Adam J Moulé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7829188/publications.pdf

Version: 2024-02-01

95 papers 6,095 citations

39 h-index 69250 77 g-index

96 all docs 96
docs citations

96 times ranked 7127 citing authors

#	Article	IF	Citations
1	Controlling Morphology in Polymer–Fullerene Mixtures. Advanced Materials, 2008, 20, 240-245.	21.0	495
2	Controlling Molecular Doping in Organic Semiconductors. Advanced Materials, 2017, 29, 1703063.	21.0	394
3	Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture. Nano Letters, 2007, 7, 3372-3376.	9.1	363
4	J-Aggregate Behavior in Poly-3-hexylthiophene Nanofibers. Journal of Physical Chemistry Letters, 2012, 3, 259-263.	4.6	258
5	Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology. Journal of Materials Chemistry C, 2016, 4, 3454-3466.	5.5	256
6	Morphology Control in Solutionâ€Processed Bulkâ€Heterojunction Solar Cell Mixtures. Advanced Functional Materials, 2009, 19, 3028-3036.	14.9	252
7	The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells. Journal of Applied Physics, 2006, 100, 094503.	2.5	249
8	Double doping of conjugated polymers with monomer molecular dopants. Nature Materials, 2019, 18, 149-155.	27.5	225
9	Effect of Trace Solvent on the Morphology of P3HT:PCBM Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2011, 21, 1779-1787.	14.9	183
10	Two Novel Cyclopentadithiophene-Based Alternating Copolymers as Potential Donor Components for High-Efficiency Bulk-Heterojunction-Type Solar Cells. Chemistry of Materials, 2008, 20, 4045-4050.	6.7	179
11	Coarse-Grained Computer Simulations of Polymer/Fullerene Bulk Heterojunctions for Organic Photovoltaic Applications. Journal of Chemical Theory and Computation, 2010, 6, 526-537.	5.3	166
12	Approach to High-Resolution ex Situ NMR Spectroscopy. Science, 2001, 293, 82-85.	12.6	147
13	Controlling microstructure in poly(3-hexylthiophene) nanofibers. Journal of Materials Chemistry, 2012, 22, 2498-2506.	6.7	136
14	Electronic structure basis for enhanced overall water splitting photocatalysis with aluminum doped SrTiO ₃ in natural sunlight. Energy and Environmental Science, 2019, 12, 1385-1395.	30.8	134
15	Hybrid solar cells: basic principles and the role of ligands. Journal of Materials Chemistry, 2012, 22, 2351-2368.	6.7	127
16	The effect of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane charge transfer dopants on the conformation and aggregation of poly(3-hexylthiophene). Journal of Materials Chemistry C, 2013, 1, 5638.	5.5	108
17	Amplification of xenon NMR and MRI by remote detection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9122-9127.	7.1	98
18	Polymorphism controls the degree of charge transfer in a molecularly doped semiconducting polymer. Materials Horizons, 2018, 5, 655-660.	12.2	92

#	Article	IF	CITATIONS
19	Minimizing optical losses in bulk heterojunction polymer solar cells. Applied Physics B: Lasers and Optics, 2007, 86, 721-727.	2.2	87
20	Excited-State Self-Trapping and Ground-State Relaxation Dynamics in Poly(3-hexylthiophene) Resolved with Broadband Pump–Dump–Probe Spectroscopy. Journal of Physical Chemistry Letters, 2011, 2, 2764-2769.	4.6	86
21	Introducing Solubility Control for Improved Organic P-Type Dopants. Chemistry of Materials, 2015, 27, 5765-5774.	6.7	86
22	Measurement of Small Molecular Dopant F4TCNQ and C ₆₀ F ₃₆ Diffusion in Organic Bilayer Architectures. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28420-28428.	8.0	82
23	The Consequences of Interface Mixing on Organic Photovoltaic Device Characteristics. Advanced Functional Materials, 2011, 21, 1657-1665.	14.9	76
24	An optical spacer is no panacea for light collection in organic solar cells. Applied Physics Letters, 2009, 94, .	3.3	73
25	Packing Dependent Electronic Coupling in Single Poly(3-hexylthiophene) H- and J-Aggregate Nanofibers. Journal of Physical Chemistry B, 2013, 117, 4478-4487.	2.6	73
26	A comparative MD study of the local structure of polymer semiconductors P3HT and PBTTT. Physical Chemistry Chemical Physics, 2010, 12, 14735.	2.8	69
27	Threeâ€Dimensional Concentration Mapping of Organic Blends. Advanced Functional Materials, 2013, 23, 2115-2122.	14.9	64
28	Intensity-dependent photocurrent generation at the anode in bulk-heterojunction solar cells. Applied Physics B: Lasers and Optics, 2008, 92, 209-218.	2.2	63
29	Investigating the Morphology of Polymer/Fullerene Layers Coated Using Orthogonal Solvents. Journal of Physical Chemistry C, 2012, 116, 7287-7292.	3.1	61
30	Effect of Polymer Nanoparticle Formation on the Efficiency of Polythiophene Based "Bulk-Heterojunction―Solar Cells. Journal of Physical Chemistry C, 2008, 112, 12583-12589.	3.1	60
31	The effect of thermal annealing on dopant site choice in conjugated polymers. Organic Electronics, 2016, 33, 23-31.	2.6	54
32	Direct probe of the nuclear modes limiting charge mobility in molecular semiconductors. Materials Horizons, 2019, 6, 182-191.	12.2	53
33	Reversible Optical Control of Conjugated Polymer Solubility with Sub-micrometer Resolution. ACS Nano, 2015, 9, 1905-1912.	14.6	52
34	Identifying Atomic Scale Structure in Undoped/Doped Semicrystalline P3HT Using Inelastic Neutron Scattering. Macromolecules, 2017, 50, 2424-2435.	4.8	52
35	Characterization of polymer–fullerene mixtures for organic photovoltaics by systematically coarse-grained molecular simulations. Fluid Phase Equilibria, 2011, 302, 21-25.	2.5	51
36	Selfâ€Assembly of Selective Interfaces in Organic Photovoltaics. Advanced Functional Materials, 2013, 23, 1935-1946.	14.9	50

#	Article	IF	Citations
37	Quantifying organic solar cell morphology: a computational study of three-dimensional maps. Energy and Environmental Science, 2013, 6, 3060.	30.8	44
38	P3HT:PCBM Bulk-Heterojunctions: Observing Interfacial and Charge Transfer States with Surface Photovoltage Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 14723-14731.	3.1	44
39	Quantitative Measurements of the Temperature-Dependent Microscopic and Macroscopic Dynamics of a Molecular Dopant in a Conjugated Polymer. Macromolecules, 2017, 50, 5476-5489.	4.8	44
40	Photochemical Charge Separation in Poly(3-hexylthiophene) (P3HT) Films Observed with Surface Photovoltage Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 26905-26913.	3.1	41
41	Directâ€Write Optical Patterning of P3HT Films Beyond the Diffraction Limit. Advanced Materials, 2017, 29, 1603221.	21.0	40
42	Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties. Journal of Applied Physics, 2009, 106, .	2.5	39
43	Interference method for the determination of the complex refractive index of thin polymer layers. Applied Physics Letters, 2007, 91, .	3.3	37
44	Optical Dedoping Mechanism for P3HT:F4TCNQ Mixtures. Journal of Physical Chemistry Letters, 2016, 7, 4297-4303.	4.6	37
45	Directional dependence of electron blocking in PEDOT:PSS. Organic Electronics, 2012, 13, 2747-2756.	2.6	35
46	Quantitative Dedoping of Conductive Polymers. Chemistry of Materials, 2017, 29, 832-841.	6.7	35
47	A Freely Soluble, High Electron Affinity Molecular Dopant for Solution Processing of Organic Semiconductors. Chemistry of Materials, 2019, 31, 1500-1506.	6.7	33
48	Power from plastic. Current Opinion in Solid State and Materials Science, 2010, 14, 123-130.	11.5	32
49	Laser-polarized 129Xe NMR and MRI at Ultralow Magnetic Fields. Journal of Magnetic Resonance, 2002, 157, 235-241.	2.1	31
50	Correlating dilute solvent interactions to morphology and OPV device performance. Organic Electronics, 2013, 14, 2431-2443.	2.6	31
51	Side chain length affects backbone dynamics in poly(3â€alkylthiophene)s. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1193-1202.	2.1	31
52	Photoinduced degradation from trace 1,8-diiodooctane in organic photovoltaics. Journal of Materials Chemistry C, 2018, 6, 219-225.	5.5	30
53	Characterization of new transparent organic electrode materials. Organic Electronics, 2011, 12, 1948-1956.	2.6	28
54	Mixed interlayers at the interface between PEDOT:PSS and conjugated polymers provide charge transport control. Journal of Materials Chemistry C, 2015, 3, 2664-2676.	5.5	26

#	Article	IF	CITATIONS
55	Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size. Scientific Reports, 2016, 6, 30915.	3.3	25
56	Nanoscale Morphology of Doctor Bladed versus Spinâ€Coated Organic Photovoltaic Films. Advanced Energy Materials, 2017, 7, 1701269.	19.5	24
57	Anion Exchange Doping: Tuning Equilibrium to Increase Doping Efficiency in Semiconducting Polymers. Journal of Physical Chemistry Letters, 2021, 12, 1284-1289.	4.6	24
58	Two-Dimensional High-Resolution NMR Spectra in Matched BO and B1 Field Gradients. Journal of Magnetic Resonance, 2002, 156, 146-151.	2.1	22
59	High-resolution NMR of static samples by rotation of the magnetic field. Journal of Magnetic Resonance, 2004, 169, 13-18.	2.1	22
60	High work-function hole transport layers by self-assembly using a fluorinated additive. Journal of Materials Chemistry C, 2014, 2, 115-123.	5.5	21
61	Calcium niobate nanosheets as a novel electron transport material for solution-processed multi-junction polymer solar cells. Journal of Materials Chemistry, 2012, 22, 20443.	6.7	19
62	Variable rotation composite pulses for high resolution nuclear magnetic resonance using inhomogeneous magnetic and radiofrequency fields. Chemical Physics Letters, 2002, 363, 25-33.	2.6	18
63	Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency. Journal of Applied Physics, 2009, 106, .	2.5	15
64	Toward Fast Screening of Organic Solar Cell Blends. Advanced Science, 2020, 7, 2000960.	11.2	15
65	Understanding charge transport in donor/acceptor blends from large-scale device simulations based on experimental film morphologies. Energy and Environmental Science, 2020, 13, 601-615.	30.8	14
66	Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films. Journal of Materials Chemistry A, 2014, 2, 16608-16616.	10.3	13
67	Predictive Model of Charge Mobilities in Organic Semiconductor Small Molecules with Force-Matched Potentials. Journal of Chemical Theory and Computation, 2020, 16, 3494-3503.	5.3	12
68	P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance. Advances in Polymer Science, 2014, , 181-232.	0.8	11
69	Morphological consequences of ligand exchange in quantum dot - Polymer solar cells. Organic Electronics, 2018, 54, 119-125.	2.6	11
70	Effect of processing conditions on additive DISC patterning of P3HT films. Journal of Materials Chemistry C, 2019, 7, 302-313.	5.5	10
71	Additive solution deposition of multi-layered semiconducting polymer films for design of sophisticated device architectures. Journal of Materials Chemistry C, 2019, 7, 953-960.	5.5	10
72	Material profile influences in bulk-heterojunctions. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1291-1300.	2.1	9

#	Article	IF	Citations
73	High-Speed Photothermal Patterning of Doped Polymer Films. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41717-41725.	8.0	9
74	Resolution of 129Xe Chemical Shifts at Ultralow Magnetic Field. Journal of the American Chemical Society, 2001, 123, 8133-8134.	13.7	8
75	Modeling organic electronic materials: bridging length and time scales. Molecular Simulation, 2017, 43, 730-742.	2.0	8
76	Acceptor dependent polaron recombination dynamics in poly 3-hexyl thiophene: Fullerene composite films. Chemical Physics Letters, 2011, 513, 77-83.	2.6	7
77	Put Your Backbone into It: Excited-State Structural Relaxation of PffBT4T-2DT Conducting Polymer in Solution. Journal of Physical Chemistry C, 2018, 122, 7020-7026.	3.1	7
78	Structural characterization of a polycrystalline epitaxially-fused colloidal quantum dot superlattice by electron tomography. Journal of Materials Chemistry A, 2020, 8, 18254-18265.	10.3	7
79	Computing inelastic neutron scattering spectra from molecular dynamics trajectories. Scientific Reports, 2021, 11, 7938.	3.3	7
80	Synthesis and characterization of solution processable, high electron affinity molecular dopants. Journal of Materials Chemistry C, 0, , .	5.5	7
81	Quantifying Polaron Mole Fractions and Interpreting Spectral Changes in Molecularly Doped Conjugated Polymers. Advanced Electronic Materials, 2022, 8, .	5.1	7
82	Quantitative Hole Mobility Simulation and Validation in Substituted Acenes. Journal of Physical Chemistry Letters, 2022, 13, 5530-5537.	4.6	7
83	Detailed study of the decay mechanism in polymeric OLEDs. , 2005, , .		5
84	Molecular Dynamics Study of the Local Structure of Photovoltaic Polymer PCDTBT. Journal of Chemical & Engineering Data, 2014, 59, 2982-2986.	1.9	4
85	Solution aging and degradation of a transparent conducting polymer dispersion. Organic Electronics, 2016, 34, 172-178.	2.6	4
86	Investigation of Hierarchical Structure Formation in Merocyanine Photovoltaics. Journal of Physical Chemistry C, 2020, 124, 19457-19466.	3.1	4
87	Reversible Doping and Photo Patterning of Polymer Nanowires. Advanced Electronic Materials, 2020, 6, 2000469.	5.1	4
88	Davis Computational Spectroscopy Workflow—From Structure to Spectra. Journal of Chemical Information and Modeling, 2021, 61, 4486-4496.	5.4	4
89	The effect of active layer thickness on the efficiency of polymer solar cells. , 2005, , .		3
90	Super-Resolution Photothermal Patterning in Conductive Polymers Enabled by Thermally Activated Solubility. ACS Nano, 2021, 15, 7006-7020.	14.6	3

Adam J Moulã©

#	Article	IF	CITATIONS
91	Comparing the Expense and Accuracy of Methods to Simulate Atomic Vibrations in Rubrene. Journal of Chemical Theory and Computation, 2021, , .	5.3	3
92	High-resolution patterning electronic polymers using dopant induced solubility control (Presentation Recording). Proceedings of SPIE, 2015, , .	0.8	0
93	Optical Patterning: Directâ€Write Optical Patterning of P3HT Films Beyond the Diffraction Limit (Adv.) Tj ETQq1	1 0.78431 21.8	.4 rgBT /Over
94	Controlling organic polymer structure. SPIE Newsroom, 2008, , .	0.1	0
95	Approaching Rapid, Highâ€Resolution, Largeâ€Area Patterning of Semiconducting Polymers Using Projection Photothermal Lithography. Advanced Materials Technologies, 0, , 2100812.	5.8	0