
Graeme W Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7829923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SVIP is a molecular determinant of lysosomal dynamic stability, neurodegeneration and lifespan. Nature Communications, 2021, 12, 513.	12.8	30
2	Epigenetic Signaling in Glia Controls Presynaptic Homeostatic Plasticity. Neuron, 2020, 105, 491-505.e3.	8.1	17
3	Presynaptic Homeostasis Opposes Disease Progression in Mouse Models of ALS-Like Degeneration: Evidence for Homeostatic Neuroprotection. Neuron, 2020, 107, 95-111.e6.	8.1	43
4	Not Fade Away: Mechanisms of Neuronal ATP Homeostasis. Neuron, 2020, 105, 591-593.	8.1	7
5	Homeostatic plasticity fails at the intersection of autism-gene mutations and a novel class of common genetic modifiers. ELife, 2020, 9, .	6.0	14
6	Target-wide Induction and Synapse Type-Specific Robustness of Presynaptic Homeostasis. Current Biology, 2019, 29, 3863-3873.e2.	3.9	26
7	Evolution of Mechanisms that Control Mating in Drosophila Males. Cell Reports, 2019, 27, 2527-2536.e4.	6.4	23
8	Dystrobrevin is required postsynaptically for homeostatic potentiation at the Drosophila NMJ. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1579-1591.	3.8	3
9	Dual separable feedback systems govern firing rate homeostasis. ELife, 2019, 8, .	6.0	23
10	Molecular Interface of Neuronal Innate Immunity, Synaptic Vesicle Stabilization, and Presynaptic Homeostatic Plasticity. Neuron, 2018, 100, 1163-1179.e4.	8.1	27
11	A postsynaptic PI3K-cII dependent signaling controller for presynaptic homeostatic plasticity. ELife, 2018, 7, .	6.0	21
12	The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. Cell, 2018, 174, 505-520.	28.9	108
13	Molecular mechanisms that stabilize short term synaptic plasticity during presynaptic homeostatic plasticity. ELife, 2018, 7, .	6.0	32
14	Retrograde semaphorin–plexin signalling drives homeostatic synaptic plasticity. Nature, 2017, 550, 109-113.	27.8	91
15	Composition and Control of a Deg/ENaC Channel during Presynaptic Homeostatic Plasticity. Cell Reports, 2017, 20, 1855-1866.	6.4	26
16	Engineering a light-activated caspase-3 for precise ablation of neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8174-E8183.	7.1	50
17	MCTP is an ER-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity. ELife, 2017, 6, .	6.0	42
18	α2δ-3 Is Required for Rapid Transsynaptic Homeostatic Signaling. Cell Reports, 2016, 16, 2875-2888.	6.4	49

GRAEME W DAVIS

#	Article	IF	CITATIONS
19	The Global Challenge in Neuroscience Education and Training: The MBL Perspective. Neuron, 2016, 92, 632-636.	8.1	6
20	VCP-dependent muscle degeneration is linked to defects in a dynamic tubular lysosomal network in vivo. ELife, 2015, 4, .	6.0	73
21	The Innate Immune Receptor PGRP-LC Controls Presynaptic Homeostatic Plasticity. Neuron, 2015, 88, 1157-1164.	8.1	48
22	RIM-Binding Protein Links Synaptic Homeostasis to the Stabilization and Replenishment of High Release Probability Vesicles. Neuron, 2015, 85, 1056-1069.	8.1	83
23	Homeostatic Control of Presynaptic Neurotransmitter Release. Annual Review of Physiology, 2015, 77, 251-270.	13.1	212
24	Homeostatic synaptic depression is achieved through a regulated decrease in presynaptic calcium channel abundance. ELife, 2015, 4, .	6.0	54
25	Archaerhodopsin Voltage Imaging: Synaptic Calcium and BK Channels Stabilize Action Potential Repolarization at the <i>Drosophila</i> Neuromuscular Junction. Journal of Neuroscience, 2014, 34, 14517-14525.	3.6	30
26	Endostatin Is a Trans-Synaptic Signal for Homeostatic Synaptic Plasticity. Neuron, 2014, 83, 616-629.	8.1	98
27	Krüppel Mediates the Selective Rebalancing of Ion Channel Expression. Neuron, 2014, 82, 537-544.	8.1	42
28	A Presynaptic ENaC Channel Drives Homeostatic Plasticity. Neuron, 2013, 79, 1183-1196.	8.1	92
29	Homeostatic Signaling and the Stabilization of Neural Function. Neuron, 2013, 80, 718-728.	8.1	224
30	RIM Controls Homeostatic Plasticity through Modulation of the Readily-Releasable Vesicle Pool. Journal of Neuroscience, 2012, 32, 16574-16585.	3.6	180
31	Snapin is Critical for Presynaptic Homeostatic Plasticity. Journal of Neuroscience, 2012, 32, 8716-8724.	3.6	58
32	Transsynaptic Control of Presynaptic Ca2+ Influx Achieves Homeostatic Potentiation of Neurotransmitter Release. Current Biology, 2012, 22, 1102-1108.	3.9	107
33	RIM-Binding Protein, a Central Part of the Active Zone, Is Essential for Neurotransmitter Release. Science, 2011, 334, 1565-1569.	12.6	257
34	Rab3-GAP Controls the Progression of Synaptic Homeostasis at a Late Stage of Vesicle Release. Neuron, 2011, 69, 749-762.	8.1	96
35	Hts/Adducin Controls Synaptic Elaboration and Elimination. Neuron, 2011, 69, 1114-1131.	8.1	97
36	Glial-Derived Prodegenerative Signaling in the Drosophila Neuromuscular System. Neuron, 2011, 72, 760-775.	8.1	53

3

GRAEME W DAVIS

#	Article	IF	CITATIONS
37	Developmental neuroscience. Current Opinion in Neurobiology, 2011, 21, 1-4.	4.2	79
38	Stathmin is Required for Stability of the <i>Drosophila</i> Neuromuscular Junction. Journal of Neuroscience, 2011, 31, 15026-15034.	3.6	52
39	S6 kinase localizes to the presynaptic active zone and functions with PDK1 to control synapse development. Journal of Cell Biology, 2011, 194, 921-935.	5.2	35
40	Synaptic Homeostasis Is Consolidated by the Cell Fate Gene gooseberry, a Drosophila pax3/7 Homolog. Journal of Neuroscience, 2010, 30, 8071-8082.	3.6	42
41	A Hierarchy of Cell Intrinsic and Target-Derived Homeostatic Signaling. Neuron, 2010, 66, 220-234.	8.1	88
42	The Schizophrenia Susceptibility Gene <i>dysbindin</i> Controls Synaptic Homeostasis. Science, 2009, 326, 1127-1130.	12.6	195
43	Molecular mechanisms that enhance synapse stability despite persistent disruption of the spectrin/ankyrin/microtubule cytoskeleton. Journal of Cell Biology, 2009, 187, 101-117.	5.2	55
44	A Presynaptic Homeostatic Signaling System Composed of the Eph Receptor, Ephexin, Cdc42, and CaV2.1 Calcium Channels. Neuron, 2009, 61, 556-569.	8.1	158
45	Clathrin Dependence of Synaptic-Vesicle Formation at the Drosophila Neuromuscular Junction. Current Biology, 2008, 18, 401-409.	3.9	124
46	A Presynaptic Giant Ankyrin Stabilizes the NMJ through Regulation of Presynaptic Microtubules and Transsynaptic Cell Adhesion. Neuron, 2008, 58, 195-209.	8.1	164
47	The BMP Ligand Gbb Gates the Expression of Synaptic Homeostasis Independent of Synaptic Growth Control. Neuron, 2007, 56, 109-123.	8.1	115
48	Discrete Residues in the C2B Domain of Synaptotagmin I Independently Specify Endocytic Rate and Synaptic Vesicle Size. Neuron, 2006, 50, 49-62.	8.1	81
49	Mechanisms Underlying the Rapid Induction and Sustained Expression of Synaptic Homeostasis. Neuron, 2006, 52, 663-677.	8.1	338
50	HOMEOSTATIC CONTROL OF NEURAL ACTIVITY: From Phenomenology to Molecular Design. Annual Review of Neuroscience, 2006, 29, 307-323.	10.7	482
51	Presynaptic Spectrin Is Essential for Synapse Stabilization. Current Biology, 2005, 15, 918-928.	3.9	151
52	Dap160/Intersectin Scaffolds the Periactive Zone to Achieve High-Fidelity Endocytosis and Normal Synaptic Growth. Neuron, 2004, 43, 207-219.	8.1	203
53	Dynactin Is Necessary for Synapse Stabilization. Neuron, 2002, 34, 729-741.	8.1	227
54	Unrestricted Synaptic Growth in spinster—a Late Endosomal Protein Implicated in TGF-β-Mediated Synaptic Growth Regulation. Neuron, 2002, 36, 403-416.	8.1	244

GRAEME W DAVIS

#	Article	IF	CITATIONS
55	Maintaining the Stability of Neural Function: A Homeostatic Hypothesis. Annual Review of Physiology, 2001, 63, 847-869.	13.1	268
56	Homeostatic Control of Presynaptic Release Is Triggered by Postsynaptic Membrane Depolarization. Neuron, 2001, 30, 737-749.	8.1	214
57	Synapse formation revisited. Nature Neuroscience, 2001, 4, 558-560.	14.8	6
58	Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature, 1998, 392, 82-86.	27.8	214
59	Genetic analysis of synaptic development and plasticity: homeostatic regulation of synaptic efficacy. Current Opinion in Neurobiology, 1998, 8, 149-156.	4.2	120
60	Postsynaptic PKA Controls Quantal Size and Reveals a Retrograde Signal that Regulates Presynaptic Transmitter Release in Drosophila. Neuron, 1998, 20, 305-315.	8.1	196
61	Genetic Analysis of the Mechanisms Controlling Target Selection: Target-Derived Fasciclin II Regulates the Pattern of Synapse Formation. Neuron, 1997, 19, 561-573.	8.1	167
62	Retrograde signaling and the development of transmitter release properties in the invertebrate nervous system. Journal of Neurobiology, 1994, 25, 740-756.	3.6	35