       |
| 7  | Large Molecular Weight Nitroxide Biradicals Providing Efficient Dynamic Nuclear Polarization at<br>Temperatures up to 200 K. Journal of the American Chemical Society, 2013, 135, 12790-12797.                                                            | 6.6  | 355       |
| 8  | Gaussian pulse cascades: New analytical functions for rectangular selective inversion and in-phase excitation in NMR. Chemical Physics Letters, 1990, 165, 469-476.                                                                                       | 1.2  | 323       |
| 9  | Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation<br>(MA) <sub><i>x</i></sub> (FA) <sub>1â€<sup>«</sup><i>x</i></sub> Pbl <sub>3</sub> Hybrid Perovskites from<br>Solid-State NMR. Journal of the American Chemical Society, 2017, 139, 14173-14180. | 6.6  | 317       |
| 10 | Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation. Chemical<br>Physics Letters, 2000, 319, 253-260.                                                                                                                     | 1.2  | 282       |
| 11 | Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nature Communications, 2019, 10, 3008.                                                                                                             | 5.8  | 268       |
| 12 | Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nature Communications, 2018, 9, 4482.                                                                                            | 5.8  | 266       |
| 13 | Fast Characterization of Functionalized Silica Materials by Silicon-29 Surface-Enhanced NMR<br>Spectroscopy Using Dynamic Nuclear Polarization. Journal of the American Chemical Society, 2011, 133,<br>2104-2107.                                        | 6.6  | 254       |
| 14 | Rapid Proton-Detected NMR Assignment for Proteins with Fast Magic Angle Spinning. Journal of the<br>American Chemical Society, 2014, 136, 12489-12497.                                                                                                    | 6.6  | 254       |
| 15 | Dynamic Nuclear Polarization NMR Spectroscopy of Microcrystalline Solids. Journal of the American<br>Chemical Society, 2012, 134, 16899-16908.                                                                                                            | 6.6  | 242       |
| 16 | Characterization of different water pools in solid-state NMR protein samples. Journal of<br>Biomolecular NMR, 2009, 45, 319-327.                                                                                                                          | 1.6  | 239       |
| 17 | Formation of Stable Mixed Guanidinium–Methylammonium Phases with Exceptionally Long Carrier<br>Lifetimes for High-Efficiency Lead Iodide-Based Perovskite Photovoltaics. Journal of the American<br>Chemical Society, 2018, 140, 3345-3351.               | 6.6  | 235       |
| 18 | Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proceedings of the United States of America, 2016, 113, 9187-9192.                                                                                                    | 3.3  | 224       |

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Direct observation of hierarchical protein dynamics. Science, 2015, 348, 578-581.                                                                                                                                                                                        | 6.0  | 222       |
| 20 | The structure and binding mode of citrate in the stabilization of gold nanoparticles. Nature Chemistry, 2017, 9, 890-895.                                                                                                                                                | 6.6  | 222       |
| 21 | Determination of Through-Bond Carbonâ^'Carbon Connectivities in Solid-State NMR Using the<br>INADEQUATE Experiment. Journal of the American Chemical Society, 1997, 119, 7867-7868.                                                                                      | 6.6  | 210       |
| 22 | Cation Dynamics in Mixed-Cation (MA) <sub><i>x</i></sub> (FA) <sub>1–<i>x</i></sub> PbI <sub>3</sub><br>Hybrid Perovskites from Solid-State NMR. Journal of the American Chemical Society, 2017, 139,<br>10055-10061.                                                    | 6.6  | 209       |
| 23 | Carbonâ^'Proton Chemical Shift Correlation in Solid-State NMR by Through-Bond Multiple-Quantum<br>Spectroscopy. Journal of the American Chemical Society, 1998, 120, 13194-13201.                                                                                        | 6.6  | 206       |
| 24 | Sensitivity enhancement of the central transition NMR signal of quadrupolar nuclei under magic-angle spinning. Chemical Physics Letters, 2000, 327, 85-90.                                                                                                               | 1.2  | 204       |
| 25 | Powder Crystallography by Combined Crystal Structure Prediction and High-Resolution<br><sup>1</sup> H Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132,<br>2564-2566.                                                                   | 6.6  | 201       |
| 26 | Solid-state NMR spectroscopy. Nature Reviews Methods Primers, 2021, 1, .                                                                                                                                                                                                 | 11.8 | 196       |
| 27 | Direct spectral optimisation of proton–proton homonuclear dipolar decoupling in solid-state NMR.<br>Chemical Physics Letters, 2004, 398, 532-538.                                                                                                                        | 1.2  | 188       |
| 28 | A Slowly Relaxing Rigid Biradical for Efficient Dynamic Nuclear Polarization Surface-Enhanced NMR<br>Spectroscopy: Expeditious Characterization of Functional Group Manipulation in Hybrid Materials.<br>Journal of the American Chemical Society, 2012, 134, 2284-2291. | 6.6  | 182       |
| 29 | Powder NMR crystallography of thymol. Physical Chemistry Chemical Physics, 2009, 11, 2610.                                                                                                                                                                               | 1.3  | 180       |
| 30 | The Atomic-Level Structure of Cementitious Calcium Silicate Hydrate. Journal of Physical Chemistry C, 2017, 121, 17188-17196.                                                                                                                                            | 1.5  | 178       |
| 31 | Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11095-11100.                                                                     | 3.3  | 173       |
| 32 | <i>De Novo</i> Determination of the Crystal Structure of a Large Drug Molecule by Crystal Structure<br>Prediction-Based Powder NMR Crystallography. Journal of the American Chemical Society, 2013, 135,<br>17501-17507.                                                 | 6.6  | 173       |
| 33 | Chemical shifts in molecular solids by machine learning. Nature Communications, 2018, 9, 4501.                                                                                                                                                                           | 5.8  | 170       |
| 34 | Experimental aspects of proton NMR spectroscopy in solids using phase-modulated homonuclear dipolar decoupling. Journal of Magnetic Resonance, 2003, 163, 105-113.                                                                                                       | 1.2  | 169       |
| 35 | Molecular Structure Determination in Powders by NMR Crystallography from Proton Spin Diffusion.<br>Journal of the American Chemical Society, 2006, 128, 9555-9560.                                                                                                       | 6.6  | 165       |
| 36 | Powder Crystallography by Proton Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2005, 127, 9140-9146.                                                                                                                                           | 6.6  | 164       |

| #  | Article                                                                                                                                                                                                                                                                           | IF                | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 37 | Complete Assignment of Heteronuclear Protein Resonances by Protonless NMR Spectroscopy.<br>Angewandte Chemie - International Edition, 2005, 44, 3089-3092.                                                                                                                        | 7.2               | 162       |
| 38 | Dynamic Nuclear Polarization Enhanced Solid‣tate NMR Spectroscopy of Functionalized<br>Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2012, 51, 123-127.                                                                                                    | 7.2               | 161       |
| 39 | Fast Resonance Assignment and Fold Determination of Human Superoxide Dismutase by Highâ€Resolution<br>Protonâ€Detected Solidâ€State MAS NMR Spectroscopy. Angewandte Chemie - International Edition, 2011,<br>50, 11697-11701.                                                    | 7.2               | 157       |
| 40 | NMR Signatures of the Active Sites in Snâ€Ĵ²â€Zeolite. Angewandte Chemie - International Edition, 2014, 53,<br>10179-10183.                                                                                                                                                       | 7.2               | 157       |
| 41 | Surface versus Molecular Siloxy Ligands in Well-Defined Olefin Metathesis Catalysts:<br>[{(RO)3SiO}Mo(NAr)(CHtBu)(CH2tBu)]. Angewandte Chemie - International Edition, 2006, 45, 1216-122                                                                                       | 20. <sup>.2</sup> | 155       |
| 42 | Non-aqueous solvents for DNP surface enhanced NMR spectroscopy. Chemical Communications, 2012, 48, 654-656.                                                                                                                                                                       | 2.2               | 155       |
| 43 | Powder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 8069.                                                                                             | 1.3               | 155       |
| 44 | Dynamic Nuclear Polarization Enhanced NMR Spectroscopy for Pharmaceutical Formulations. Journal of the American Chemical Society, 2014, 136, 2324-2334.                                                                                                                           | 6.6               | 145       |
| 45 | Crown Ether Modulation Enables over 23% Efficient Formamidinium-Based Perovskite Solar Cells.<br>Journal of the American Chemical Society, 2020, 142, 19980-19991.                                                                                                                | 6.6               | 145       |
| 46 | Sn surface-enriched Pt–Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation. Journal of Catalysis, 2014, 320, 52-62.                                                                                                                        | 3.1               | 144       |
| 47 | Assigning carbon-13 NMR spectra to crystal structures by the INADEQUATE pulse sequence and first principles computation: a case study of two forms of testosterone. Physical Chemistry Chemical Physics, 2006, 8, 137-143.                                                        | 1.3               | 142       |
| 48 | One hundred fold overall sensitivity enhancements for Silicon-29 NMR spectroscopy of surfaces by dynamic nuclear polarization with CPMG acquisition. Chemical Science, 2012, 3, 108-115.                                                                                          | 3.7               | 141       |
| 49 | Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization.<br>Chemical Science, 2016, 7, 550-558.                                                                                                                                         | 3.7               | 141       |
| 50 | Proton to Carbon-13 INEPT in Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2005, 127, 17296-17302.                                                                                                                                                      | 6.6               | 138       |
| 51 | Addition of adamantylammonium iodide to hole transport layers enables highly efficient and electroluminescent perovskite solar cells. Energy and Environmental Science, 2018, 11, 3310-3320.                                                                                      | 15.6              | 137       |
| 52 | Detailed Structural Investigation of the Grafting of [Ta(CHtBu)(CH2tBu)3] and [Cp*TaMe4] on Silica<br>Partially Dehydroxylated at 700 °C and the Activity of the Grafted Complexes toward Alkane<br>Metathesis. Journal of the American Chemical Society, 2004, 126, 13391-13399. | 6.6               | 136       |
| 53 | Phase Segregation in Potassium-Doped Lead Halide Perovskites from <sup>39</sup> K Solid-State NMR at 21.1 T. Journal of the American Chemical Society, 2018, 140, 7232-7238.                                                                                                      | 6.6               | 130       |
| 54 | Atomic Description of the Interface between Silica and Alumina in Aluminosilicates through Dynamic<br>Nuclear Polarization Surface-Enhanced NMR Spectroscopy and First-Principles Calculations. Journal<br>of the American Chemical Society, 2015, 137, 10710-10719.              | 6.6               | 129       |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Molecular Understanding of the Formation of Surface Zirconium Hydrides upon Thermal Treatment<br>under Hydrogen of [(â‹®SiO)Zr(CH2tBu)3] by Using Advanced Solid-State NMR Techniques. Journal of the<br>American Chemical Society, 2004, 126, 12541-12550.      | 6.6 | 127       |
| 56 | NMR Crystallography of Campho[2,3-c]pyrazole ( <i>Z</i> ′ = 6): Combining High-Resolution<br><sup>1</sup> H- <sup>13</sup> C Solid-State MAS NMR Spectroscopy and GIPAW Chemical-Shift<br>Calculations. Journal of Physical Chemistry A, 2010, 114, 10435-10442. | 1.1 | 127       |
| 57 | Enhanced Resolution and Coherence Lifetimes in the Solid-State NMR Spectroscopy of Perdeuterated<br>Proteins under Ultrafast Magic-Angle Spinning. Journal of Physical Chemistry Letters, 2011, 2,<br>2205-2211.                                                 | 2.1 | 123       |
| 58 | Dynamic nuclear polarization of quadrupolar nuclei using cross polarization from protons: surface-enhanced aluminium-27 NMR. Chemical Communications, 2012, 48, 1988.                                                                                            | 2.2 | 123       |
| 59 | Cooperative Effect of Monopodal Silica-Supported Niobium Complex Pairs Enhancing Catalytic Cyclic<br>Carbonate Production. Journal of the American Chemical Society, 2015, 137, 7728-7739.                                                                       | 6.6 | 123       |
| 60 | Spin-Transfer Pathways in Paramagnetic Lithium Transition-Metal Phosphates from Combined<br>Broadband Isotropic Solid-State MAS NMR Spectroscopy and DFT Calculations. Journal of the<br>American Chemical Society, 2012, 134, 17178-17185.                      | 6.6 | 122       |
| 61 | Structure of Lipid Nanoparticles Containing siRNA or mRNA by Dynamic Nuclear<br>Polarization-Enhanced NMR Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 2073-2081.                                                                                   | 1.2 | 121       |
| 62 | Resolving Structures from Powders by NMR Crystallography Using Combined Proton Spin Diffusion and Plane Wave DFT Calculations. Journal of the American Chemical Society, 2007, 129, 8932-8933.                                                                   | 6.6 | 120       |
| 63 | Probing Protonâ^'Proton Proximities in the Solid State:Â High-Resolution Two-Dimensional1Hâ''1H<br>Double-Quantum CRAMPS NMR Spectroscopy. Journal of the American Chemical Society, 2004, 126,<br>13230-13231.                                                  | 6.6 | 118       |
| 64 | Perhydrocarbyl ReVIIComplexes: Comparison of Molecular and Surface Complexes. Journal of the American Chemical Society, 2003, 125, 492-504.                                                                                                                      | 6.6 | 116       |
| 65 | Solid-State NMR of a Paramagnetic DIAD-FellCatalyst:Â Sensitivity, Resolution Enhancement, and<br>Structure-Based Assignments. Journal of the American Chemical Society, 2006, 128, 13545-13552.                                                                 | 6.6 | 112       |
| 66 | Fast adiabatic pulses for solid-state NMR of paramagnetic systems. Chemical Physics Letters, 2007, 435, 157-162.                                                                                                                                                 | 1.2 | 112       |
| 67 | Quantitative Analysis of Backbone Dynamics in a Crystalline Protein from Nitrogen-15 Spinâ^'Lattice<br>Relaxation. Journal of the American Chemical Society, 2005, 127, 18190-18201.                                                                             | 6.6 | 111       |
| 68 | Gold Nanoparticles Supported on Passivated Silica: Access to an Efficient Aerobic Epoxidation<br>Catalyst and the Intrinsic Oxidation Activity of Gold. Journal of the American Chemical Society, 2009,<br>131, 14667-14669.                                     | 6.6 | 111       |
| 69 | High-Resolution NMR Correlation Spectra of Disordered Solids. Journal of the American Chemical Society, 2003, 125, 4376-4380.                                                                                                                                    | 6.6 | 110       |
| 70 | NMR studies of the surface structure and dynamics of semiconductor nanocrystals. Chemical Physics Letters, 1992, 198, 431-436.                                                                                                                                   | 1.2 | 109       |
| 71 | Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS. Journal of Magnetic Resonance, 2009, 196, 133-141.                                                                                                                   | 1.2 | 109       |
| 72 | Ultrafast MAS Solid-State NMR Permits Extensive <sup>13</sup> C and <sup>1</sup> H Detection in Paramagnetic Metalloproteins. Journal of the American Chemical Society, 2010, 132, 5558-5559.                                                                    | 6.6 | 109       |

| #  | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Metabotyping of <i>Caenorhabditis elegans</i> reveals latent phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19808-19812.                                                                                      | 3.3  | 107       |
| 74 | The Atomic-Level Structure of Cementitious Calcium Aluminate Silicate Hydrate. Journal of the American Chemical Society, 2020, 142, 11060-11071.                                                                                                                       | 6.6  | 107       |
| 75 | The reliability of the determination of tensor parameters by solid-state nuclear magnetic resonance.<br>Journal of Chemical Physics, 1997, 107, 4808-4816.                                                                                                             | 1.2  | 106       |
| 76 | Correlating Synthetic Methods, Morphology, Atomic-Level Structure, and Catalytic Activity of Sn-β<br>Catalysts. ACS Catalysis, 2016, 6, 4047-4063.                                                                                                                     | 5.5  | 106       |
| 77 | Site-Specific Measurement of Slow Motions in Proteins. Journal of the American Chemical Society, 2011, 133, 16762-16765.                                                                                                                                               | 6.6  | 105       |
| 78 | Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy. Journal of the American Chemical Society, 2015, 137, 13964-13971.                                                                                             | 6.6  | 105       |
| 79 | Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells.<br>Nature Communications, 2019, 10, 4686.                                                                                                                        | 5.8  | 105       |
| 80 | Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by<br>5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR.<br>Journal of the American Chemical Society, 2019, 141, 17659-17669. | 6.6  | 104       |
| 81 | Amplifying Dynamic Nuclear Polarization of Frozen Solutions by Incorporating Dielectric Particles.<br>Journal of the American Chemical Society, 2014, 136, 15711-15718.                                                                                                | 6.6  | 103       |
| 82 | Structure and Mechanism of the Influenza A M2 <sub>18–60</sub> Dimer of Dimers. Journal of the American Chemical Society, 2015, 137, 14877-14886.                                                                                                                      | 6.6  | 103       |
| 83 | Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators. Journal of Magnetic Resonance, 1992, 97, 135-148.                                                                                                         | 0.5  | 102       |
| 84 | NMRcrystallography of oxybuprocaine hydrochloride, Modification II°. Physical Chemistry Chemical Physics, 2007, 9, 360-368.                                                                                                                                            | 1.3  | 102       |
| 85 | Solid-State NMR Spectroscopy of a Paramagnetic Protein: Assignment and Study of Human Dimeric<br>Oxidized Cull–Znll Superoxide Dismutase (SOD). Angewandte Chemie - International Edition, 2007, 46,<br>1079-1082.                                                     | 7.2  | 100       |
| 86 | Through-Bond Heteronuclear Single-Quantum Correlation Spectroscopy in Solid-State NMR, and<br>Comparison to Other Through-Bond and Through-Space Experiments. Journal of Magnetic Resonance,<br>2001, 148, 449-454.                                                    | 1.2  | 99        |
| 87 | BDPA-Nitroxide Biradicals Tailored for Efficient Dynamic Nuclear Polarization Enhanced Solid-State<br>NMR at Magnetic Fields up to 21.1 T. Journal of the American Chemical Society, 2018, 140, 13340-13349.                                                           | 6.6  | 99        |
| 88 | Dynamics of Silica-Supported Catalysts Determined by Combining Solid-State NMR Spectroscopy and DFT Calculations. Journal of the American Chemical Society, 2008, 130, 5886-5900.                                                                                      | 6.6  | 98        |
| 89 | High resolution solid state NMRspectroscopy in surface organometallic chemistry: access to<br>molecular understanding of active sites of well-defined heterogeneous catalysts. Chemical Society<br>Reviews, 2008, 37, 518-526.                                         | 18.7 | 97        |
| 90 | Evidence for Metal–Surface Interactions and Their Role in Stabilizing Well-Defined Immobilized<br>Ru–NHC Alkene Metathesis Catalysts. Journal of the American Chemical Society, 2013, 135, 3193-3199.                                                                  | 6.6  | 96        |

| #   | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | 129Xe NMR Spectroscopy of Deuterium-Labeled Cryptophane-A Xenon Complexes:Â Investigation of<br>Hostâ^'Guest Complexation Dynamics. Journal of the American Chemical Society, 2000, 122, 1171-1174.                       | 6.6  | 95        |
| 92  | Backbone Assignment of Fully Protonated Solid Proteins by <sup>1</sup> H Detection and Ultrafast<br>Magicâ€Angleâ€Spinning NMR Spectroscopy. Angewandte Chemie - International Edition, 2012, 51,<br>10756-10759.         | 7.2  | 95        |
| 93  | One-step mechanochemical incorporation of an insoluble cesium additive for high performance planar heterojunction solar cells. Nano Energy, 2018, 49, 523-528.                                                            | 8.2  | 95        |
| 94  | Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear<br>polarization. Proceedings of the National Academy of Sciences of the United States of America, 2014,<br>111, 14693-14697. | 3.3  | 93        |
| 95  | Structure of outer membrane protein G in lipid bilayers. Nature Communications, 2017, 8, 2073.                                                                                                                            | 5.8  | 91        |
| 96  | Supramolecular Engineering for Formamidiniumâ€Based Layered 2D Perovskite Solar Cells: Structural<br>Complexity and Dynamics Revealed by Solid‣tate NMR Spectroscopy. Advanced Energy Materials, 2019, 9,<br>1900284.     | 10.2 | 89        |
| 97  | Statistical Recoupling Prior to Significance Testing in Nuclear Magnetic Resonance Based<br>Metabonomics. Analytical Chemistry, 2009, 81, 6242-6251.                                                                      | 3.2  | 88        |
| 98  | Measuring Nano- to Microstructures from Relayed Dynamic Nuclear Polarization NMR. Journal of Physical Chemistry C, 2017, 121, 15993-16005.                                                                                | 1.5  | 88        |
| 99  | Intermediate Phase Enhances Inorganic Perovskite and Metal Oxide Interface for Efficient<br>Photovoltaics. Joule, 2020, 4, 222-234.                                                                                       | 11.7 | 88        |
| 100 | Site-Specific Backbone Dynamics from a Crystalline Protein by Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2004, 126, 11422-11423.                                                             | 6.6  | 87        |
| 101 | Unraveling the Core–Shell Structure of Ligand-Capped Sn/SnOxNanoparticles by Surface-Enhanced<br>Nuclear Magnetic Resonance, Mössbauer, and X-ray Absorption Spectroscopies. ACS Nano, 2014, 8,<br>2639-2648.             | 7.3  | 87        |
| 102 | Solid-State Dynamic Nuclear Polarization at 9.4 and 18.8 T from 100 K to Room Temperature. Journal of the American Chemical Society, 2015, 137, 14558-14561.                                                              | 6.6  | 87        |
| 103 | <sup>35</sup> Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients.<br>Physical Chemistry Chemical Physics, 2016, 18, 25893-25904.                                                        | 1.3  | 87        |
| 104 | Carbon-13 Spectral Editing in Solid-State NMR Using Heteronuclear Scalar Couplings. Journal of the<br>American Chemical Society, 1998, 120, 7095-7100.                                                                    | 6.6  | 86        |
| 105 | Direct observation of reaction intermediates for a well defined heterogeneous alkene metathesis catalyst. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12123-12127.        | 3.3  | 86        |
| 106 | Transportable hyperpolarized metabolites. Nature Communications, 2017, 8, 13975.                                                                                                                                          | 5.8  | 86        |
| 107 | Measurement of Carbonâ^Proton Dipolar Couplings in Liquid Crystals by Local Dipolar Field NMR<br>Spectroscopy. The Journal of Physical Chemistry, 1996, 100, 18696-18701.                                                 | 2.9  | 85        |
| 108 | Influences of Dilute Organic Adsorbates on the Hydration of Low-Surface-Area Silicates. Journal of the American Chemical Society, 2015, 137, 8096-8112.                                                                   | 6.6  | 85        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                  | IF       | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 109 | Principles of Spin-Echo Modulation byJ-Couplings in Magic-Angle-Spinning Solid-State NMR.<br>ChemPhysChem, 2004, 5, 815-833.                                                                                                                                                                                                                                                                             | 1.0      | 84        |
| 110 | WMe6 Tamed by Silica: ≡Si–O–WMe5 as an Efficient, Well-Defined Species for Alkane Metathesis, Leading<br>to the Observation of a Supported W–Methyl/Methylidyne Species. Journal of the American Chemical<br>Society, 2014, 136, 1054-1061.                                                                                                                                                              | ç<br>6.6 | 84        |
| 111 | Complete 1H resonance assignment of β-maltose from 1H–1H DQ-SQ CRAMPS and 1H (DQ-DUMBO)–13C S refocused INEPT 2D solid-state NMR spectra and first principles GIPAW calculations. Physical Chemistry Chemical Physics, 2010, 12, 6970.                                                                                                                                                                   | Q<br>1.3 | 83        |
| 112 | A Well-Defined Silica-Supported Tungsten Oxo Alkylidene Is a Highly Active Alkene Metathesis Catalyst.<br>Journal of the American Chemical Society, 2013, 135, 19068-19070.                                                                                                                                                                                                                              | 6.6      | 83        |
| 113 | Through-space contributions to two-dimensional double-quantum J correlation NMR spectra of magic-angle-spinning solids. Journal of Chemical Physics, 2005, 122, 194313.                                                                                                                                                                                                                                  | 1.2      | 82        |
| 114 | Band-Selective <sup>1</sup> Hâ^' <sup>13</sup> C Cross-Polarization in Fast Magic Angle Spinning<br>Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 17216-17217.                                                                                                                                                                                                      | 6.6      | 81        |
| 115 | Enhanced sensitivity in high-resolution 1H solid-state NMR spectroscopy with DUMBO dipolar decoupling under ultra-fast MAS. Chemical Physics Letters, 2009, 469, 336-341.                                                                                                                                                                                                                                | 1.2      | 80        |
| 116 | Measurement of Site-Specific <sup>13</sup> C Spinâ^'Lattice Relaxation in a Crystalline Protein. Journal of the American Chemical Society, 2010, 132, 8252-8254.                                                                                                                                                                                                                                         | 6.6      | 80        |
| 117 | Well-Defined Surface Tungstenocarbyne Complexes through the Reaction of [W(â‹®CtBu)(CH2tBu)3] with Silica. Organometallics, 2005, 24, 4274-4279.                                                                                                                                                                                                                                                         | 1.1      | 79        |
| 118 | Assigning powders to crystal structures by high-resolution1H–1H double quantum and1H–13C J-INEPT solid-state NMR spectroscopy and first principles computation. A case study of penicillin G. Physical Chemistry Chemical Physics, 2006, 8, 3418-3422.                                                                                                                                                   | 1.3      | 79        |
| 119 | Well-Defined Surface Imido Amido Tantalum(V) Species from Ammonia and Silica-Supported Tantalum<br>Hydrides. Journal of the American Chemical Society, 2007, 129, 176-186.                                                                                                                                                                                                                               | 6.6      | 79        |
| 120 | Magic Angle Spinning NMR of Paramagnetic Proteins. Accounts of Chemical Research, 2013, 46, 2108-2116.                                                                                                                                                                                                                                                                                                   | 7.6      | 78        |
| 121 | Phase shifts induced by transient Bloch-Siegert effects in NMR. Chemical Physics Letters, 1990, 168, 297-303.                                                                                                                                                                                                                                                                                            | 1.2      | 77        |
| 122 | The Direct Detection of a Hydrogen Bond in the Solid State by NMR through the Observation of a<br>Hydrogen-Bond Mediated15Nâ^'15NJCoupling. Journal of the American Chemical Society, 2002, 124,<br>1152-1153.                                                                                                                                                                                           | 6.6      | 77        |
| 123 | Observation of a H-Agostic Bond in a Highly Active Rhenium–Alkylidene Olefin Metathesis<br>Heterogeneous Catalyst by Two-Dimensional Solid-State NMR Spectroscopy. Angewandte Chemie -<br>International Edition, 2002, 41, 4535-4538.                                                                                                                                                                    | 7.2      | 77        |
| 124 | Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR. Molecular<br>Pharmaceutics, 2015, 12, 4146-4153.<br>Molecular Insight Into Surface Organometallic Chemistry Through the Combined Use of 2D HETCOR                                                                                                                                                                              | 2.3      | 77        |
| 125 | Solid-State NMR Spectroscopy and Silsesquioxane Analógues We are also indebted to the CNRS, ENS<br>Lyon, and ESCPE Lyon for financial support. M.C. is grateful to the French ministry of education,<br>research, and technology (MENRT) for a pre-doctoral fellowship. E.A.Q. gratefully acknowledges<br>Università di Pisa and S.N.A.M. for financial support. 2D HETCOR=two-dimensional heteronuclear | 7.2      | 76        |
| 126 | correlation Angewandte Chemie - International Edition, 2001, 40, 4493.<br>The refocused INADEQUATE MAS NMR experiment in multiple spin-systems: Interpreting observed<br>correlation peaks and optimising lineshapes. Journal of Magnetic Resonance, 2007, 188, 24-34.                                                                                                                                   | 1.2      | 76        |

| #   | Article                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Computation and NMR crystallography of terbutaline sulfate. Magnetic Resonance in Chemistry, 2010, 48, S103-S112.                                                                                                                                                                                      | 1.1  | 76        |
| 128 | Two-dimensional spin-exchange solid-state NMR studies of 13C-enriched wood. Solid State Nuclear<br>Magnetic Resonance, 1997, 8, 25-32.                                                                                                                                                                 | 1.5  | 75        |
| 129 | Three-Dimensional Structure Determination of Surface Sites. Journal of the American Chemical Society, 2017, 139, 849-855.                                                                                                                                                                              | 6.6  | 75        |
| 130 | Synthesis of Deuterium-Labeled Cryptophane-A and Investigation of Xe@Cryptophane Complexation Dynamics by 1D-EXSY NMR Experiments. Chemistry - A European Journal, 2001, 7, 1561-1573.                                                                                                                 | 1.7  | 74        |
| 131 | Dynamic nuclear polarization at 40 kHz magic angle spinning. Physical Chemistry Chemical Physics, 2016, 18, 10616-10622.                                                                                                                                                                               | 1.3  | 74        |
| 132 | Complete Resonance Assignment of a Natural Abundance Solid Peptide by Through-Bond<br>Heteronuclear Correlation Solid-State NMR. Journal of the American Chemical Society, 2000, 122,<br>9739-9744.                                                                                                    | 6.6  | 73        |
| 133 | NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nature<br>Reviews Chemistry, 2021, 5, 624-645.                                                                                                                                                                | 13.8 | 73        |
| 134 | Characterization of Surface Organometallic Complexes Using High Resolution 2D Solid-State NMR<br>Spectroscopy. Application to the Full Characterization of a Silica Supported Metal Carbyne:<br>â‹®SiOâ^'Mo(â‹®Câ^'Bu-t)(CH2â^'Bu-t)2. Journal of the American Chemical Society, 2001, 123, 3820-3821. | 6.6  | 72        |
| 135 | The performance of phase modulated heteronuclear dipolar decoupling schemes in fast<br>magic-angle-spinning nuclear magnetic resonance experiments. Journal of Chemical Physics, 2003, 119,<br>4833-4841.                                                                                              | 1.2  | 72        |
| 136 | Multimodal host–guest complexation for efficient and stable perovskite photovoltaics. Nature<br>Communications, 2021, 12, 3383.                                                                                                                                                                        | 5.8  | 72        |
| 137 | TinyPols: a family of water-soluble binitroxides tailored for dynamic nuclear polarization enhanced NMR spectroscopy at 18.8 and 21.1 T. Chemical Science, 2020, 11, 2810-2818.                                                                                                                        | 3.7  | 72        |
| 138 | Improved Resolution in Proton NMR Spectroscopy of Powdered Solids. Journal of the American Chemical Society, 2001, 123, 5747-5752.                                                                                                                                                                     | 6.6  | 71        |
| 139 | Chemical Shift Correlations in Disordered Solids. Journal of the American Chemical Society, 2005, 127, 4466-4476.                                                                                                                                                                                      | 6.6  | 71        |
| 140 | Investigation of Dipolar-Mediated Waterâ^'Protein Interactions in Microcrystalline Crh by Solid-State<br>NMR Spectroscopy. Journal of the American Chemical Society, 2006, 128, 8246-8255.                                                                                                             | 6.6  | 69        |
| 141 | Supramolecular Modulation of Hybrid Perovskite Solar Cells via Bifunctional Halogen Bonding<br>Revealed by Two-Dimensional <sup>19</sup> F Solid-State NMR Spectroscopy. Journal of the American<br>Chemical Society, 2020, 142, 1645-1654.                                                            | 6.6  | 69        |
| 142 | Self-refocusing effect of 270° Gaussian pulses. Applications to selective two-dimensional exchange spectroscopy. Journal of Magnetic Resonance, 1989, 82, 211-221.                                                                                                                                     | 0.5  | 68        |
| 143 | Solution-State NMR Studies of the Surface Structure and Dynamics of Semiconductor Nanocrystals.<br>Journal of Physical Chemistry B, 1998, 102, 10117-10128.                                                                                                                                            | 1.2  | 67        |
| 144 | The Accuracy of Distance Measurements in Solid-State NMR. Journal of Magnetic Resonance, 1999, 139, 46-59.                                                                                                                                                                                             | 1.2  | 67        |

| #   | Article                                                                                                                                                                                                                                                                                                           | IF         | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 145 | Through-bond phosphorus–phosphorus connectivities in crystalline and disordered phosphates by solid-state NMR. Chemical Communications, 2002, , 1702-1703.                                                                                                                                                        | 2.2        | 66        |
| 146 | Spin-state selection in solid-state NMR. Journal of Magnetic Resonance, 2003, 164, 187-195.                                                                                                                                                                                                                       | 1.2        | 66        |
| 147 | Resolution Enhancement in Multidimensional Solid-State NMR Spectroscopy of Proteins Using Spin-State Selection. Journal of the American Chemical Society, 2003, 125, 11816-11817.                                                                                                                                 | 6.6        | 66        |
| 148 | Dynamic Nuclear Polarization Enhancement of 200 at 21.15 T Enabled by 65 kHz Magic Angle Spinning.<br>Journal of Physical Chemistry Letters, 2020, 11, 8386-8391.                                                                                                                                                 | 2.1        | 66        |
| 149 | Local Structure and Dynamics in Methylammonium, Formamidinium, and Cesium Tin(II) Mixed-Halide<br>Perovskites from <sup>119</sup> Sn Solid-State NMR. Journal of the American Chemical Society, 2020,<br>142, 7813-7826.                                                                                          | 6.6        | 66        |
| 150 | Alkane Metathesis with the Tantalum Methylidene<br>[(≡SiO)Ta(╀H <sub>2</sub> )Me <sub>2</sub> ]/[(≡SiO) <sub>2</sub> Ta(╀H <sub>2</sub> )Me] Genera<br>from Well-Defined Surface Organometallic Complex [(≡SiO)Ta <sup>V</sup> Me <sub>4</sub> ]. Journal<br>of the American Chemical Society, 2015, 137, 588-591 | ted<br>6.6 | 65        |
| 151 | Donor–acceptor stacking arrangements in bulk and thin-film high-mobility conjugated polymers characterized using molecular modelling and MAS and surface-enhanced solid-state NMR spectroscopy. Chemical Science, 2017, 8, 3126-3136.                                                                             | 3.7        | 64        |
| 152 | Improved heteronuclear decoupling schemes for solid-state magic angle spinning NMR by direct spectral optimization. Chemical Physics Letters, 2003, 376, 259-267.                                                                                                                                                 | 1.2        | 63        |
| 153 | Crystal‣tructure Determination of Powdered Paramagnetic Lanthanide Complexes by Proton NMR<br>Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 3082-3086.                                                                                                                                       | 7.2        | 63        |
| 154 | A Wellâ€Defined Pd Hybrid Material for the <i>Z</i> â€Selective Semihydrogenation of Alkynes<br>Characterized at the Molecular Level by DNP SENS. Chemistry - A European Journal, 2013, 19, 12234-12238.                                                                                                          | 1.7        | 61        |
| 155 | DNPâ€enhanced solidâ€state NMR spectroscopy of active pharmaceutical ingredients. Magnetic Resonance<br>in Chemistry, 2018, 56, 583-609.                                                                                                                                                                          | 1.1        | 61        |
| 156 | Cellulose phosphorylation comparison and analysis of phosphorate position on cellulose fibers.<br>Carbohydrate Polymers, 2020, 229, 115294.                                                                                                                                                                       | 5.1        | 61        |
| 157 | Guanine‣tabilized Formamidinium Lead Iodide Perovskites. Angewandte Chemie - International Edition, 2020, 59, 4691-4697.                                                                                                                                                                                          | 7.2        | 61        |
| 158 | Doping and phase segregation in Mn <sup>2+</sup> - and Co <sup>2+</sup> -doped lead halide<br>perovskites from <sup>133</sup> Cs and <sup>1</sup> H NMR relaxation enhancement. Journal of<br>Materials Chemistry A, 2019, 7, 2326-2333.                                                                          | 5.2        | 59        |
| 159 | Absence of Curie Relaxation in Paramagnetic Solids Yields Long1H Coherence Lifetimes. Journal of the American Chemical Society, 2007, 129, 14118-14119.                                                                                                                                                           | 6.6        | 58        |
| 160 | Improved Dynamic Nuclear Polarization Surfaceâ€Enhanced NMR Spectroscopy through Controlled<br>Incorporation of Deuterated Functional Groups. Angewandte Chemie - International Edition, 2013, 52,<br>1222-1225.                                                                                                  | 7.2        | 58        |
| 161 | Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies. Journal of the American Chemical Society, 2017, 139, 8855-8867.                                                                                                                   | 6.6        | 58        |
| 162 | Nucleobase pairing and photodimerization in a biologically derived metal-organic framework nanoreactor. Nature Communications, 2019, 10, 1612.                                                                                                                                                                    | 5.8        | 58        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Solid-state NMR characterization of hydration effects on polymer mobility in onion cell-wall material. Carbohydrate Research, 1999, 322, 102-112.                                                                                                    | 1.1 | 57        |
| 164 | The influence of nitrogen-15 proton-driven spin diffusion on the measurement of nitrogen-15 longitudinal relaxation times. Journal of Magnetic Resonance, 2007, 184, 51-61.                                                                          | 1.2 | 57        |
| 165 | Solid-Phase Polarization Matrixes for Dynamic Nuclear Polarization from Homogeneously Distributed<br>Radicals in Mesostructured Hybrid Silica Materials. Journal of the American Chemical Society, 2013,<br>135, 15459-15466.                        | 6.6 | 56        |
| 166 | Molecular-level characterization of the structure and the surface chemistry of periodic mesoporous organosilicates using DNP-surface enhanced NMR spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 13270.                                | 1.3 | 56        |
| 167 | Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy. Chemical Science, 2017, 8, 284-290.                                                                                         | 3.7 | 55        |
| 168 | Nanoscale Phase Segregation in Supramolecular π-Templating for Hybrid Perovskite Photovoltaics<br>from NMR Crystallography. Journal of the American Chemical Society, 2021, 143, 1529-1538.                                                          | 6.6 | 55        |
| 169 | Out-and-back 13C–13C scalar transfers in protein resonance assignment by proton-detected solid-state<br>NMR under ultra-fast MAS. Journal of Biomolecular NMR, 2013, 56, 379-386.                                                                    | 1.6 | 54        |
| 170 | Wellâ€Defined Silicaâ€Supported Mo–Alkylidene Catalyst Precursors Containing One OR Substituent:<br>Methods of Preparation and Structure–Reactivity Relationship in Alkene Metathesis. Chemistry - A<br>European Journal, 2009, 15, 5083-5089.       | 1.7 | 53        |
| 171 | Rapid Measurement of Pseudocontact Shifts in Metalloproteins by Proton-Detected Solid-State NMR<br>Spectroscopy. Journal of the American Chemical Society, 2012, 134, 14730-14733.                                                                   | 6.6 | 53        |
| 172 | Conformational dynamics in crystals reveal the molecular bases for D76N beta-2 microglobulin aggregation propensity. Nature Communications, 2018, 9, 1658.                                                                                           | 5.8 | 53        |
| 173 | Atomistic Description of Reaction Intermediates for Supported Metathesis Catalysts Enabled by DNP SENS. Angewandte Chemie - International Edition, 2016, 55, 4743-4747.                                                                              | 7.2 | 52        |
| 174 | Dynamic Nuclear Polarization Efficiency Increased by Very Fast Magic Angle Spinning. Journal of the American Chemical Society, 2017, 139, 10609-10612.                                                                                               | 6.6 | 52        |
| 175 | Metabolic Profiling Strategy of <i>Caenorhabditis elegans</i> by Whole-Organism Nuclear Magnetic<br>Resonance. Journal of Proteome Research, 2009, 8, 2542-2550.                                                                                     | 1.8 | 51        |
| 176 | Characterization of heteronuclear decoupling through proton spin dynamics in solid-state nuclear magnetic resonance spectroscopy. Journal of Chemical Physics, 2004, 121, 3165-3180.                                                                 | 1.2 | 50        |
| 177 | Water–Protein Hydrogen Exchange in the Micro-Crystalline Protein Crh as Observed by Solid State<br>NMR Spectroscopy. Journal of Biomolecular NMR, 2005, 32, 195-207.                                                                                 | 1.6 | 50        |
| 178 | Characterising local environments in high energy density Li-ion battery cathodes: a combined NMR and<br>first principles study of LiFe <sub>x</sub> Co <sub>1â^'x</sub> PO <sub>4</sub> . Journal of Materials<br>Chemistry A, 2014, 2, 11948-11957. | 5.2 | 50        |
| 179 | Monolayer Doping of Silicon through Grafting a Tailored Molecular Phosphorus Precursor onto Oxide-Passivated Silicon Surfaces. Chemistry of Materials, 2016, 28, 3634-3640.                                                                          | 3.2 | 50        |
| 180 | Bulk Nuclear Hyperpolarization of Inorganic Solids by Relay from the Surface. Journal of the American Chemical Society, 2018, 140, 7946-7951.                                                                                                        | 6.6 | 50        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Superadiabaticity in magnetic resonance. Journal of Chemical Physics, 2008, 129, 204110.                                                                                                                                 | 1.2 | 49        |
| 182 | Selective NMR Measurements of Homonuclear Scalar Couplings in Isotopically Enriched Solids.<br>Journal of Physical Chemistry B, 2006, 110, 16982-16991.                                                                  | 1.2 | 48        |
| 183 | Atomistic Description of Thiostannate-Capped CdSe Nanocrystals: Retention of Four-Coordinate SnS4<br>Motif and Preservation of Cd-Rich Stoichiometry. Journal of the American Chemical Society, 2015, 137,<br>1862-1874. | 6.6 | 48        |
| 184 | Positional Variance in NMR Crystallography. Journal of the American Chemical Society, 2017, 139, 2573-2576.                                                                                                              | 6.6 | 48        |
| 185 | Characterizing Slight Structural Disorder in Solids by Combined Solid-State NMR and First Principles<br>Calculations. Journal of Physical Chemistry A, 2009, 113, 902-911.                                               | 1.1 | 47        |
| 186 | Two-Dimensional Statistical Recoupling for the Identification of Perturbed Metabolic Networks from NMR Spectroscopy. Journal of Proteome Research, 2010, 9, 4513-4520.                                                   | 1.8 | 47        |
| 187 | Atomic-Resolution Structural Dynamics in Crystalline Proteins from NMR and Molecular Simulation.<br>Journal of Physical Chemistry Letters, 2012, 3, 3657-3662.                                                           | 2.1 | 47        |
| 188 | Rapid Structure Determination of Molecular Solids Using Chemical Shifts Directed by Unambiguous<br>Prior Constraints. Journal of the American Chemical Society, 2019, 141, 16624-16634.                                  | 6.6 | 47        |
| 189 | Dynamics and Disorder in Surfactant-Templated Silicate Layers Studied by Solid-State NMR Dephasing<br>Times and Correlated Line Shapes. Journal of Physical Chemistry C, 2008, 112, 9145-9154.                           | 1.5 | 46        |
| 190 | NMR Signatures of the Active Sites in Snâ€Î²â€Zeolite. Angewandte Chemie, 2014, 126, 10343-10347.                                                                                                                        | 1.6 | 46        |
| 191 | Resolving the Core and the Surface of CdSe Quantum Dots and Nanoplatelets Using Dynamic Nuclear<br>Polarization Enhanced PASS–PIETA NMR Spectroscopy. ACS Central Science, 2018, 4, 1113-1125.                           | 5.3 | 46        |
| 192 | Polarization Transfer over the Water–Protein Interface in Solids. Angewandte Chemie - International<br>Edition, 2008, 47, 5851-5854.                                                                                     | 7.2 | 44        |
| 193 | Protein residue linking in a single spectrum for magic-angle spinning NMR assignment. Journal of<br>Biomolecular NMR, 2015, 62, 253-261.                                                                                 | 1.6 | 44        |
| 194 | Unravelling the Behavior of Dion–Jacobson Layered Hybrid Perovskites in Humid Environments. ACS<br>Energy Letters, 2021, 6, 337-344.                                                                                     | 8.8 | 44        |
| 195 | Spectral Editing in Solid-State NMR Using Scalar Multiple Quantum Filters. Journal of Magnetic Resonance, 2001, 151, 40-47.                                                                                              | 1.2 | 43        |
| 196 | Anisotropic Collective Motion Contributes to Nuclear Spin Relaxation in Crystalline Proteins.<br>Journal of the American Chemical Society, 2010, 132, 1246-1248.                                                         | 6.6 | 43        |
| 197 | Heteronuclear decoupling in NMR of Liquid Crystals using continuous phase modulation. Chemical Physics Letters, 2003, 368, 511-522.                                                                                      | 1.2 | 42        |
| 198 | Open and Closed Radicals: Local Geometry around Unpaired Electrons Governs Magic-Angle Spinning<br>Dynamic Nuclear Polarization Performance. Journal of the American Chemical Society, 2020, 142,<br>16587-16599.        | 6.6 | 42        |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Unidirectional Steady State Rates of Central Metabolism Enzymes Measured Simultaneously in a Living<br>Plant Tissue. Journal of Biological Chemistry, 1998, 273, 25053-25061.                                                       | 1.6 | 41        |
| 200 | Broadband inversion for MAS NMR with single-sideband-selective adiabatic pulses. Journal of Chemical Physics, 2011, 134, 024117.                                                                                                    | 1.2 | 41        |
| 201 | Frequency-stepped acquisition in nuclear magnetic resonance spectroscopy under magic angle spinning. Journal of Chemical Physics, 2013, 138, 114201.                                                                                | 1.2 | 40        |
| 202 | Silica-surface reorganization during organotin grafting evidenced by 119Sn DNP SENS: a tandem reaction of gem-silanols and strained siloxane bridges. Physical Chemistry Chemical Physics, 2014, 16, 17822-17827.                   | 1.3 | 40        |
| 203 | Dynamics of large nuclear-spin systems from low-order correlations in Liouville space. Chemical Physics Letters, 2009, 477, 377-381.                                                                                                | 1.2 | 39        |
| 204 | Homonuclear dipolar decoupling with very large scaling factors for high-resolution ultrafast magic angle spinning 1H solid-state NMR spectroscopy. Chemical Physics Letters, 2010, 498, 214-220.                                    | 1.2 | 39        |
| 205 | Structure elucidation of a complex CO <sub>2</sub> -based organic framework material by NMR crystallography. Chemical Science, 2016, 7, 4379-4390.                                                                                  | 3.7 | 39        |
| 206 | Oxygen-17 dynamic nuclear polarisation enhanced solid-state NMR spectroscopy at 18.8 T. Chemical Communications, 2017, 53, 2563-2566.                                                                                               | 2.2 | 39        |
| 207 | A Bayesian approach to NMR crystal structure determination. Physical Chemistry Chemical Physics, 2019, 21, 23385-23400.                                                                                                             | 1.3 | 39        |
| 208 | Accurate Measurements of13Câ^'13CJ-Couplings in the Rhodopsin Chromophore by Double-Quantum<br>Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2006, 128, 3878-3879.                                        | 6.6 | 38        |
| 209 | High-resolution and sensitivity through-bond correlations in ultra-fast magic angle spinning (MAS) solid-state NMR. Chemical Science, 2011, 2, 345-348.                                                                             | 3.7 | 38        |
| 210 | Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional<br>MAS NMR. Journal of Biomolecular NMR, 2015, 61, 299-310.                                                                        | 1.6 | 38        |
| 211 | Superstructure of a Substituted Zeolitic Imidazolate Metal–Organic Framework Determined by<br>Combining Proton Solid‣tate NMR Spectroscopy and DFT Calculations. Angewandte Chemie -<br>International Edition, 2015, 54, 5971-5976. | 7.2 | 38        |
| 212 | Observation of Heteronuclear Overhauser Effects Confirms the15Nâ^'1H Dipolar Relaxation Mechanism<br>in a Crystalline Protein. Journal of the American Chemical Society, 2006, 128, 12398-12399.                                    | 6.6 | 36        |
| 213 | Triple-quantum correlation NMR experiments in solids using J-couplings. Journal of Magnetic Resonance, 2006, 179, 49-57.                                                                                                            | 1.2 | 36        |
| 214 | Transverse-Dephasing Optimized Homonuclear J-Decoupling in Solid-State NMR Spectroscopy of<br>Uniformly 13C-Labeled Proteins. Journal of the American Chemical Society, 2009, 131, 10816-10817.                                     | 6.6 | 36        |
| 215 | The 2D MAS NMR spin-echo experiment: the determination of 13C–13C J couplings in a solid-state cellulose sample. Journal of Magnetic Resonance, 2004, 171, 43-47.                                                                   | 1.2 | 35        |
| 216 | Dynamic nuclear polarisation enhanced14N overtone MAS NMR spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 12890-12899.                                                                                                 | 1.3 | 35        |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Dendritic polarizing agents for DNP SENS. Chemical Science, 2017, 8, 416-422.                                                                                                                                                           | 3.7 | 35        |
| 218 | Scaling analyses for hyperpolarization transfer across a spin-diffusion barrier and into bulk solid media. Physical Chemistry Chemical Physics, 2021, 23, 1006-1020.                                                                    | 1.3 | 35        |
| 219 | Structure determination of an amorphous drug through large-scale NMR predictions. Nature Communications, 2021, 12, 2964.                                                                                                                | 5.8 | 35        |
| 220 | Carbon-13 lineshapes in solid-state NMR of labeled compounds. Effects of coherent CSA–dipolar<br>cross-correlation. Journal of Magnetic Resonance, 2003, 162, 90-101.                                                                   | 1.2 | 34        |
| 221 | Transverse Dephasing Optimised NMR Spectroscopy in Solids: Natural-Abundance13C Correlation Spectra. ChemPhysChem, 2004, 5, 869-875.                                                                                                    | 1.0 | 34        |
| 222 | Ab initio simulation of proton spin diffusion. Physical Chemistry Chemical Physics, 2010, 12, 9172.                                                                                                                                     | 1.3 | 34        |
| 223 | Sensitivity and resolution of proton detected spectra of a deuterated protein at 40 and 60ÂkHz<br>magic-angle-spinning. Journal of Biomolecular NMR, 2015, 61, 161-171.                                                                 | 1.6 | 34        |
| 224 | Determining the Surface Structure of Silicated Alumina Catalysts via Isotopic Enrichment and<br>Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy. Journal of Physical Chemistry C,<br>2017, 121, 22977-22984.             | 1.5 | 34        |
| 225 | NMR measurements of scalar-coupling distributions in disordered solids. Physical Chemistry Chemical Physics, 2007, 9, 92-103.                                                                                                           | 1.3 | 33        |
| 226 | Bipodal Surface Organometallic Complexes with Surface N-Donor Ligands and Application to the<br>Catalytic Cleavage of C–H and C–C Bonds in n-Butane. Journal of the American Chemical Society, 2013,<br>135, 17943-17951.               | 6.6 | 33        |
| 227 | Iridium(I)/Nâ€Heterocyclic Carbene Hybrid Materials: Surface Stabilization of Lowâ€Valent Iridium Species<br>for High Catalytic Hydrogenation Performance. Angewandte Chemie - International Edition, 2015, 54,<br>12937-12941.         | 7.2 | 33        |
| 228 | Picometer Resolution Structure of the Coordination Sphere in the Metal-Binding Site in a<br>Metalloprotein by NMR. Journal of the American Chemical Society, 2020, 142, 16757-16765.                                                    | 6.6 | 33        |
| 229 | [5] Selective pulses and their applications to assignment and structure determination in nuclear magnetic resonance. Methods in Enzymology, 1994, 239, 207-246.                                                                         | 0.4 | 32        |
| 230 | Simulation of extended periodic systems of nuclear spins. Chemical Physics Letters, 2000, 326, 515-522.                                                                                                                                 | 1.2 | 32        |
| 231 | Fibrillar vs Crystalline Full-Length β-2-Microglobulin Studied by High-Resolution Solid-State NMR<br>Spectroscopy. Journal of the American Chemical Society, 2010, 132, 5556-5557.                                                      | 6.6 | 32        |
| 232 | Elucidating an Amorphous Form Stabilization Mechanism for Tenapanor Hydrochloride: Crystal<br>Structure Analysis Using X-ray Diffraction, NMR Crystallography, and Molecular Modeling.<br>Molecular Pharmaceutics, 2018, 15, 1476-1487. | 2.3 | 32        |
| 233 | Carbon-13 Solid-State NMR Studies on Synthetic Model Compounds of [4Feâ^4S] Clusters in the 2+<br>State. Journal of Physical Chemistry A, 2000, 104, 9990-10000.                                                                        | 1.1 | 31        |
| 234 | Solvent suppression in DNP enhanced solid state NMR. Journal of Magnetic Resonance, 2017, 277, 149-153.                                                                                                                                 | 1.2 | 31        |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Dynamic Nuclear Polarization Magic-Angle Spinning Nuclear Magnetic Resonance Combined with<br>Molecular Dynamics Simulations Permits Detection of Order and Disorder in Viral Assemblies. Journal<br>of Physical Chemistry B, 2019, 123, 5048-5058. | 1.2 | 31        |
| 236 | Experimental observation of periodic quasi-equilibria in solid-state NMR. Chemical Physics Letters, 1999, 308, 381-389.                                                                                                                             | 1.2 | 30        |
| 237 | Resonator with reduced sample heating and increased homogeneity for solid-state NMR. Journal of<br>Magnetic Resonance, 2008, 191, 78-92.                                                                                                            | 1.2 | 30        |
| 238 | Insights into the Structure and Dynamics of Measles Virus Nucleocapsids by 1H-detected Solid-state NMR. Biophysical Journal, 2014, 107, 941-946.                                                                                                    | 0.2 | 30        |
| 239 | The effect of spin decoupling on line shapes in solidâ€state nuclear magnetic resonance. Journal of<br>Chemical Physics, 1996, 104, 2518-2528.                                                                                                      | 1.2 | 29        |
| 240 | Numerical simulation of free evolution in solid-state nuclear magnetic resonance using low-order correlations in Liouville space. Journal of Chemical Physics, 2010, 133, 224501.                                                                   | 1.2 | 29        |
| 241 | Assignment and Measurement of Deuterium Quadrupolar Couplings in Liquid Crystals by<br>Deuteriumâ°Carbon NMR Correlation Spectroscopy. Journal of Physical Chemistry B, 1998, 102,<br>3718-3723.                                                    | 1.2 | 28        |
| 242 | Weak and Transient Protein Interactions Determined by Solidâ€State NMR. Angewandte Chemie -<br>International Edition, 2016, 55, 6638-6641.                                                                                                          | 7.2 | 28        |
| 243 | A Factor Two Improvement in High-Field Dynamic Nuclear Polarization from Gd(III) Complexes by Design. Journal of the American Chemical Society, 2019, 141, 8746-8751.                                                                               | 6.6 | 28        |
| 244 | Benzylammoniumâ€Mediated Formamidinium Lead Iodide Perovskite Phase Stabilization for<br>Photovoltaics. Advanced Functional Materials, 2021, 31, 2101163.                                                                                           | 7.8 | 28        |
| 245 | Protonâ "Proton Constraints in Powdered Solids from1Hâ "1Hâ "1Hâ "1Hâ "1Hâ "13C Three-Dimensional NMR<br>Chemical Shift Correlation Spectroscopy. Journal of the American Chemical Society, 2001, 123,<br>5604-5605.                                | 6.6 | 27        |
| 246 | A New NMR Method for the Study of Local Mobility in Solids and Application to Hydration of Biopolymers in Plant Cell Walls. Macromolecules, 2002, 35, 5078-5084.                                                                                    | 2.2 | 27        |
| 247 | Correlation of fast and slow chemical shift spinning sideband patterns under fast magic-angle spinning. Journal of Magnetic Resonance, 2003, 160, 40-46.                                                                                            | 1.2 | 27        |
| 248 | Motional heterogeneity in single-site silica-supported species revealed by deuteron NMR. Physical Chemistry Chemical Physics, 2009, 11, 6962.                                                                                                       | 1.3 | 27        |
| 249 | Orthogonal Filtered Recoupled-STOCSY to Extract Metabolic Networks Associated with Minor<br>Perturbations from NMR Spectroscopy. Journal of Proteome Research, 2011, 10, 4342-4348.                                                                 | 1.8 | 27        |
| 250 | Molecular Level Characterization of the Structure and Interactions in Peptideâ€Functionalized<br>Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 16531-16538.                                                                   | 1.7 | 27        |
| 251 | High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy. Journal of Magnetic Resonance, 2015, 259, 192-198.                                                                                      | 1.2 | 26        |
| 252 | Frozen Acrylamide Gels as Dynamic Nuclear Polarization Matrices. Angewandte Chemie - International Edition, 2017, 56, 8726-8730.                                                                                                                    | 7.2 | 26        |

| #   | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Unraveling Overlapping Multiplets in Two-Dimensional NMR Correlation Spectra by Selective<br>Inversion of Coupling Partners. Angewandte Chemie International Edition in English, 1990, 29, 517-520.                                                       | 4.4 | 25        |
| 254 | Better Characterization of Surface Organometallic Catalysts through Resolution Enhancement in Proton Solid State NMR Spectra. Inorganic Chemistry, 2006, 45, 9587-9592.                                                                                   | 1.9 | 25        |
| 255 | A well-defined mesoporous amine silica surface via a selective treatment of SBA-15 with ammonia.<br>Chemical Communications, 2012, 48, 3067.                                                                                                              | 2.2 | 25        |
| 256 | Does Z′ equal 1 or 2? Enhanced powder NMR crystallography verification of a disordered room<br>temperature crystal structure of a p38 inhibitor for chronic obstructive pulmonary disease. Physical<br>Chemistry Chemical Physics, 2017, 19, 16650-16661. | 1.3 | 25        |
| 257 | Structural description of surfaces and interfaces in biominerals by DNP SENS. Solid State Nuclear<br>Magnetic Resonance, 2019, 102, 2-11.                                                                                                                 | 1.5 | 25        |
| 258 | Hyperpolarized Solution-State NMR Spectroscopy with Optically Polarized Crystals. Journal of the American Chemical Society, 2022, 144, 2511-2519.                                                                                                         | 6.6 | 25        |
| 259 | Long-Range Dipolar Couplings in Liquid Crystals Measured by Three-Dimensional NMR Spectroscopy.<br>Journal of the American Chemical Society, 1996, 118, 12224-12225.                                                                                      | 6.6 | 24        |
| 260 | A master-equation approach to the description of proton-driven spin diffusion from crystal geometry using simulated zero-quantum lineshapes. Physical Chemistry Chemical Physics, 2011, 13, 7363.                                                         | 1.3 | 24        |
| 261 | Methane Reacts with Heteropolyacids Chemisorbed on Silica to Produce Acetic Acid under Soft<br>Conditions. Journal of the American Chemical Society, 2013, 135, 804-810.                                                                                  | 6.6 | 24        |
| 262 | Tailored Polarizing Hybrid Solids with Nitroxide Radicals Localized in Mesostructured Silica Walls.<br>Helvetica Chimica Acta, 2017, 100, e1700101.                                                                                                       | 1.0 | 24        |
| 263 | Predicting the DNP-SENS efficiency in reactive heterogeneous catalysts from hydrophilicity. Chemical Science, 2018, 9, 4866-4872.                                                                                                                         | 3.7 | 24        |
| 264 | Atomistic Origins of the Limited Phase Stability of Cs <sup>+</sup> -Rich<br>FA <sub><i>x</i></sub> Cs <sub>(1–<i>x</i>)</sub> Pbl <sub>3</sub> Mixtures. Chemistry of Materials,<br>2020, 32, 2605-2614.                                                 | 3.2 | 24        |
| 265 | Colloidal-ALD-Grown Core/Shell CdSe/CdS Nanoplatelets as Seen by DNP Enhanced PASS–PIETA NMR<br>Spectroscopy. Nano Letters, 2020, 20, 3003-3018.                                                                                                          | 4.5 | 24        |
| 266 | Hydrophobic radicals embedded in neutral surfactants for dynamic nuclear polarization of aqueous environments at 9.4 Tesla. Chemical Communications, 2014, 50, 10198-10201.                                                                               | 2.2 | 23        |
| 267 | Hyperpolarized long-lived nuclear spin states in monodeuterated methyl groups. Physical Chemistry<br>Chemical Physics, 2018, 20, 9755-9759.                                                                                                               | 1.3 | 23        |
| 268 | A Magic Angle Spinning Activated <sup>17</sup> O DNP Raser. Journal of Physical Chemistry Letters, 2021, 12, 345-349.                                                                                                                                     | 2.1 | 23        |
| 269 | Deuteriumâ ° Carbon NMR Correlation Spectroscopy in Oriented Materials. Journal of the American Chemical Society, 1997, 119, 12000-12001.                                                                                                                 | 6.6 | 22        |
| 270 | A Silica-Supported Double-Decker Silsesquioxane Provides a Second Skin for the Selective Generation of Bipodal Surface Organometallic Complexes. Organometallics, 2012, 31, 7610-7617.                                                                    | 1.1 | 22        |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Core–Shell Structure of Organic Crystalline Nanoparticles Determined by Relayed Dynamic Nuclear<br>Polarization NMR. Journal of Physical Chemistry A, 2018, 122, 8802-8807.                             | 1.1 | 22        |
| 272 | High-resolution 1H NMR of powdered solids by homonuclear dipolar decoupling. Journal of Magnetic<br>Resonance, 2019, 309, 106598.                                                                       | 1.2 | 22        |
| 273 | Topology of Pretreated Wood Fibers Using Dynamic Nuclear Polarization. Journal of Physical Chemistry C, 2019, 123, 30407-30415.                                                                         | 1.5 | 22        |
| 274 | Homonuclear Decoupling in <sup>1</sup> Hâ€NMR of Solids by Remote Correlation. Angewandte Chemie -<br>International Edition, 2020, 59, 6235-6238.                                                       | 7.2 | 22        |
| 275 | Selective two-dimensional NMR experiments for topological filtration of fragments of coupling networks. Journal of the American Chemical Society, 1991, 113, 3309-3316.                                 | 6.6 | 21        |
| 276 | Deuterium to carbon cross-polarization in liquid crystals. Journal of Chemical Physics, 1998, 109, 1873-1884.                                                                                           | 1.2 | 21        |
| 277 | Combination of DQ and ZQ Coherences for Sensitive Throughâ€Bond NMR Correlation Experiments in<br>Biosolids under Ultraâ€Fast MAS. ChemPhysChem, 2012, 13, 2405-2411.                                   | 1.0 | 21        |
| 278 | Efficient and Stable Large Bandgap MAPbBr <sub>3</sub> Perovskite Solar Cell Attaining an Open<br>Circuit Voltage of 1.65 V. ACS Energy Letters, 2022, 7, 1112-1119.                                    | 8.8 | 21        |
| 279 | Double selective inversion in NMR and multiple quantum effects in coupled spin systems. Journal of Magnetic Resonance, 1990, 90, 214-220.                                                               | 0.5 | 20        |
| 280 | Quasi equilibria in solid-state NMR. Chemical Physics Letters, 1998, 293, 110-118.                                                                                                                      | 1.2 | 20        |
| 281 | A first-principles description of proton-driven spin diffusion. Physical Chemistry Chemical Physics, 2012, 14, 86-89.                                                                                   | 1.3 | 20        |
| 282 | Improved Phase-Modulated Homonuclear Dipolar Decoupling for Solid-State NMR Spectroscopy from Symmetry Considerations. Journal of Physical Chemistry A, 2013, 117, 5280-5290.                           | 1.1 | 20        |
| 283 | <sup>113</sup> Cd Solid-State NMR at 21.1 T Reveals the Local Structure and Passivation Mechanism of<br>Cadmium in Hybrid and All-Inorganic Halide Perovskites. ACS Energy Letters, 2020, 5, 2964-2971. | 8.8 | 20        |
| 284 | Sample Restriction Using Magnetic Field Gradients in High-Resolution Solid-State NMR. Journal of Magnetic Resonance, 2000, 145, 334-339.                                                                | 1.2 | 19        |
| 285 | Sample Restriction Using Radiofrequency Field Selective Pulses in High-Resolution Solid-State NMR.<br>Journal of Magnetic Resonance, 2002, 154, 136-141.                                                | 1.2 | 19        |
| 286 | Methyl Proton Contacts Obtained Using Heteronuclear Through-Bond Transfers in Solid-State NMR<br>Spectroscopy. Journal of the American Chemical Society, 2008, 130, 10625-10632.                        | 6.6 | 19        |
| 287 | Broad-Ranging Natural Metabotype Variation Drives Physiological Plasticity in Healthy Control Inbred<br>Rat Strains. Journal of Proteome Research, 2011, 10, 1675-1689.                                 | 1.8 | 19        |
| 288 | Frontiers in Solid-State NMR Technology. Accounts of Chemical Research, 2013, 46, 1912-1913.                                                                                                            | 7.6 | 19        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | <sup>13</sup> Câ€Detected Throughâ€Bond Correlation Experiments for Protein Resonance Assignment by<br>Ultraâ€Fast MAS Solidâ€&tate NMR. ChemPhysChem, 2013, 14, 3131-3137.                      | 1.0 | 19        |
| 290 | Nanostructure of Materials Determined by Relayed Paramagnetic Relaxation Enhancement. Journal of the American Chemical Society, 2015, 137, 12482-12485.                                          | 6.6 | 19        |
| 291 | Paramagnetic Properties of a Crystalline Iron–Sulfur Protein by Magic-Angle Spinning NMR<br>Spectroscopy. Inorganic Chemistry, 2017, 56, 6624-6629.                                              | 1.9 | 19        |
| 292 | DNP enhanced NMR with flip-back recovery. Journal of Magnetic Resonance, 2018, 288, 69-75.                                                                                                       | 1.2 | 19        |
| 293 | Multifunctional Molecular Modulation for Efficient and Stable Hybrid Perovskite Solar Cells. Chimia, 2019, 73, 317.                                                                              | 0.3 | 19        |
| 294 | Enhanced Intersystem Crossing and Transient Electron Spin Polarization in a Photoexcited<br>Pentacene–Trityl Radical. Journal of Physical Chemistry A, 2020, 124, 6068-6075.                     | 1.1 | 19        |
| 295 | Determination of DNA conformational features from selective two-dimensional NMR experiments.<br>Journal of the American Chemical Society, 1993, 115, 7765-7771.                                  | 6.6 | 18        |
| 296 | Multi-dimensional magnetic resonance imaging in a stray magnetic field. Journal of Magnetic Resonance, 2005, 172, 79-84.                                                                         | 1.2 | 18        |
| 297 | Synthesis and reactivity of molybdenum imido alkylidene bis-pyrazolide complexes. Dalton<br>Transactions, 2010, 39, 8547.                                                                        | 1.6 | 18        |
| 298 | Macroscopic nuclear spin diffusion constants of rotating polycrystalline solids from first-principles simulation. Journal of Magnetic Resonance, 2015, 254, 48-55.                               | 1.2 | 18        |
| 299 | Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K. Journal of<br>Physical Chemistry Letters, 2016, 7, 3235-3239.                                            | 2.1 | 18        |
| 300 | <sup>19</sup> F Magic Angle Spinning Dynamic Nuclear Polarization Enhanced NMR Spectroscopy.<br>Angewandte Chemie - International Edition, 2019, 58, 7249-7253.                                  | 7.2 | 18        |
| 301 | Advanced characterization of regioselectively substituted methylcellulose model compounds by DNP enhanced solid-state NMR spectroscopy. Carbohydrate Polymers, 2021, 262, 117944.                | 5.1 | 18        |
| 302 | Endogenous <sup>17</sup> 0 Dynamic Nuclear Polarization of Gd-Doped CeO <sub>2</sub> from 100 to 370 K. Journal of Physical Chemistry C, 2021, 125, 18799-18809.                                 | 1.5 | 18        |
| 303 | Self-refocusing 270° gaussian pulses for slice selection without gradient reversal in magnetic resonance imaging. Magnetic Resonance in Medicine, 1989, 10, 273-281.                             | 1.9 | 17        |
| 304 | Targeted projection NMR spectroscopy for unambiguous metabolic profiling of complex mixtures.<br>Magnetic Resonance in Chemistry, 2010, 48, 727-733.                                             | 1.1 | 17        |
| 305 | One- and Two-Dimensional High-Resolution NMR from Flat Surfaces. ACS Central Science, 2019, 5, 515-523.                                                                                          | 5.3 | 17        |
| 306 | Floquet–van Vleck analysis of heteronuclear spin decoupling in solids: The effect of spinning and decoupling sidebands on the spectrum. Solid State Nuclear Magnetic Resonance, 2006, 29, 30-51. | 1.5 | 16        |

| #   | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Atomic-level organization of vicinal acid–base pairs through the chemisorption of aniline and derivatives onto mesoporous SBA15. Chemical Science, 2016, 7, 6099-6105.                                                                                         | 3.7 | 16        |
| 308 | Maximizing nuclear hyperpolarization in pulse cooling under MAS. Journal of Magnetic Resonance, 2019, 300, 142-148.                                                                                                                                            | 1.2 | 16        |
| 309 | Naphthalenediimide/Formamidinium-Based Low-Dimensional Perovskites. Chemistry of Materials, 2021, 33, 6412-6420.                                                                                                                                               | 3.2 | 16        |
| 310 | On the orientational dependence of resolution in1H solid-state NMR, and its role in MAS, CRAMPS and delayed-acquisition experiments. Magnetic Resonance in Chemistry, 2007, 45, S93-S100.                                                                      | 1.1 | 15        |
| 311 | Probing surface site heterogeneity through 1D and INADEQUATE 31P solid state NMR spectroscopy of silica supported PMe3-Au(I) adducts. Chemical Science, 2011, 2, 928.                                                                                          | 3.7 | 15        |
| 312 | Probing Protein Dynamics Using Multifield Variable Temperature NMR Relaxation and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2018, 122, 9697-9702.                                                                                        | 1.2 | 15        |
| 313 | Multimodal Response to Copper Binding in Superoxide Dismutase Dynamics. Journal of the American<br>Chemical Society, 2020, 142, 19660-19667.                                                                                                                   | 6.6 | 15        |
| 314 | Pure Isotropic Proton Solid State NMR. Journal of the American Chemical Society, 2021, 143, 9834-9841.                                                                                                                                                         | 6.6 | 15        |
| 315 | Single crystal nuclear magnetic resonance in spinning powders. Journal of Chemical Physics, 2011, 135, 144201.                                                                                                                                                 | 1.2 | 14        |
| 316 | Quasi-equilibria in reduced Liouville spaces. Journal of Chemical Physics, 2012, 136, 224511.                                                                                                                                                                  | 1.2 | 14        |
| 317 | A solid-state NMR method to determine domain sizes in multi-component polymer formulations.<br>Journal of Magnetic Resonance, 2015, 261, 43-48.                                                                                                                | 1.2 | 14        |
| 318 | Weak and Transient Protein Interactions Determined by Solidâ€6tate NMR. Angewandte Chemie, 2016, 128,<br>6750-6753.                                                                                                                                            | 1.6 | 14        |
| 319 | Iron incorporation in synthetic precipitated calcium silicate hydrates. Cement and Concrete Research, 2021, 142, 106365.                                                                                                                                       | 4.6 | 14        |
| 320 | <i>De Novo</i> Crystal Structure Determination from Machine Learned Chemical Shifts. Journal of the American Chemical Society, 2022, 144, 7215-7223.                                                                                                           | 6.6 | 14        |
| 321 | The Effect of Imperfect Saturation in Saturation-RecoveryT1Measurements. Journal of Magnetic Resonance Series A, 1996, 118, 108-112.                                                                                                                           | 1.6 | 13        |
| 322 | A highly ordered mesostructured material containing regularly distributed phenols: preparation and characterization at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 4230. | 1.3 | 13        |
| 323 | A common theory for phase-modulated homonuclear decoupling in solid-state NMR. Physical<br>Chemistry Chemical Physics, 2012, 14, 9121.                                                                                                                         | 1.3 | 13        |
| 324 | Highâ€Resolution <sup>1</sup> H Solid‣tate NMR Spectroscopy Using Windowed LG4 Homonuclear<br>Dipolar Decoupling. Israel Journal of Chemistry, 2014, 54, 136-146.                                                                                              | 1.0 | 13        |

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Line narrowing in 1H NMR of powdered organic solids with TOP-CT-MAS experiments at ultra-fast MAS.<br>Journal of Magnetic Resonance, 2019, 305, 131-137.                                                                                                      | 1.2 | 13        |
| 326 | Sensitivity Enhancements in Lithium Titanates by Incipient Wetness Impregnation DNP NMR. Journal of Physical Chemistry C, 2020, 124, 16524-16528.                                                                                                             | 1.5 | 13        |
| 327 | Bayesian probabilistic assignment of chemical shifts in organic solids. Science Advances, 2021, 7, eabk2341.                                                                                                                                                  | 4.7 | 13        |
| 328 | In-Cell Quantification of Drugs by Magic-Angle Spinning Dynamic Nuclear Polarization NMR. Journal of the American Chemical Society, 2022, 144, 6734-6741.                                                                                                     | 6.6 | 13        |
| 329 | Well-defined mono(η3-allyl)nickel complex î€,MONi(η3-C3H5) (M = Si or Al) grafted onto silica or alumina: a<br>molecularly dispersed nickel precursor for syntheses of supported small size nickel nanoparticles.<br>Chemical Communications, 2014, 50, 7716. | 2.2 | 12        |
| 330 | Colloidal-ALD-Grown Hybrid Shells Nucleate via a Ligand–Precursor Complex. Journal of the American<br>Chemical Society, 2022, 144, 3998-4008.                                                                                                                 | 6.6 | 12        |
| 331 | Longitudinal relaxation pathways in scalar-coupled systems. Journal of Magnetic Resonance, 1989, 81, 13-42.                                                                                                                                                   | 0.5 | 11        |
| 332 | Intrinsic Asymmetry in Multidimensional Solid-State NMR Correlation Spectra. Journal of Magnetic Resonance, 1998, 130, 233-237.                                                                                                                               | 1.2 | 11        |
| 333 | Chemical exchange at the ferroelectric phase transition of lead germanate revealed by solid state<br><sup>207</sup> Pb nuclear magnetic resonance. Physical Chemistry Chemical Physics, 2019, 21, 1100-1109.                                                  | 1.3 | 11        |
| 334 | Spatial Distribution of Functional Groups in Cellulose Ethers by DNP-Enhanced Solid-State NMR Spectroscopy. Macromolecules, 2022, 55, 2952-2958.                                                                                                              | 2.2 | 11        |
| 335 | Heteronuclear proton double quantum-carbon single quantum scalar correlation in solids. Journal of Magnetic Resonance, 2014, 245, 31-37.                                                                                                                      | 1.2 | 10        |
| 336 | Theory and simulations of homonuclear three-spin systems in rotating solids. Journal of Chemical Physics, 2021, 155, 084201.                                                                                                                                  | 1.2 | 10        |
| 337 | Multiâ€Length Scale Structure of 2D/3D Dion–Jacobson Hybrid Perovskites Based on an Aromatic<br>Diammonium Spacer. Small, 2022, 18, e2104287.                                                                                                                 | 5.2 | 10        |
| 338 | Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic<br>Nuclear Polarization. Journal of Physical Chemistry C, 2022, 126, 11310-11317.                                                                         | 1.5 | 10        |
| 339 | Improving resolution in proton solid-state NMR by removing nitrogen-14 residual dipolar broadening.<br>Chemical Physics Letters, 2008, 458, 391-395.                                                                                                          | 1.2 | 9         |
| 340 | Advances in Magnetic Resonance: From Stem Cells to Catalytic Surfaces. Journal of the American<br>Chemical Society, 2013, 135, 8089-8091.                                                                                                                     | 6.6 | 9         |
| 341 | Two-step immobilization of metronidazole prodrug on TEMPO cellulose nanofibrils through thiol-yne click chemistry for in situ controlled release. Carbohydrate Polymers, 2021, 262, 117952.                                                                   | 5.1 | 9         |
| 342 | NMR studies of an oligoproline-containing peptide analog that binds specifically to the H-2Kd histocompatibility molecule. Biochemistry, 1991, 30, 9429-9434.                                                                                                 | 1.2 | 8         |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | A scaling factor theorem for homonuclear dipolar decoupling in solid-state NMR spectroscopy.<br>Journal of Magnetic Resonance, 2011, 212, 11-16.                                                    | 1.2  | 8         |
| 344 | Fast remote correlation experiments for 1H homonuclear decoupling in solids. Journal of Magnetic Resonance, 2020, 321, 106856.                                                                      | 1.2  | 8         |
| 345 | Volume-selective NMR spectroscopy with self-refocusing pulses. Journal of Magnetic Resonance, 1990, 87, 1-17.                                                                                       | 0.5  | 7         |
| 346 | Methods for reconstructing phase sensitive slice profiles in magnetic resonance imaging. Magnetic<br>Resonance in Medicine, 1994, 31, 178-183.                                                      | 1.9  | 7         |
| 347 | The role of 15N CSA and CSA/dipole cross-correlation in 15N relaxation in solid proteins. Journal of Magnetic Resonance, 2007, 186, 26-33.                                                          | 1.2  | 7         |
| 348 | <sup>1</sup> H Detected Relayed Dynamic Nuclear Polarization. Journal of Physical Chemistry C, 2022, 126, 7564-7570.                                                                                | 1.5  | 7         |
| 349 | Entflechtung überlagernder Multipletts in zweidimensionalen NMRâ€Korrelationsspektren durch<br>selektive Inversion der Spins der Kopplungspartner. Angewandte Chemie, 1990, 102, 576-579.           | 1.6  | 6         |
| 350 | Atomistic Description of Reaction Intermediates for Supported Metathesis Catalysts Enabled by DNP<br>SENS. Angewandte Chemie, 2016, 128, 4821-4825.                                                 | 1.6  | 6         |
| 351 | Hyperpolarization transfer pathways in inorganic materials. Journal of Magnetic Resonance, 2021, 323, 106888.                                                                                       | 1.2  | 6         |
| 352 | Similarities and Differences among Protein Dynamics Studied by Variable Temperature Nuclear<br>Magnetic Resonance Relaxation. Journal of Physical Chemistry B, 2021, 125, 2212-2221.                | 1.2  | 6         |
| 353 | Quantification of magic angle spinning dynamic nuclear polarization NMR spectra. Journal of<br>Magnetic Resonance, 2021, 329, 107030.                                                               | 1.2  | 6         |
| 354 | Refocused linewidths less than 10†Hz in 1H solid-state NMR. Journal of Magnetic Resonance, 2018, 293, 41-46.                                                                                        | 1.2  | 5         |
| 355 | Lead–Oxygen Bond Length Distributions of the Relaxor Ferroelectric 0.67PbMg1/3Nb2/3O3–0.33PbTiO3<br>from 207Pb Nuclear Magnetic Resonance. Journal of Physical Chemistry C, 2019, 123, 15744-15750. | 1.5  | 5         |
| 356 | Segmental mobility in poly(isoprene) rubber studied by deuterium-carbon NMR correlation spectroscopy. Polymer Bulletin, 2001, 46, 183-190.                                                          | 1.7  | 4         |
| 357 | Metabolic expressivity of human genetic variants: NMR metabotyping of MEN1 pathogenic mutants.<br>Journal of Pharmaceutical and Biomedical Analysis, 2014, 93, 118-124.                             | 1.4  | 4         |
| 358 | Improving Sensitivity of Solid-state NMR Spectroscopy by Rational Design of Polarizing Agents for<br>Dynamic Nuclear Polarization. Chimia, 2017, 71, 190-194.                                       | 0.3  | 4         |
| 359 | Measurement of Proton Spin Diffusivity in Hydrated Cementitious Solids. Journal of Physical Chemistry Letters, 2019, 10, 5064-5069.                                                                 | 2.1  | 4         |
| 360 | Intermediate Phase Enhances Inorganic Perovskite and Metal Oxide Interface for Efficient<br>Photovoltaics. Joule, 2020, 4, 507-508.                                                                 | 11.7 | 4         |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | On the use of a slice-selective 270° self-refocusing Gaussian pulse for magnetic resonance imaging:<br>Comments on the note by D. M. Doddrellet al Magnetic Resonance in Medicine, 1991, 19, 461-463.                      | 1.9 | 3         |
| 362 | Structural and DNA binding properties of mycobacterial integration host factor mIHF. Journal of Structural Biology, 2020, 209, 107434.                                                                                     | 1.3 | 3         |
| 363 | Homonuclear Decoupling in 1 Hâ€NMR of Solids by Remote Correlation. Angewandte Chemie, 2020, 132, 6294-6297.                                                                                                               | 1.6 | 3         |
| 364 | High Sensitivity Detection of a Solubility Limiting Surface Transformation of Drug Particles by DNP SENS. Journal of Pharmaceutical Sciences, 2021, 110, 2452-2456.                                                        | 1.6 | 3         |
| 365 | Improved Sensitivity in Selective NMR Correlation Spectroscopy and Applications to the Determination of Scalar Couplings in Peptides and Proteins. Journal of the American Chemical Society, 1996, 118, 9320-9325.         | 6.6 | 2         |
| 366 | Homonuclear Decoupling of <sup>1</sup> H Dipolar Interactions in Solids by means of Heteronuclear<br>Recoupling. Israel Journal of Chemistry, 2014, 54, 154-162.                                                           | 1.0 | 2         |
| 367 | Frozen Acrylamide Gels as Dynamic Nuclear Polarization Matrices. Angewandte Chemie, 2017, 129, 8852-8856.                                                                                                                  | 1.6 | 2         |
| 368 | 19 F Magic Angle Spinning Dynamic Nuclear Polarization Enhanced NMR Spectroscopy. Angewandte<br>Chemie, 2019, 131, 7327-7331.                                                                                              | 1.6 | 2         |
| 369 | Molecular Insight Into Surface Organometallic Chemistry Through the Combined Use of 2D HETCOR<br>Solid-State NMR Spectroscopy and Silsesquioxane Analogues. Angewandte Chemie - International<br>Edition, 2002, 41, 16-16. | 7.2 | 1         |
| 370 | The Atomic-Level Structure of Cementitious Calcium Aluminate Silicate Hydrate Determined by NMR.<br>Chimia, 2021, 75, 272-275.                                                                                             | 0.3 | 1         |
| 371 | Editorial. Magnetic Resonance in Chemistry, 2007, 45, S1-S1.                                                                                                                                                               | 1.1 | 0         |
| 372 | Guanine‣tabilized Formamidinium Lead Iodide Perovskites. Angewandte Chemie, 2020, 132, 4721-4727.                                                                                                                          | 1.6 | 0         |
| 373 | Gaussian Pulse Cascades and Selective Two-Dimensional NMR. , 1990, , 449-450.                                                                                                                                              |     | 0         |
| 374 | The Role of Selective Two-Dimensional NMR Correlation Methods in Supplementing Computer-Supported Multiplet Analysis by MARCO POLO. , 1991, , 151-162.                                                                     |     | 0         |