Xuhui Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7827325/publications.pdf

Version: 2024-02-01

190	15,724	58	118
papers	citations	h-index	g-index
199	199	199	13081 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 2001, 82, 2415-2434.	1.7	3,018
2	Strong contributions of local background climate to urban heat islands. Nature, 2014, 511, 216-219.	13.7	913
3	Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology, 2002, 113, 121-144.	1.9	563
4	Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 2011, 479, 384-387.	13.7	543
5	On micrometeorological observations of surface-air exchange over tall vegetation. Agricultural and Forest Meteorology, 1998, 91, 39-49.	1.9	425
6	Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biology, 1996, 2, 219-229.	4.2	391
7	Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology, 2006, 137, 125-137.	1.9	369
8	Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. Journal of Geophysical Research, 1997, 102, 28915-28927.	3.3	340
9	Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 2017, 44, 2792-2801.	1.5	308
10	Urban heat islands in China enhanced by haze pollution. Nature Communications, 2016, 7, 12509.	5.8	286
11	Rapid and transient response of soil respiration to rain. Global Change Biology, 2004, 10, 1017-1026.	4.2	228
12	Interaction between urban heat island and urban pollution island during summer in Berlin. Science of the Total Environment, 2018, 636, 818-828.	3.9	214
13	A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. International Journal of Applied Earth Observation and Geoinformation, 2019, 74, 269-280.	1.4	174
14	Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nature Geoscience, 2018, 11, 410-414.	5.4	164
15	Intermittent Turbulence Associated with a Density Current Passage in the Stable Boundary Layer. Boundary-Layer Meteorology, 2002, 105, 199-219.	1.2	159
16	Nitrous oxide emissions are enhanced in a warmer and wetter world. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12081-12085.	3.3	155
17	Characteristics of shortwave and longwave irradiances under a Douglas-fir forest stand. Canadian Journal of Forest Research, 1991, 21, 1020-1028.	0.8	141
18	Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences, 2012, 9, 3083-3111.	1.3	138

#	Article	IF	Citations
19	Comparing the carbon budgets of boreal and temperate deciduous forest stands. Canadian Journal of Forest Research, 2002, 32, 813-822.	0.8	136
20	$\langle i \rangle \hat{l}' \langle i \rangle \langle \sup 18 \langle \sup 0 \rangle$ of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy. Plant, Cell and Environment, 2008, 31, 1214-1228.	2.8	136
21	In Situ Measurement of the Water Vapor 180/160 Isotope Ratio for Atmospheric and Ecological Applications. Journal of Atmospheric and Oceanic Technology, 2005, 22, 555-565.	0.5	135
22	Long-term observation of the atmospheric exchange of CO2with a temperate deciduous forest in southern Ontario, Canada. Journal of Geophysical Research, 1999, 104, 15975-15984.	3.3	134
23	Identification and correction of spectral contamination in $\langle \sup 2 \langle \sup \rangle H \langle \sup \rangle 1 \langle \sup \rangle H$ and $\langle \sup \rangle 1 \langle \sup$	0.7	132
24	Indirect nitrous oxide emissions from streams within the US Corn Belt scale with stream order. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9839-9843.	3.3	131
25	Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 2021, 301-302, 108350.	1.9	125
26	Emission and Long-Range Transport of Gaseous Mercury from a Large-Scale Canadian Boreal Forest Fire. Environmental Science & Eamp; Technology, 2003, 37, 4343-4347.	4.6	121
27	Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Science Advances, 2021, 7, .	4.7	120
28	Comparing the diurnal and seasonal variabilities of atmospheric and surface urban heat islands based on the Beijing urban meteorological network. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2131-2154.	1.2	109
29	Urban warming advances spring phenology but reduces the response of phenology to temperature in the conterminous United States. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4228-4233.	3.3	109
30	Atmospheric turbulence within and above a douglas-fir stand. Part II: Eddy fluxes of sensible heat and water vapour. Boundary-Layer Meteorology, 1993, 64, 369-389.	1.2	108
31	Water vapour ¹⁸ O/ ¹⁶ O isotope ratio in surface air in New England, USA. Tellus, Series B: Chemical and Physical Meteorology, 2022, 58, 293.	0.8	106
32	Amplified Urban Heat Islands during Heat Wave Periods. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7797-7812.	1.2	106
33	Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1597-1614.	1.3	102
34	The seasonal water and energy exchange above and within a boreal aspen forest. Journal of Hydrology, 2001, 245, 118-136.	2.3	100
35	Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. Journal of Hydrology, 2008, 349, 489-500.	2.3	99
36	Elevated methane concentrations in trees of an upland forest. Geophysical Research Letters, 2012, 39, .	1.5	99

#	Article	IF	Citations
37	Advance of tree-flowering dates in response to urban climate change. Agricultural and Forest Meteorology, 2006, 138, 120-131.	1.9	94
38	Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland. Agricultural and Forest Meteorology, 2016, 230-231, 89-96.	1.9	90
39	Water vapor and precipitation isotope ratios in Beijing, China. Journal of Geophysical Research, 2010, 115, .	3.3	89
40	Response of surface air temperature to small-scale land clearing across latitudes. Environmental Research Letters, 2014, 9, 034002.	2.2	89
41	Temporal variations of the ¹⁸ 0/ ¹⁶ O signal of the wholeâ€canopy transpiration in a temperate forest. Global Biogeochemical Cycles, 2007, 21, .	1.9	87
42	Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China. Journal of Hydrology, 2014, 511, 811-824.	2.3	85
43	Eutrophic Lake Taihu as a significant CO2 source during 2000–2015. Water Research, 2020, 170, 115331.	5.3	85
44	Air motion within and above forest vegetation in non-ideal conditions. Forest Ecology and Management, 2000, 135, 3-18.	1.4	84
45	Forest-Air Fluxes Of Carbon, Water And Energy Over Non-Flat Terrain. Boundary-Layer Meteorology, 2002, 103, 277-301.	1.2	79
46	A metaâ€analysis of water vapor deuteriumâ€excess in the midlatitude atmospheric surface layer. Global Biogeochemical Cycles, 2012, 26, .	1.9	78
47	The Taihu Eddy Flux Network: An Observational Program on Energy, Water, and Greenhouse Gas Fluxes of a Large Freshwater Lake. Bulletin of the American Meteorological Society, 2014, 95, 1583-1594.	1.7	77
48	Accumulation of Terrestrial Dissolved Organic Matter Potentially Enhances Dissolved Methane Levels in Eutrophic Lake Taihu, China. Environmental Science & Enp.; Technology, 2018, 52, 10297-10306.	4.6	76
49	Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 903-917.	1.3	74
50	Micrometeorological fluxes under the influence of regional and local advection: a revisit. Agricultural and Forest Meteorology, 2004, 122, 111-124.	1.9	73
51	Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China. Environmental Pollution, 2017, 231, 654-662.	3.7	72
52	Reconciling the differences between topâ€down and bottomâ€up estimates of nitrous oxide emissions for the U.S. Corn Belt. Global Biogeochemical Cycles, 2013, 27, 746-754.	1.9	71
53	Coherent eddies and temperature structure functions for three contrasting surfaces. Part I: Ramp model with finite microfront time. Boundary-Layer Meteorology, 1997, 84, 99-124.	1.2	70
54	Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China. Oecologia, 2012, 168, 549-561.	0.9	70

#	Article	IF	CITATIONS
55	Direct measurement of biosphereâ€atmosphere isotopic CO ₂ exchange using the eddy covariance technique. Journal of Geophysical Research, 2008, 113, .	3.3	67
56	Microclimatology of treeline spruce?fir forests in mountains of the northeastern United States. Agricultural and Forest Meteorology, 2004, 125, 53-66.	1.9	65
57	Evapotranspiration partitioning for three agro-ecosystems with contrasting moisture conditions: a comparison of an isotope method and a two-source model calculation. Agricultural and Forest Meteorology, 2018, 252, 296-310.	1.9	65
58	Nocturnal mixing in a forest subcanopy. Agricultural and Forest Meteorology, 2000, 101, 67-78.	1.9	63
59	Stable Sulfur Isotopes Revealed a Major Role of Transition-Metal Ion-Catalyzed SO ₂ Oxidation in Haze Episodes. Environmental Science & Envir	4.6	63
60	Assessment of carbonaceous aerosols in Shanghai, China – Part 1: long-term evolution, seasonal variations, and meteorological effects. Atmospheric Chemistry and Physics, 2017, 17, 9945-9964.	1.9	62
61	Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9552-9564.	1.2	60
62	Canopyâ€scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Global Biogeochemical Cycles, 2009, 23, .	1.9	59
63	High Contribution of Nonfossil Sources to Submicrometer Organic Aerosols in Beijing, China. Environmental Science & Environmen	4.6	58
64	Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia. Earth and Planetary Science Letters, 2018, 488, 181-192.	1.8	58
65	Determining the Oxygen Isotope Composition of Evapotranspiration Using Eddy Covariance. Boundary-Layer Meteorology, 2010, 137, 307-326.	1.2	57
66	A Perspective on Thirty Years of the Webb, Pearman and Leuning Density Corrections. Boundary-Layer Meteorology, 2011, 139, 37-59.	1.2	57
67	Assessing the use of subgrid land model output to study impacts of land cover change. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6133-6147.	1.2	57
68	Evidence for a Rising Cloud Ceiling in Eastern North America*. Journal of Climate, 2003, 16, 2093-2098.	1.2	57
69	Feasibility of quantifying ecosystem–atmosphere C18O16O exchange using laser spectroscopy and the flux-gradient method. Agricultural and Forest Meteorology, 2005, 135, 44-60.	1.9	55
70	Regionalâ€scale controls on dissolved nitrous oxide in the Upper Mississippi River. Geophysical Research Letters, 2016, 43, 4400-4407.	1.5	54
71	Coregulation of nitrous oxide emissions by nitrogen and temperature in China's third largest freshwater lake (Lake Taihu). Limnology and Oceanography, 2019, 64, 1070-1086.	1.6	54
72	Partitioning of evapotranspiration through oxygen isotopic measurements of water pools and fluxes in a temperate grassland. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 358-372.	1.3	53

#	Article	IF	CITATIONS
73	Coherent eddies and temperature structure functions for three contrasting surfaces. Part II: Renewal model for sensible heat flux. Boundary-Layer Meteorology, 1997, 84, 125-147.	1.2	51
74	Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level. Journal of Hydrology, 2018, 561, 59-75.	2.3	50
75	On the land emissivity assumption and Landsat-derived surface urban heat islands: A global analysis. Remote Sensing of Environment, 2021, 265, 112682.	4.6	48
76	Atmospheric turbulence within and above a Douglas-fir stand. Part I: Statistical properties of the velocity field. Boundary-Layer Meteorology, 1993, 64, 149-174.	1.2	46
77	Transfer Coefficients of Momentum, Heat and Water Vapour in the Atmospheric Surface Layer of a Large Freshwater Lake. Boundary-Layer Meteorology, 2013, 148, 479-494.	1.2	46
78	Chemical and optical properties of carbonaceous aerosols in Nanjing, eastern China: regionally transported biomass burning contribution. Atmospheric Chemistry and Physics, 2019, 19, 11213-11233.	1.9	46
79	Carbon dioxide exchange and nocturnal processes over a mixed deciduous forest. Agricultural and Forest Meteorology, 1996, 81, 13-29.	1.9	45
80	A Modelling Study of Flux Imbalance and the Influence of Entrainment in the Convective Boundary Layer. Boundary-Layer Meteorology, 2008, 127, 273-292.	1.2	45
81	Reduction in human activity can enhance the urban heat island: insights from the COVID-19 lockdown. Environmental Research Letters, 2021, 16, 054060.	2.2	45
82	Evaluation of the CLM4 Lake Model at a Large and Shallow Freshwater Lake*. Journal of Hydrometeorology, 2013, 14, 636-649.	0.7	44
83	Observation of gravity waves in a boreal forest. Boundary-Layer Meteorology, 1997, 84, 383-398.	1.2	43
84	Oxygen isotope composition of evapotranspiration and its relation to C ₄ photosynthetic discrimination. Journal of Geophysical Research, 2011, 116, .	3.3	41
85	Modeling biophysical controls on canopy foliage water ¹⁸ 0 enrichment in wheat and corn. Global Change Biology, 2012, 18, 1769-1780.	4.2	41
86	Environmental investments decreased partial pressure of CO2 in a small eutrophic urban lake: Evidence from long-term measurements. Environmental Pollution, 2020, 263, 114433.	3.7	41
87	Gaseous mercury in background forest soil in the northeastern United States. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	40
88	A wedge strategy for mitigation of urban warming in future climate scenarios. Atmospheric Chemistry and Physics, 2017, 17, 9067-9080.	1.9	39
89	A Flux-Gradient System for Simultaneous Measurement of the CH ₄ , CO ₂ , and H ₂ O Fluxes at a Lake–Air Interface. Environmental Science & Environmental Environmental Science & Environmental Env	4.6	38
90	Surface nitrous oxide concentrations and fluxes from water bodies of the agricultural watershed in Eastern China. Environmental Pollution, 2019, 251, 185-192.	3.7	38

#	Article	IF	Citations
91	The fertilization effect of global dimming on crop yields is not attributed to an improved light interception. Global Change Biology, 2020, 26, 1697-1713.	4.2	37
92	Dissimilarity of Scalar Transport in the Convective Boundary Layer in Inhomogeneous Landscapes. Boundary-Layer Meteorology, 2009, 130, 327-345.	1.2	36
93	Evaluating calibration strategies for isotope ratio infrared spectroscopy for atmospheric & amp;lt;sup>13CO ₂ / & amp;lt;sup>12CO ₂ measurement. Atmospheric Measurement Techniques, 2013, 6, 1491-1501.	1.2	36
94	Response of Surface Temperature to Afforestation in the Kubuqi Desert, Inner Mongolia. Journal of Geophysical Research D: Atmospheres, 2018, 123, 948-964.	1.2	36
95	Eutrophication and temperature drive large variability in carbon dioxide from China's Lake Taihu. Limnology and Oceanography, 2022, 67, 379-391.	1.6	36
96	Climatology of gravity waves in a forest. Quarterly Journal of the Royal Meteorological Society, 1998, 124, 1403-1419.	1.0	35
97	Transition of stable isotope ratios of leaf water under simulated dew formation. Plant, Cell and Environment, 2011, 34, 1790-1801.	2.8	35
98	Intercomparison of Four Commercial Analyzers for Water Vapor Isotope Measurement. Journal of Atmospheric and Oceanic Technology, 2012, 29, 235-247.	0.5	35
99	A highly agricultural river network in Jurong Reservoir watershed as significant CO2 and CH4 sources. Science of the Total Environment, 2021, 769, 144558.	3.9	35
100	Meteorological controls on daily variations of nighttime surface urban heat islands. Remote Sensing of Environment, 2021, 253, 112198.	4.6	34
101	Diurnal and Seasonal Variations of Thermal Stratification and Vertical Mixing in a Shallow Fresh Water Lake. Journal of Meteorological Research, 2018, 32, 219-232.	0.9	33
102	Partitioning N ₂ O emissions within the U.S. Corn Belt using an inverse modeling approach. Global Biogeochemical Cycles, 2016, 30, 1192-1205.	1.9	32
103	Isotopic enrichment of liquid water during evaporation from water surfaces. Journal of Hydrology, 2011, 399, 364-375.	2.3	31
104	Greenhouse trace gases in deadwood. Biogeochemistry, 2016, 130, 215-226.	1.7	31
105	Temporal Dynamics of Aerodynamic Canopy Height Derived From Eddy Covariance Momentum Flux Data Across North American Flux Networks. Geophysical Research Letters, 2018, 45, 9275-9287.	1.5	31
106	A global database of water vapor isotopes measured with high temporal resolution infrared laser spectroscopy. Scientific Data, 2019, 6, 180302.	2.4	31
107	Gravity Waves in a Forest: A Linear Analysis. Journals of the Atmospheric Sciences, 1997, 54, 2574-2585.	0.6	30
108	A Large-Eddy Simulation Study of Water Vapour and Carbon Dioxide Isotopes in the Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2012, 145, 229-248.	1.2	30

#	Article	IF	Citations
109	A Modeling Study of Direct and Indirect N ₂ 0 Emissions From a Representative Catchment in the U.S. Corn Belt. Water Resources Research, 2018, 54, 3632-3653.	1.7	30
110	A modeling investigation of canopy $\hat{\epsilon}$ ir oxygen isotopic exchange of water vapor and carbon dioxide in a soybean field. Journal of Geophysical Research, 2010, 115, .	3.3	29
111	Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer. Atmospheric Chemistry and Physics, 2016, 16, 5139-5157.	1.9	29
112	Large interannual variability in net ecosystem carbon dioxide exchange of a disturbed temperate peatland. Science of the Total Environment, 2016, 554-555, 192-202.	3.9	27
113	Spatiotemporal variability of the near-surface CO2 concentration across an industrial-urban-rural transect, Nanjing, China. Science of the Total Environment, 2018, 631-632, 1192-1200.	3.9	27
114	Persistent Increases in Nighttime Heat Stress From Urban Expansion Despite Heat Island Mitigation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033831.	1.2	27
115	Short-term effects of rain on soil respiration in two New England forests. Plant and Soil, 2011, 338, 329-342.	1.8	26
116	An evaluation of the flux-gradient and the eddy covariance method to measure CH4, CO2, and H2O fluxes from small ponds. Agricultural and Forest Meteorology, 2019, 275, 255-264.	1.9	26
117	Methane flux dynamics in a submerged aquatic vegetation zone in a subtropical lake. Science of the Total Environment, 2019, 672, 400-409.	3.9	26
118	Fundamentals of Boundary-Layer Meteorology. Springer Atmospheric Sciences, 2018, , .	0.4	25
119	Measuring Landscape Albedo Using Unmanned Aerial Vehicles. Remote Sensing, 2018, 10, 1812.	1.8	24
120	Large methane emissions from natural gas vehicles in Chinese cities. Atmospheric Environment, 2018, 187, 374-380.	1.9	24
121	Land Cover Regulates the Spatial Variability of Temperature Response to the Direct Radiative Effect of Aerosols. Geophysical Research Letters, 2019, 46, 8995-9003.	1.5	24
122	Modelling the effect of mean pressure gradient on the mean flow within forests. Agricultural and Forest Meteorology, 1994, 68, 201-212.	1.9	23
123	Recent trends in anthropogenic mercury emission in the northeast United States. Journal of Geophysical Research, 2006, 111, .	3.3	23
124	Taxonomy of seasonal and diurnal clear-sky climatology of surface urban heat island dynamics across global cities. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187, 14-33.	4.9	23
125	Pressure correction to the long-term measurement of carbon dioxide flux. Agricultural and Forest Meteorology, 2011, 151, 70-77.	1.9	22
126	Characteristics and origins of air pollutants and carbonaceous aerosols during wintertime haze episodes at a rural site in the Yangtze River Delta, China. Atmospheric Pollution Research, 2017, 8, 900-911.	1.8	21

#	Article	IF	CITATIONS
127	An Experimental Investigation of Kinetic Fractionation of Openâ€Water Evaporation Over a Large Lake. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,651.	1.2	21
128	Four-band Thermal Mosaicking: A New Method to Process Infrared Thermal Imagery of Urban Landscapes from UAV Flights. Remote Sensing, 2019, 11, 1365.	1.8	21
129	A Numerical Study Of Nocturnal Wavelike Motion In Forests. Boundary-Layer Meteorology, 2002, 102, 199-223.	1.2	20
130	Fetch and Footprint of Turbulent Fluxes over Vegetative Stands with Elevated Sources. Boundary-Layer Meteorology, 2003, 107, 561-579.	1.2	20
131	Trends in evaporation of a large subtropical lake. Theoretical and Applied Climatology, 2017, 129, 159-170.	1.3	20
132	Comparison of flux measurements with open- and closed-path gas analyzers above an agricultural field and a forest floor. Boundary-Layer Meteorology, 1994, 67, 195-202.	1.2	19
133	Use of the isotope flux ratio approach to investigate the C ¹⁸ O ¹⁸ CO ₂ exchange near the floor of a temperate deciduous forest. Biogeosciences. 2012. 9. 2385-2399.	1.3	19
134	Spatiotemporal Characteristics of Lake Breezes over Lake Taihu, China. Journal of Applied Meteorology and Climatology, 2017, 56, 2053-2065.	0.6	19
135	Interpreting the ¹³ C â^•â€ ^{12<td>np;gt;C 1.9</td><td>19</td>}	np;gt;C 1.9	19
136	Impact of Aerosol Shortwave Radiative Heating on Entrainment in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study. Journals of the Atmospheric Sciences, 2019, 76, 785-799.	0.6	19
137	Entrainment and budgets of heat, water vapor, and carbon dioxide in a convective boundary layer driven by time-varying forcing. Journal of Geophysical Research, 2011, 116, .	3.3	18
138	Estimating regional greenhouse gas fluxes: an uncertainty analysis of planetary boundary layer techniques and bottom-up inventories. Atmospheric Chemistry and Physics, 2014, 14, 10705-10719.	1.9	18
139	Topâ€Down Constraints on Anthropogenic CO ₂ Emissions Within an Agriculturalâ€Urban Landscape. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4674-4694.	1.2	18
140	Anthropogenic emission of mercury to the atmosphere in the northeast United States. Geophysical Research Letters, 2001, 28, 1231-1234.	1.5	17
141	A model for scalar advection inside canopies and application to footprint investigation. Agricultural and Forest Meteorology, 2004, 127, 131-141.	1.9	17
142	Priorities for Boundary Layer Meteorology Research in China. Bulletin of the American Meteorological Society, 2015, 96, ES149-ES151.	1.7	17
143	Spatial distribution and temporal variability of stable water isotopes in a large and shallow lake. Isotopes in Environmental and Health Studies, 2016, 52, 443-454.	0.5	17
144	Performance Evaluation of an Integrated Open-Path Eddy Covariance System in a Cold Desert Environment. Journal of Atmospheric and Oceanic Technology, 2016, 33, 2385-2399.	0.5	16

#	Article	IF	Citations
145	Landscape variations in understory PAR for a mixed deciduous forest in New England, USA. Agricultural and Forest Meteorology, 2003, 118, 137-141.	1.9	15
146	The utility of near-surface water vapor deuterium excess as an indicator of atmospheric moisture source. Journal of Hydrology, 2019, 577, 123923.	2.3	15
147	Strong Local Evaporative Cooling Over Land Due to Atmospheric Aerosols. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002491.	1.3	15
148	Reply to comment by Finnigan on "On micrometeorological observations of surface-air exchange over tall vegetationâ€. Agricultural and Forest Meteorology, 1999, 97, 65-67.	1.9	14
149	Constraining anthropogenic CH4 emissions in Nanjing and the Yangtze River Delta, China, using atmospheric CO2 and CH4 mixing ratios. Advances in Atmospheric Sciences, 2014, 31, 1343-1352.	1.9	14
150	Influence of Leaf Area Index on the Radiometric Resistance to Heat Transfer. Boundary-Layer Meteorology, 2016, 158, 105-123.	1.2	14
151	Anthropogenic Methane Emission and Its Partitioning for the Yangtze River Delta Region of China. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1148-1170.	1.3	14
152	Simulation of crop growth and energy and carbon dioxide fluxes at different time steps from hourly to daily. Hydrological Processes, 2007, 21, 2474-2492.	1.1	13
153	Investigation of the N2O emission strength in the U. S. Corn Belt. Atmospheric Research, 2017, 194, 66-77.	1.8	13
154	Influences of Root Hydraulic Redistribution on N ₂ O Emissions at AmeriFlux Sites. Geophysical Research Letters, 2018, 45, 5135-5143.	1.5	12
155	Radiation Controls the Interannual Variability of Evaporation of a Subtropical Lake. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031264.	1.2	12
156	Statistical estimation of next-day nighttime surface urban heat islands. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 176, 182-195.	4.9	12
157	Influence of leaf water potential on diurnal changes in CO2 and water vapour fluxes. Boundary-Layer Meteorology, 2007, 124, 161-181.	1.2	11
158	Are nitrous oxide emissions indirectly fueled by input of terrestrial dissolved organic nitrogen in a large eutrophic Lake Taihu, China?. Science of the Total Environment, 2020, 722, 138005.	3.9	11
159	Large methane emission from freshwater aquaculture ponds revealed by long-term eddy covariance observation. Agricultural and Forest Meteorology, 2021, 308-309, 108600.	1.9	11
160	Performance Evaluation of a Smart Mobile Air Temperature and Humidity Sensor for Characterizing Intracity Thermal Environment. Journal of Atmospheric and Oceanic Technology, 2020, 37, 1891-1905.	0.5	11
161	Quantifying nitrous oxide fluxes on multiple spatial scales in the Upper Midwest, USA. International Journal of Biometeorology, 2015, 59, 299-310.	1.3	10
162	Improving Lake-Breeze Simulation with WRF Nested LES and Lake Model over a Large Shallow Lake. Journal of Applied Meteorology and Climatology, 2019, 58, 1689-1708.	0.6	10

#	Article	IF	CITATIONS
163	A dataset of microclimate and radiation and energy fluxes from the Lake Taihu eddy flux network. Earth System Science Data, 2020, 12, 2635-2645.	3.7	10
164	Methane emission of a lake aquaculture farm and its response to ecological restoration. Agriculture, Ecosystems and Environment, 2022, 330, 107883.	2.5	10
165	The influence of plants on atmospheric methane in an agriculture-dominated landscape. International Journal of Biometeorology, 2014, 58, 819-833.	1.3	9
166	A Meta-Analysis of Open-Path Eddy Covariance Observations of Apparent CO2 Flux in Cold Conditions in FLUXNET. Journal of Atmospheric and Oceanic Technology, 2017, 34, 2475-2487.	0.5	9
167	The Effect of Aerosol Radiative Heating on Turbulence Statistics and Spectra in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study. Atmosphere, 2018, 9, 347.	1.0	9
168	Impact of Large-Scale Afforestation on Surface Temperature: A Case Study in the Kubuqi Desert, Inner Mongolia Based on the WRF Model. Forests, 2019, 10, 368.	0.9	9
169	Evapotranspiration Characteristics Distinct to Mangrove Ecosystems Are Revealed by Multipleâ€Site Observations and a Modified Twoâ€Source Model. Water Resources Research, 2019, 55, 11250-11273.	1.7	9
170	Seasonal Variations of CH4 Emissions in the Yangtze River Delta Region of China Are Driven by Agricultural Activities. Advances in Atmospheric Sciences, 2021, 38, 1537-1551.	1.9	9
171	Temporal Dynamics and Drivers of Ecosystem Metabolism in a Large Subtropical Shallow Lake (Lake) Tj ETQq $1\ 1$	0.784314 1.2	ł rgBT /Overlo
172	Ocean surface energy balance allows a constraint on the sensitivity of precipitation to global warming. Nature Communications, 2021, 12, 2115.	5 . 8	8
173	Modeling the Sources and Transport Processes During Extreme Ammonia Episodes in the U.S. Corn Belt. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031207.	1.2	7
174	A mechanistic investigation of the oasis effect in the Zhangye cropland in semiarid western China. Journal of Arid Environments, 2020, 176, 104120.	1.2	7
175	ISOLESC: A Coupled Isotopeâ€LSMâ€LESâ€Cloud Modeling System to Investigate the Water Budget in the Atmospheric Boundary Layer. Journal of Advances in Modeling Earth Systems, 2018, 10, 2589-2617.	1.3	6
176	Improving a Multilevel Turbulence Closure Model for a Shallow Lake in Comparison With Other 1â€D Models. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001971.	1.3	6
177	Large Differences in Diffuse Solar Radiation Among Current-Generation Reanalysis and Satellite-Derived Products. Journal of Climate, 2021, , 1-52.	1.2	6
178	Anthropogenic and natural controls on atmospheric & amp; t;i>î'< >û'>>>\footnote{\text{sub>}} variations in the Yangtze River delta: insights from a carbon isotope modeling framework. Atmospheric Chemistry and Physics, 2021, 21, 10015-10037.	2 </td <td>sub></td>	sub>
179	Temporal dynamics of oxygen isotope compositions of soil and canopy CO ₂ fluxes in a temperate deciduous forest. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 996-1013.	1.3	5
180	A Note on Alternatively Direct Measurement of the Transfer Resistance over Vegetation. Journal of Atmospheric and Oceanic Technology, 2002, 19, 1886-1890.	0.5	3

#	Article	IF	CITATIONS
181	Hydrologic implications of the isotopic kinetic fractionation of open-water evaporation. Science China Earth Sciences, 2018, 61, 1523-1532.	2.3	3
182	Biases in open-path carbon dioxide flux measurements: Roles of instrument surface heat exchange and analyzer temperature sensitivity. Agricultural and Forest Meteorology, 2021, 296, 108216.	1.9	3
183	Isotopic kinetic fractionation of evaporation from small water bodies. Journal of Hydrology, 2021, 603, 126974.	2.3	3
184	Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset. Scientific Data, 2021, 8, 238.	2.4	3
185	A global dataset on subgrid land surface climate (2015–2100) from the Community Earth System Model. Geoscience Data Journal, 2023, 10, 208-219.	1.8	3
186	Determining the Isotopic Composition of Surface Water Vapor Flux From Highâ€Frequency Observations Using Fluxâ€Gradient and Keeling Plot Methods. Earth and Space Science, 2021, 8, e2020EA001304.	1.1	2
187	Distinct surface response to black carbon aerosols. Atmospheric Chemistry and Physics, 2021, 21, 13797-13809.	1.9	2
188	A Scale-Separating Framework for Fusing Satellite Land Surface Temperature Products. Remote Sensing, 2022, 14, 983.	1.8	1
189	Quantifying the contribution of evaporation from Lake Taihu to precipitation with an isotope-based method. Isotopes in Environmental and Health Studies, 2022, , 1-19.	0.5	1
190	Reply to comment by Ted Michaels on "Recent trends in anthropogenic mercury emission in the northeast United States― Wasteâ€ŧoâ€energy's low mercury emissions. Journal of Geophysical Research, 2007, 112, .	3.3	0