Honghan Fei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7829005/publications.pdf

Version: 2024-02-01

147801 106344 5,251 67 31 65 citations h-index g-index papers 70 70 70 6089 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Efficient Self-Trapped Bluish White-Light Emission from [Pb ₄ Cl ₅] ³⁺ Nodes in a Moisture-Tolerant Metal–Organic Framework. CCS Chemistry, 2022, 4, 540-547.	7.8	14
2	Efficient and selective electrochemical reduction of nitrate to N2 by relay catalytic effects of Fe-Ni bimetallic sites on MOF-derived structure. Applied Catalysis B: Environmental, 2022, 301, 120829.	20.2	68
3	Efficient and Stable Selfâ€Trapped Blue Emission from a 1D Organolead Chloride Crystalline Material. Advanced Optical Materials, 2022, 10, .	7.3	16
4	Isoreticular Postsynthetic Modification of Robust Organocopper(I) Halide Hybrids for Enhanced Broad-Band Emission and Turn-On NH ₃ Sensing. Chemistry of Materials, 2022, 34, 4403-4413.	6.7	6
5	Efficient and reusable catalysis of benzylic C–H oxidation over layered [Co ₅ (OH) ₆] ⁴⁺ derivatives. Chemical Communications, 2022, 58, 8444-8447.	4.1	1
6	Intrinsic self-trapped broadband emission from zinc halide-based metal–organic frameworks. Chemical Communications, 2021, 57, 1396-1399.	4.1	5
7	Nâ€Heterocyclic Carbeneâ€Stabilized Ultrasmall Gold Nanoclusters in a Metalâ€Organic Framework for Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 17388-17393.	13.8	83
8	Nâ€Heterocyclic Carbeneâ€Stabilized Ultrasmall Gold Nanoclusters in a Metalâ€Organic Framework for Photocatalytic CO 2 Reduction. Angewandte Chemie, 2021, 133, 17528-17533.	2.0	4
9	Precise incorporation of transition metals into organolead oxyhalide crystalline materials for photocatalysis. Dalton Transactions, 2021, 50, 11360-11364.	3.3	1
10	Structural diversity of four lanthanide metal–organic frameworks based on 2,6-naphthalenedicarboxylate: synthesis, structures and photoluminescent properties. CrystEngComm, 2021, 23, 1388-1397.	2.6	9
11	Fabrication of Robust and Porous Lead Chloride-Based Metal–Organic Frameworks toward a Selective and Sensitive Smart NH ₃ Sensor. ACS Applied Materials & Literfaces, 2021, 13, 52765-52774.	8.0	18
12	A moisture-stable organosulfonate-based metal–organic framework with intrinsic self-trapped white-light emission. Chemical Communications, 2020, 56, 1325-1328.	4.1	12
13	Overall photocatalytic water splitting by an organolead iodide crystalline material. Nature Catalysis, 2020, 3, 1027-1033.	34.4	113
14	Ge-Modified GaN–ZnO wurtzite solid solutions with high Zn content for efficient photocatalytic H ₂ evolution from water under visible light illumination. Inorganic Chemistry Frontiers, 2020, 7, 3443-3447.	6.0	4
15	Efficient, broadband self-trapped white-light emission from haloplumbate-based metal–organic frameworks. Chemical Communications, 2020, 56, 10078-10081.	4.1	10
16	N-heterocyclic carbene-functionalized metal–organic frameworks for the chemical fixation of CO2. Dalton Transactions, 2020, 49, 6548-6552.	3.3	10
17	Isomorphous Lanthanide Metal–Organic Frameworks Based on Biphenyldicarboxylate: Synthesis, Structure, and Photoluminescent Properties. Crystal Growth and Design, 2019, 19, 4854-4859.	3.0	12
18	Synthesis and Applications of Porous Organosulfonate-Based Metal–Organic Frameworks. Topics in Current Chemistry, 2019, 377, 32.	5.8	11

#	Article	IF	Citations
19	UiO-type metal–organic frameworks with NHC or metal–NHC functionalities for <i>N</i> nethylation using CO ₂ as the carbon source. Chemical Communications, 2019, 55, 11928-11931.	4.1	28
20	An ultrastable metal–organic material emits efficient and broadband bluish white-light emission for luminescent thermometers. Chemical Communications, 2019, 55, 1702-1705.	4.1	26
21	Robust, Cationic Lead Halide Layered Materials with Efficient Broadband White-Light Emission. Chemistry of Materials, 2019, 31, 3909-3916.	6.7	55
22	Enhanced intrinsic white-light emission upon near-UV excitation by crystal engineering of cationic lead bromide layered materials. Journal of Materials Chemistry C, 2019, 7, 7090-7095.	5.5	12
23	Intrinsic Whiteâ€Lightâ€Emitting Metal–Organic Frameworks with Structurally Deformable Secondary Building Units. Angewandte Chemie, 2019, 131, 7900-7904.	2.0	10
24	Intrinsic Whiteâ€Lightâ€Emitting Metal–Organic Frameworks with Structurally Deformable Secondary Building Units. Angewandte Chemie - International Edition, 2019, 58, 7818-7822.	13.8	79
25	In Situ Generation of an Nâ€Heterocyclic Carbene Functionalized Metal–Organic Framework by Postsynthetic Ligand Exchange: Efficient and Selective Hydrosilylation of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 2844-2849.	13.8	73
26	In Situ Generation of an Nâ€Heterocyclic Carbene Functionalized Metal–Organic Framework by Postsynthetic Ligand Exchange: Efficient and Selective Hydrosilylation of CO 2. Angewandte Chemie, 2019, 131, 2870-2875.	2.0	25
27	Uio-Type Metal-Organic Framework Thin Film with Redox-Active Linkers: Development and Charge Transport Behavior. ECS Meeting Abstracts, 2019, , .	0.0	0
28	Uio-Type Metal-Organic Framework Thin Film with Redox-Active Linkers: Development and Charge Transport Behavior. ECS Meeting Abstracts, 2019, , .	0.0	0
29	Cationic two-dimensional inorganic networks of antimony oxide hydroxide for Lewis acid catalysis. Dalton Transactions, 2018, 47, 4054-4058.	3.3	6
30	An alkaline-resistant Ag(<scp>i</scp>)-anchored pyrazolate-based metal–organic framework for chemical fixation of CO ₂ . Chemical Communications, 2018, 54, 4469-4472.	4.1	48
31	Unusual Missing Linkers in an Organosulfonate-Based Primitive–Cubic (pcu)-Type Metal–Organic Framework for CO ₂ Capture and Conversion under Ambient Conditions. ACS Catalysis, 2018, 8, 2519-2525.	11,2	125
32	Functionalization of Metal–Organic Frameworks for Photoactive Materials. Advanced Materials, 2018, 30, e1705634.	21.0	133
33	Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. Journal of the American Chemical Society, 2018, 140, 2985-2994.	13.7	113
34	Ultrastable, cationic three-dimensional lead bromide frameworks that intrinsically emit broadband white-light. Chemical Science, 2018, 9, 1627-1633.	7.4	56
35	Enhanced Electrocatalytic Oxygen Evolution by Exfoliation of a Metal–Organic Framework Containing Cationic One-Dimensional [Co ₄ (OH) ₂] ⁶⁺ Chains. ACS Applied Energy Materials, 2018, 1, 2446-2451.	5.1	19
36	A generic and facile strategy to fabricate metal–organic framework films on TiO ₂ substrates for photocatalysis. Dalton Transactions, 2017, 46, 2751-2755.	3.3	18

#	Article	IF	CITATIONS
37	Exfoliation of a two-dimensional cationic inorganic network as a new paradigm for high-capacity Cr ^{VI} -anion capture. Chemical Communications, 2017, 53, 7064-7067.	4.1	37
38	Missing metal-linker connectivities in a 3-D robust sulfonate-based metal–organic framework for enhanced proton conductivity. Chemical Communications, 2017, 53, 4156-4159.	4.1	42
39	Intrinsic Broadband Whiteâ€Light Emission from Ultrastable, Cationic Lead Halide Layered Materials. Angewandte Chemie - International Edition, 2017, 56, 14411-14416.	13.8	115
40	Intrinsic Broadband Whiteâ€Light Emission from Ultrastable, Cationic Lead Halide Layered Materials. Angewandte Chemie, 2017, 129, 14603-14608.	2.0	16
41	A Robust Sulfonate-Based Metal–Organic Framework with Permanent Porosity for Efficient CO ₂ Capture and Conversion. Chemistry of Materials, 2016, 28, 6276-6281.	6.7	180
42	Characterization of core–shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry. Analyst, The, 2015, 140, 1510-1515.	3 . 5	12
43	Metalation of a Thiocatechol-Functionalized Zr(IV)-Based Metal–Organic Framework for Selective C–H Functionalization. Journal of the American Chemical Society, 2015, 137, 2191-2194.	13.7	234
44	Photocatalytic CO ₂ Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal–Organic Framework. Inorganic Chemistry, 2015, 54, 6821-6828.	4.0	293
45	Erbium Hydroxide Ethanedisulfonate: A Cationic Layered Material with Organic Anion Exchange Capability. Inorganic Chemistry, 2015, 54, 3883-3888.	4.0	12
46	Photocatalytic CO ₂ reduction using visible light by metal-monocatecholato species in a metal–organic framework. Chemical Communications, 2015, 51, 16549-16552.	4.1	119
47	Functionalization of robust Zr(<scp>iv</scp>)-based metal–organic framework films via a postsynthetic ligand exchange. Chemical Communications, 2015, 51, 66-69.	4.1	107
48	Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18442-18447.	7.1	76
49	Reusable Oxidation Catalysis Using Metal-Monocatecholato Species in a Robust Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 4965-4973.	13.7	264
50	A robust, catalytic metal–organic framework with open 2,2′-bipyridine sites. Chemical Communications, 2014, 50, 4810-4812.	4.1	199
51	Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 16997-17003.	13.7	501
52	Synthesis and magnetic properties of a 3-D nickel hydroxide capped by succinate. Journal of Materials Chemistry C, 2013, 1, 1099-1104.	5 . 5	2
53	A Cationic Metal–Organic Solid Solution Based on Co(II) and Zn(II) for Chromate Trapping. Chemistry of Materials, 2013, 25, 647-652.	6.7	132
54	Tandem Postsynthetic Metal Ion and Ligand Exchange in Zeolitic Imidazolate Frameworks. Inorganic Chemistry, 2013, 52, 4011-4016.	4.0	209

#	Article	IF	CITATIONS
55	Solid-state dye-sensitized solar cells from polymer-templated TiO ₂ bilayer thin films. Canadian Journal of Chemistry, 2012, 90, 1048-1055.	1.1	0
56	Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 18082-18088.	13.7	702
57	A Cationic Antimonite Chain Templated by Sulfate: [Sb6O74+][(SO42–)2]. Inorganic Chemistry, 2012, 51, 8655-8657.	4.0	9
58	Anion Exchange of the Cationic Layered Material [Pb ₂ F ₂] ²⁺ . Journal of the American Chemical Society, 2012, 134, 10729-10732.	13.7	49
59	A New Paradigm for Anion Trapping in High Capacity and Selectivity: Crystal-to-Crystal Transformation of Cationic Materials. Journal of the American Chemical Society, 2011, 133, 11110-11113.	13.7	245
60	Copper Hydroxide Ethanedisulfonate: A Cationic Inorganic Layered Material for High apacity Anion Exchange. Angewandte Chemie - International Edition, 2011, 50, 9066-9070.	13.8	60
61	Synthesis, Characterization, and Catalytic Application of a Cationic Metalâ^'Organic Framework: Ag ₂ (4,4′-bipy) ₂ (O ₃ SCH ₂ Chemistry of Materials, 2010, 22, 2027-2032, Hydrothermal Synthesis of Two Cationic Bismuthate Clusters: An Alkylenedisulfonate Bridged	ıb ø) 7	45
62	Hexamer, [Bi ₆ O ₄ (OH) ₄ (H ₂ O) ₂][(CH ₂) <sub [bi₉ O ₈ (OH) ₆][CF ₃ SO ₃] ₅ .	>2	(SQ _{3<!--</td-->}
63	Inorganic Chemistry, 2010, 49, 5619-5624. Reversible Anion Exchange and Catalytic Properties of Two Cationic Metalâ^Organic Frameworks Based on Cu(I) and Ag(I). Journal of the American Chemical Society, 2010, 132, 7202-7209.	13.7	260
64	Two cationic metal–organic frameworks based on cadmium and α,ï‰-alkanedisulfonate anions and their photoluminescent properties. Dalton Transactions, 2010, 39, 11193.	3.3	15
65	Polymer-Templated Nanospider TiO ₂ Thin Films for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & ACS ACS Applied Materials & ACS	8.0	25
66	Polymer Gel Templating of Free-Standing Inorganic Monoliths for Photocatalysis. Langmuir, 2009, 25, 5835-5839.	3.5	18
67	Preparation and properties of Eu2 +-activated alkaline-earth phosphosilicate phosphors. Solid State Communications, 2008, 148, 186-189.	1.9	6