## Jonathan Onorato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7827035/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Impact of varying side chain structure on organic electrochemical transistor performance: a series<br>of oligoethylene glycol-substituted polythiophenes. Journal of Materials Chemistry A, 2022, 10,<br>10738-10749. | 10.3 | 18        |
| 2  | In Situ Studies of the Swelling by an Electrolyte in Electrochemical Doping of Ethylene<br>Glycol-Substituted Polythiophene. ACS Applied Materials & Interfaces, 2022, 14, 29052-29060.                               | 8.0  | 13        |
| 3  | Correlating conductivity and Seebeck coefficient to doping within crystalline and amorphous<br>domains in poly(3â€(methoxyethoxyethoxy)thiophene). Journal of Polymer Science, 2021, 59, 2797-2808.                   | 3.8  | 11        |
| 4  | Algorithmically extracted morphology descriptions for predicting device performance.<br>Computational Materials Science, 2021, 197, 110599.                                                                           | 3.0  | 4         |
| 5  | Ionic Dopantâ€Induced Ordering Enhances the Thermoelectric Properties of a Polythiopheneâ€Based Block<br>Copolymer. Advanced Functional Materials, 2021, 31, 2106991.                                                 | 14.9 | 5         |
| 6  | Side chain engineering control of mixed conduction in oligoethylene glycol-substituted polythiophenes. Journal of Materials Chemistry A, 2021, 9, 21410-21423.                                                        | 10.3 | 25        |
| 7  | Complex Relationship between Side-Chain Polarity, Conductivity, and Thermal Stability in Molecularly<br>Doped Conjugated Polymers. Chemistry of Materials, 2021, 33, 741-753.                                         | 6.7  | 36        |
| 8  | Role of Postdeposition Thermal Annealing on Intracrystallite and Intercrystallite Structuring and<br>Charge Transport in Poly(3-hexylthiophene). ACS Applied Materials & Interfaces, 2021, 13, 999-1007.              | 8.0  | 19        |
| 9  | Enhanced miscibility and strain resistance of blended elastomer/π onjugated polymer composites<br>through side chain functionalization towards stretchable electronics. Polymer International, 2020,<br>69, 308-316.  | 3.1  | 3         |
| 10 | Elucidating the Influence of Side-Chain Circular Distribution on the Crack Onset Strain and Hole<br>Mobility of Near-Amorphous Indacenodithiophene Copolymers. Macromolecules, 2020, 53, 7511-7518.                   | 4.8  | 25        |
| 11 | Generalizable Framework for Algorithmic Interpretation of Thin Film Morphologies in Scanning<br>Probe Images. Journal of Chemical Information and Modeling, 2020, 60, 3387-3397.                                      | 5.4  | 10        |
| 12 | A Reversible Structural Phase Transition by Electrochemically-Driven Ion Injection into a Conjugated Polymer. Journal of the American Chemical Society, 2020, 142, 7434-7442.                                         | 13.7 | 74        |
| 13 | The Role of Tie Chains on the Mechanoâ€Electrical Properties of Semiconducting Polymer Films.<br>Advanced Electronic Materials, 2020, 6, 1901070.                                                                     | 5.1  | 21        |
| 14 | P-Type Electrochemical Doping Can Occur by Cation Expulsion in a High-Performing Polymer for<br>Organic Electrochemical Transistors. , 2020, 2, 254-260.                                                              |      | 53        |
| 15 | Dynamic reaction-induced phase separation in tunable, adaptive covalent networks. Chemical Science, 2020, 11, 5028-5036.                                                                                              | 7.4  | 41        |
| 16 | Morphological effects on polymeric mixed ionic/electronic conductors. Molecular Systems Design and Engineering, 2019, 4, 310-324.                                                                                     | 3.4  | 46        |
| 17 | Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors. Journal of the American Chemical Society, 2019, 141, 4345-4354.                                         | 13.7 | 179       |
| 18 | Influence of Side-Chain Chemistry on Structure and Ionic Conduction Characteristics of<br>Polythiophene Derivatives: A Computational and Experimental Study. Chemistry of Materials, 2019, 31,<br>1418-1429.          | 6.7  | 84        |

JONATHAN ONORATO

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Determination of the Molecular Weight of Conjugated Polymers with Diffusion-Ordered NMR<br>Spectroscopy. Chemistry of Materials, 2018, 30, 570-576.                                                                   | 6.7  | 44        |
| 20 | Assessing the Huang–Brown Description of Tie Chains for Charge Transport in Conjugated Polymers.<br>ACS Macro Letters, 2018, 7, 1333-1338.                                                                            | 4.8  | 79        |
| 21 | Spectral Signatures and Spatial Coherence of Bound and Unbound Polarons in P3HT Films: Theory<br>Versus Experiment. Journal of Physical Chemistry C, 2018, 122, 18048-18060.                                          | 3.1  | 70        |
| 22 | Unraveling the Effect of Conformational and Electronic Disorder in the Charge Transport Processes of Semiconducting Polymers. Advanced Functional Materials, 2018, 28, 1804142.                                       | 14.9 | 34        |
| 23 | Low Elastic Modulus and High Charge Mobility of Low-Crystallinity Indacenodithiophene-Based<br>Semiconducting Polymers for Potential Applications in Stretchable Electronics. Macromolecules,<br>2018, 51, 6352-6358. | 4.8  | 80        |
| 24 | An indacenodithiophene-based semiconducting polymer with high ductility for stretchable organic electronics. Polymer Chemistry, 2017, 8, 5185-5193.                                                                   | 3.9  | 38        |
| 25 | Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemicalÂtransistors. Nature Materials, 2017, 16, 737-742.                                     | 27.5 | 143       |
| 26 | The Effects of Crystallinity on Charge Transport and the Structure of Sequentially Processed<br>F <sub>4</sub> TCNQâ€Đoped Conjugated Polymer Films. Advanced Functional Materials, 2017, 27, 1702654.                | 14.9 | 190       |
| 27 | Structure and design of polymers for durable, stretchable organic electronics. Polymer Journal, 2017, 49, 41-60.                                                                                                      | 2.7  | 80        |