Carole Dabney-Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7825886/publications.pdf

Version: 2024-02-01

471509 477307 39 1,292 17 29 citations h-index g-index papers 43 43 43 1373 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The expression, purification, and site-directed spin-labeling of KCNE4. Biophysical Journal, 2022, 121, 241a-242a.	0.5	O
2	The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183148.	2.6	16
3	Characterizing the Structure of Styrene Maleic Acid Copolymer Lipid Nanoparticles (SMALPS) Using Raft Polymerization for Membrane Protein Spectroscopic Studies. Biophysical Journal, 2020, 118, 361a-362a.	0.5	O
4	Simple Derivatization of RAFT-Synthesized Styrene–Maleic Anhydride Copolymers for Lipid Disk Formulations. Biomacromolecules, 2020, 21, 1274-1284.	5 . 4	31
5	Characterizing the Structure of Styrene-Maleic Acid Copolymer-Lipid Nanoparticles (SMALPS) using Raft Polymerization for Membrane Protein Spectroscopic Studies. Biophysical Journal, 2019, 116, 517a.	0.5	O
6	Root Hair Single Cell Type Specific Profiles of Gene Expression and Alternative Polyadenylation Under Cadmium Stress. Frontiers in Plant Science, 2019, 10, 589.	3.6	24
7	Structural characterization of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using EPR spectroscopy. Chemistry and Physics of Lipids, 2019, 220, 6-13.	3. 2	19
8	16. Styrene-maleic acid copolymers: a new tool for membrane biophysics., 2019,, 477-496.		1
9	Probing the Dynamics and Structural Topology of the Reconstituted Human KCNQ1 Voltage Sensor Domain (Q1-VSD) in Lipid Bilayers Using Electron Paramagnetic Resonance Spectroscopy. Biochemistry, 2019, 58, 965-973.	2.5	15
10	Characterizing the structure of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using RAFT polymerization for membrane protein spectroscopic studies. Chemistry and Physics of Lipids, 2019, 218, 65-72.	3.2	20
11	Thylakoidâ€integrated recombinant Hcf106 participates in the chloroplast twin arginine transport system. Plant Direct, 2018, 2, e00090.	1.9	5
12	Routing of thylakoid lumen proteins by the chloroplast twin arginine transport pathway. Photosynthesis Research, 2018, 138, 289-301.	2.9	22
13	Probing the interaction of the potassium channel modulating KCNE1 in lipid bilayers via solidâ€state NMR spectroscopy. Magnetic Resonance in Chemistry, 2017, 55, 754-758.	1.9	1
14	Characterization of the structure of lipodisq nanoparticles in the presence of KCNE1 by dynamic light scattering and transmission electron microscopy. Chemistry and Physics of Lipids, 2017, 203, 19-23.	3.2	17
15	Using EPR Spectroscopy to Characterize the Structure of Lipid Membrane-Polymer Nanoring Complexes. Biophysical Journal, 2016, 110, 152a.	0.5	O
16	Tuning the size of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using RAFT polymerization for biophysical studies. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2931-2939.	2.6	73
17	Probing the Secondary Structure of Membrane Protein using Bacterial Expression System and Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. Biophysical Journal, 2015, 108, 247a.	0.5	O
18	Development of electron spin echo envelope modulation spectroscopy to probe the secondary structure of recombinant membrane proteins in a lipid bilayer. Protein Science, 2015, 24, 1707-1713.	7.6	13

#	Article	IF	Citations
19	Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 329-333.	2.6	66
20	Investigating the interaction between peptides of the amphipathic helix of Hcf106 and the phospholipid bilayer by solid-state NMR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 413-418.	2.6	6
21	Protein Routing Processes in the Thylakoid. , 2014, , 271-289.		1
22	Probing the Membrane Bound KCNE1 Protein with Solid State NMR Spectroscopy. Biophysical Journal, 2013, 104, 429a.	0.5	0
23	Solid-state NMR investigations of peptide–lipid interactions of the transmembrane domain of a plant-derived protein, Hcf106. Chemistry and Physics of Lipids, 2013, 175-176, 123-130.	3.2	2
24	Investigating the Interaction Between Hcf106 Peptides and the Phospholipid Bilayer by Solid-State NMR Spectroscopy. Biophysical Journal, 2013, 104, 220a.	0.5	0
25	Incorporation of a Rigid TOAC Spin-Label as a Non-Native Amino Acid into a Full-Length Protein by InÂVitro Translation using Amber Codon Suppression. Biophysical Journal, 2013, 104, 343a.	0.5	0
26	Direct Interaction between a Precursor Mature Domain and Transport Component Tha4 during Twin Arginine Transport of Chloroplasts Â. Plant Physiology, 2013, 161, 990-1001.	4.8	21
27	Arabidopsis ETHE1 Encodes a Sulfur Dioxygenase That Is Essential for Embryo and Endosperm Development. Plant Physiology, 2012, 160, 226-236.	4.8	62
28	The Chloroplast Twin Arginine Transport (Tat) Component, Tha4, Undergoes Conformational Changes Leading to Tat Protein Transport. Journal of Biological Chemistry, 2012, 287, 34752-34763.	3.4	37
29	Determining \hat{l}_{\pm} -Helical and \hat{l}^2 -Sheet Secondary Structures via Pulsed Electron Spin Resonance Spectroscopy. Biochemistry, 2012, 51, 7417-7419.	2.5	17
30	Clustering of C-Terminal Stromal Domains of Tha4 Homo-oligomers during Translocation by the Tat Protein Transport System. Molecular Biology of the Cell, 2009, 20, 2060-2069.	2.1	58
31	Plastid protein import and sorting: different paths to the same compartments. Current Opinion in Plant Biology, 2008, 11, 585-592.	7.1	84
32	Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant Journal, 2006, 45, 982-993.	5.7	330
33	Oligomers of Tha4 Organize at the Thylakoid Tat Translocase during Protein Transport. Journal of Biological Chemistry, 2006, 281, 5476-5483.	3.4	125
34	Functional assembly of thylakoid î"pH-dependent/Tat protein transport pathway componentsin vitro. FEBS Journal, 2003, 270, 4930-4941.	0.2	40
35	Requirement of a Tha4-conserved Transmembrane Glutamate in Thylakoid Tat Translocase Assembly Revealed by Biochemical Complementation. Journal of Biological Chemistry, 2003, 278, 43027-43033.	3.4	47
36	Structural and Guanosine Triphosphate/Diphosphate Requirements for Transit Peptide Recognition by the Cytosolic Domain of the Chloroplast Outer Envelope Receptor, Toc34â€. Biochemistry, 2002, 41, 1934-1946.	2.5	72

#	Article	IF	CITATIONS
37	Membrane Activity of the Southern Cowpea Mosaic Virus Coat Protein: The Role of Basic Amino Acids, Helix-Forming Potential, and Lipid Composition. Virology, 2001, 291, 299-310.	2.4	11
38	The C Terminus of a Chloroplast Precursor Modulates Its Interaction with the Translocation Apparatus and PIRAC. Journal of Biological Chemistry, 1999, 274, 32351-32359.	3.4	48
39	The Mechanism of Inactivation of a 50-pS Envelope Anion Channel during Chloroplast Protein Import. Biophysical Journal, 1999, 77, 3156-3162.	0.5	8