Xinzhe Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/782888/publications.pdf

Version: 2024-02-01

304743 361022 2,264 36 22 35 citations h-index g-index papers 37 37 37 3714 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Catalytically active atomically thin cuprate with periodic Cu single sites. National Science Review, 2023, 10 , .	9.5	2
2	Atomically Precise Single Metal Oxide Cluster Catalyst with Oxygen ontrolled Activity. Advanced Functional Materials, 2022, 32, .	14.9	13
3	Engineering Ru/MnCo ₃ O _{<i>x</i>} for 1,2-Dichloroethane Benign Destruction by Strengthening C–Cl Cleavage and Chlorine Desorption: Decisive Role of H ₂ O and Reaction Mechanism. ACS Catalysis, 2022, 12, 8776-8792.	11.2	23
4	Atomically Dispersed Fe–Heteroatom (N, S) Bridge Sites Anchored on Carbon Nanosheets for Promoting Oxygen Reduction Reaction. ACS Energy Letters, 2021, 6, 379-386.	17.4	167
5	Electrochemically Exfoliated Platinum Dichalcogenide Atomic Layers for High-Performance Air-Stable Infrared Photodetectors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8518-8527.	8.0	23
6	Atomically Dispersed Indium Sites for Selective CO ₂ Electroreduction to Formic Acid. ACS Nano, 2021, 15, 5671-5678.	14.6	121
7	Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nature Communications, 2021, 12, 2351.	12.8	83
8	General, Metalâ€free Synthesis of Carbon Nanofiber Assemblies from Plant Oils. Angewandte Chemie - International Edition, 2021, 60, 24257-24265.	13.8	15
9	Two-dimensional monoelemental germanene nanosheets: facile preparation and optoelectronic applications. Journal of Materials Chemistry C, 2020, 8, 16318-16325.	5.5	23
10	Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nature Communications, 2020, 11, 4389.	12.8	110
11	Real-Space Imaging of a Single-Molecule Monoradical Reaction. Journal of the American Chemical Society, 2020, 142, 13550-13557.	13.7	14
12	Activating Basal Planes of NiPS ₃ for Hydrogen Evolution by Nonmetal Heteroatom Doping. Advanced Functional Materials, 2020, 30, 1908708.	14.9	96
13	Controllable nonlinear optical properties of different-sized iron phosphorus trichalcogenide (FePS3) nanosheets. Nanophotonics, 2020, 9, 4555-4564.	6.0	9
14	NiPS ₃ nanoflakes: a nonlinear optical material for ultrafast photonics. Nanoscale, 2019, 11, 14383-14391.	5.6	34
15	A Robust 2D Photoâ€Electrochemical Detector Based on NiPS ₃ Flakes. Advanced Electronic Materials, 2019, 5, 1900726.	5.1	36
16	Highâ€Yield Electrochemical Production of Largeâ€Sized and Thinly Layered NiPS ₃ Flakes for Overall Water Splitting. Small, 2019, 15, e1902427.	10.0	62
17	Janus electrochemical exfoliation of two-dimensional materials. Journal of Materials Chemistry A, 2019, 7, 25691-25711.	10.3	41
18	Encapsulating Co ₂ P@C Core–Shell Nanoparticles in a Porous Carbon Sandwich as Dualâ€Doped Electrocatalyst for Hydrogen Evolution. ChemSusChem, 2018, 11, 376-388.	6.8	45

#	Article	IF	CITATIONS
19	Coaxial ultrathin Co1â^'yFeyOx nanosheet coating on carbon nanotubes for water oxidation with excellent activity. RSC Advances, 2016, 6, 80613-80620.	3.6	15
20	Ultrafine Co ₂ P nanoparticles encapsulated in nitrogen and phosphorus dual-doped porous carbon nanosheet/carbon nanotube hybrids: high-performance bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 15501-15510.	10.3	90
21	Pd nanoparticles supported on amino-functionalized magnetic mesoporous silica nanotubes: a highly selective catalyst for the catalytic hydrodechlorination reaction. RSC Advances, 2016, 6, 76582-76589.	3.6	10
22	Nitrogen-doped mesoporous carbon nanosheet/carbon nanotube hybrids as metal-free bi-functional electrocatalysts for water oxidation and oxygen reduction. Journal of Materials Chemistry A, 2016, 4, 13133-13141.	10.3	116
23	Controllable orientation-dependent crystal growth of high-index faceted dendritic NiC _{0.2} nanosheets as high-performance bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 18499-18508.	10.3	51
24	Co@Co ₃ O ₄ coreâ€"shell particle encapsulated N-doped mesoporous carbon cage hybrids as active and durable oxygen-evolving catalysts. Dalton Transactions, 2016, 45, 5575-5582.	3.3	53
25	Precious-metal-free Co–Fe–O _x coupled nitrogen-enriched porous carbon nanosheets derived from Schiff-base porous polymers as superior electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 6505-6512.	10.3	89
26	Programmed Synthesis Palladium Supported on Fe3O4@C: An Efficient and Heterogeneous Recyclable Catalyst for One-Pot Reductive Amination of Aldehydes with Nitroarenes in Aqueous Reaction Medium. Catalysis Letters, 2015, 145, 1591-1599.	2.6	15
27	Mesoporous titanium dioxide coating on gold modified silica nanotubes: a tube-in-tube titanium nanostructure for visible-light photocatalysts. RSC Advances, 2015, 5, 69962-69969.	3.6	8
28	MOF derived Co ₃ O ₄ nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR. Journal of Materials Chemistry A, 2015, 3, 17392-17402.	10.3	351
29	Cobalt(II) acetylacetonate covalently anchored onto magnetic mesoporous silica nanospheres as a catalyst for epoxidation of olefins. Materials Chemistry and Physics, 2015, 156, 9-15.	4.0	17
30	Synthesis of Cu–MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. Journal of Power Sources, 2015, 292, 15-22.	7.8	214
31	Ultrathin PdTe nanowires anchoring reduced graphene oxide cathodes for efficient hydrogen evolution reaction. Nanoscale, 2015, 7, 18441-18445.	5.6	54
32	Ultrasonication-assisted ultrafast preparation of multiwalled carbon nanotubes/Au/Co3O4 tubular hybrids as superior anode materials for oxygen evolution reaction. Journal of Power Sources, 2015, 300, 285-293.	7.8	65
33	MoS ₂ quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 21772-21778.	10.3	127
34	Preparation of recoverable Fe ₃ O ₄ @PANIâ€"Pd ^{II} core/shell catalysts for Suzuki carbonylative cross-coupling reactions. New Journal of Chemistry, 2014, 38, 4622-4627.	2.8	34
35	Programmed synthesis of magnetic mesoporous silica nanotubes with tiny Au nanoparticles: a highly novel catalyst system. Journal of Materials Chemistry A, 2014, 2, 10485.	10.3	36
36	General, metalâ€free synthesis of carbon nanofiber assemblies from plant oils. Angewandte Chemie, 0, , .	2.0	2