List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7822782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systems-level conservation of the proximal TCR signaling network of mice and humans. Journal of Experimental Medicine, 2022, 219, .	4.2	6
2	Singleâ€cell transcriptomics uncovers an instructive Tâ€cell receptor role in adult γδTâ€cell lineage commitment. EMBO Journal, 2022, 41, e110023.	3.5	7
3	Nlrp3 inflammasome activation in macrophages suffices for inducing autoinflammation in mice. EMBO Reports, 2022, 23, e54339.	2.0	15
4	Redox regulation of PTPN22 affects the severity of T-cell-dependent autoimmune inflammation. ELife, 2022, 11, .	2.8	7
5	Excessive immunosuppression by regulatory T cells antagonizes T cell response to schistosome infection in PD-1-deficient mice. PLoS Pathogens, 2022, 18, e1010596.	2.1	7
6	Viral infection engenders bona fide and bystander subsets of lung-resident memory B cells through a permissive mechanism. Immunity, 2022, 55, 1216-1233.e9.	6.6	23
7	Macrophages and Fibroblasts Differentially Contribute to Tattoo Stability. Dermatology, 2021, 237, 296-302.	0.9	7
8	αvβ8 integrin-expression by BATF3-dependent dendritic cells facilitates early IgA responses to Rotavirus. Mucosal Immunology, 2021, 14, 53-67.	2.7	27
9	Using gold nanoparticles for enhanced intradermal delivery of poorly soluble auto-antigenic peptides. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102321.	1.7	14
10	Opposing regulatory functions of the TIM3 (HAVCR2) signalosome in primary effector T cells as revealed by quantitative interactomics. Cellular and Molecular Immunology, 2021, 18, 1581-1583.	4.8	17
11	The pronounced lung lesions developing in LATY136F knock-in mice mimic human IgG4-related lung disease. PLoS ONE, 2021, 16, e0247173.	1.1	3
12	ARHGAP45 controls naÃ⁻ve T―and Bâ€cell entry into lymph nodes and Tâ€cell progenitor thymus seeding. EMBO Reports, 2021, 22, e52196.	2.0	14
13	Functional Mapping of Adhesiveness on Live Cells Reveals How Guidance Phenotypes Can Emerge From Complex Spatiotemporal Integrin Regulation. Frontiers in Bioengineering and Biotechnology, 2021, 9, 625366.	2.0	5
14	Regulation of Inflammatory Response by Transmembrane Adaptor Protein LST1. Frontiers in Immunology, 2021, 12, 618332.	2.2	12
15	XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nature Medicine, 2021, 27, 1043-1054.	15.2	95
16	Nociceptive sensory neurons promote CD8 T cell responses to HSV-1 infection. Nature Communications, 2021, 12, 2936.	5.8	26
17	Intestinal cDC1 drive cross-tolerance to epithelial-derived antigen via induction of FoxP3 ⁺ CD8 ⁺ T _{regs} . Science Immunology, 2021, 6, .	5.6	28
18	NF-κB–dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Science Immunology, 2021, 6, .	5.6	55

#	Article	IF	CITATIONS
19	INFRAFRONTIER quality principles in systemic phenotyping. Mammalian Genome, 2021, , 1.	1.0	3
20	Olfactory dysfunction in LATY136F knock-in mice. Auris Nasus Larynx, 2021, , .	0.5	0
21	Pathogenic roles and therapeutic potential of the CCL8–CCR8 axis in a murine model of IgG4-related sialadenitis. Arthritis Research and Therapy, 2021, 23, 214.	1.6	8
22	The T cell CD6 receptor operates a multitask signalosome with opposite functions in T cell activation. Journal of Experimental Medicine, 2021, 218, .	4.2	35
23	The transcription factor EGR2 is indispensable for tissue-specific imprinting of alveolar macrophages in health and tissue repair. Science Immunology, 2021, 6, eabj2132.	5.6	23
24	CAR T cells: from tinkering to rational design. Cell Research, 2020, 30, 948-949.	5.7	2
25	Macrophages Maintain Epithelium Integrity by Limiting Fungal Product Absorption. Cell, 2020, 183, 411-428.e16.	13.5	76
26	Migration of murine intestinal dendritic cell subsets upon intrinsic and extrinsic TLR3 stimulation. European Journal of Immunology, 2020, 50, 1525-1536.	1.6	10
27	Reticular Fibroblasts Expressing the Transcription Factor WT1 Define a Stromal Niche that Maintains and Replenishes Splenic Red Pulp Macrophages. Immunity, 2020, 53, 127-142.e7.	6.6	63
28	PTPN22 Acts in a Cell Intrinsic Manner to Restrict the Proliferation and Differentiation of T Cells Following Antibody Lymphodepletion. Frontiers in Immunology, 2020, 11, 52.	2.2	5
29	Absence of MHC class II on cDC1 dendritic cells triggers fatal autoimmunity to a cross-presented self-antigen. Science Immunology, 2020, 5, .	5.6	42
30	LymphoAtlas: a dynamic and integrated phosphoproteomic resource of <scp>TCR</scp> signaling in primary T cells reveals <scp>ITSN</scp> 2 as a regulator of effector functions. Molecular Systems Biology, 2020, 16, e9524.	3.2	13
31	The three members of the Vav family proteins form complexes that concur to foam cell formation and atherosclerosis. Journal of Lipid Research, 2019, 60, 2006-2019.	2.0	17
32	Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Reports, 2019, 27, 3315-3330.e7.	2.9	106
33	A novel model for treatment of hypertrophic pachymeningitis. Annals of Clinical and Translational Neurology, 2019, 6, 431-444.	1.7	11
34	Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science, 2019, 363, .	6.0	676
35	A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGF1±-Mediated Recruitment of Neutrophils. Immunity, 2019, 50, 1069-1083.e8.	6.6	50
36	Quantitative interactomics in primary T cells unveils TCR signal diversification extent and dynamics. Nature Immunology, 2019, 20, 1530-1541.	7.0	78

#	Article	IF	CITATIONS
37	Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. Journal of Experimental Medicine, 2018, 215, 1115-1133.	4.2	100
38	Blocking the ART2.2/P2X7â€system is essential to avoid a detrimental bias in functional CD4 TÂcell studies. European Journal of Immunology, 2018, 48, 1078-1081.	1.6	14
39	Fit αβ T-cell receptor suppresses leukemogenesis of Pten-deficient thymocytes. Haematologica, 2018, 103, 999-1007.	1.7	6
40	Novel Cre-Expressing Mouse Strains Permitting to Selectively Track and Edit Type 1 Conventional Dendritic Cells Facilitate Disentangling Their Complexity in vivo. Frontiers in Immunology, 2018, 9, 2805.	2.2	27
41	The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity, 2018, 49, 312-325.e5.	6.6	172
42	Shared and Unique Features Distinguishing Follicular T Helper and Regulatory Cells of Peripheral Lymph Node and Peyer's Patches. Frontiers in Immunology, 2018, 9, 714.	2.2	23
43	The costimulatory molecule CD226 signals through VAV1 to amplify TCR signals and promote IL-17 production by CD4 ⁺ T cells. Science Signaling, 2018, 11, .	1.6	33
44	LatY136F knock-in mouse model for human IgG4-related disease. PLoS ONE, 2018, 13, e0198417.	1.1	18
45	Hapten-Specific T Cell-Mediated Skin Inflammation: Flow Cytometry Analysis of Mouse Skin Inflammatory Infiltrate. Methods in Molecular Biology, 2017, 1559, 21-36.	0.4	4
46	Tissue-specific differentiation of colonic macrophages requires TGFβ receptor-mediated signaling. Mucosal Immunology, 2017, 10, 1387-1399.	2.7	126
47	Hydrodynamic gene delivery in human skin using a hollow microneedle device. Journal of Controlled Release, 2017, 265, 120-131.	4.8	50
48	Epicutaneous sensitization to house dust mite allergen requires interferon regulatory factor 4–dependent dermal dendritic cells. Journal of Allergy and Clinical Immunology, 2017, 140, 1364-1377.e2.	1.5	55
49	EVI2B is a C/EBPα target gene required for granulocytic differentiation and functionality of hematopoietic progenitors. Cell Death and Differentiation, 2017, 24, 705-716.	5.0	25
50	Precise Temporal Profiling of Signaling Complexes in Primary Cells Using SWATH Mass Spectrometry. Cell Reports, 2017, 18, 3219-3226.	2.9	28
51	Siglecâ€H is a microgliaâ€specific marker that discriminates microglia from CNSâ€associated macrophages and CNSâ€infiltrating monocytes. Glia, 2017, 65, 1927-1943.	2.5	123
52	TGFβR signalling controls CD103+CD11b+ dendritic cell development in the intestine. Nature Communications, 2017, 8, 620.	5.8	74
53	T Cell Zone Resident Macrophages Silently Dispose of Apoptotic Cells in the Lymph Node. Immunity, 2017, 47, 349-362.e5.	6.6	107
54	Characterization of the eosinophilic myositis caused by CAPN3 mutations on a mouse model. Neuromuscular Disorders, 2017, 27, S143-S144.	0.3	0

#	Article	IF	CITATIONS
55	UVB Exposure Prevents Atherosclerosis by Regulating Immunoinflammatory Responses. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 66-74.	1.1	26
56	Allergen-loaded strontium-doped hydroxyapatite spheres improve allergen-specific immunotherapy in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 570-578.	2.7	13
57	CD6 modulates thymocyte selection and peripheral T cell homeostasis. Journal of Experimental Medicine, 2016, 213, 1387-1397.	4.2	68
58	The Transmembrane Adaptor Protein SCIMP Facilitates Sustained Dectin-1 Signaling in Dendritic Cells. Journal of Biological Chemistry, 2016, 291, 16530-16540.	1.6	15
59	Advances in methods for studying dendritic cell biology. Journal of Immunological Methods, 2016, 432, 1-3.	0.6	1
60	The transcriptional repressor Gfi1 prevents lupus autoimmunity by restraining TLR7 signaling. European Journal of Immunology, 2016, 46, 2801-2811.	1.6	28
61	378 Allergen-loaded strontium-doped hydroxyapatite spheres improve allergen-specific immunotherapy in mice. Journal of Investigative Dermatology, 2016, 136, S225.	0.3	0
62	Broad and Largely Concordant Molecular Changes Characterize Tolerogenic and Immunogenic Dendritic Cell Maturation in Thymus and Periphery. Immunity, 2016, 45, 305-318.	6.6	151
63	Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species. Immunity, 2016, 45, 669-684.	6.6	683
64	Dual T cell– and B cell–intrinsic deficiency in humans with biallelic <i>RLTPR</i> mutations. Journal of Experimental Medicine, 2016, 213, 2413-2435.	4.2	117
65	The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. Journal of Experimental Medicine, 2016, 213, 2437-2457.	4.2	91
66	Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nature Communications, 2016, 7, 11273.	5.8	55
67	Coâ€recruitment analysis of the <scp>CBL</scp> and <scp>CBLB</scp> signalosomes in primary T cells identifies <scp>CD</scp> 5 as a key regulator of <scp>TCR</scp> â€induced ubiquitylation. Molecular Systems Biology, 2016, 12, 876.	3.2	41
68	γδT cells support gut Agâ€reactive colitogenic effector Tâ€cell generation by enhancing Ag presentation by CD11b ⁺ DCs in the mesenteric LN. European Journal of Immunology, 2016, 46, 340-346.	1.6	3
69	A Matter of Perspective: Moving from a Pre-omic to a Systems-Biology Vantage of Monocyte-Derived Cell Function and Nomenclature. Immunity, 2016, 44, 5-6.	6.6	12
70	Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1+ DCs in mouse and human and distinguishes them from Langerhans cells. Journal of Immunological Methods, 2016, 432, 35-49.	0.6	50
71	Suppression of CD4 ⁺ Effector Responses by Naturally Occurring CD4 ⁺ CD25 ⁺ Foxp3 ⁺ Regulatory T Cells Contributes to Experimental Cerebral Malaria. Infection and Immunity, 2016, 84, 329-338.	1.0	2
72	A Natural Variant of the T Cell Receptor-Signaling Molecule Vav1 Reduces Both Effector T Cell Functions and Susceptibility to Neuroinflammation. PLoS Genetics, 2016, 12, e1006185.	1.5	10

#	Article	IF	CITATIONS
73	Revisiting the Timing of Action of the PAG Adaptor Using Quantitative Proteomics Analysis of Primary T Cells. Journal of Immunology, 2015, 195, 5472-5481.	0.4	14
74	The transmembrane protein EVI2B regulates hematopoietic stem cell function. Experimental Hematology, 2015, 43, S105.	0.2	1
75	Cervical Lymph Nodes as a Selective Niche for Brucella during Oral Infections. PLoS ONE, 2015, 10, e0121790.	1.1	44
76	Laser-Assisted Intradermal Delivery of Adjuvant-Free Vaccines Targeting XCR1+ Dendritic Cells Induces Potent Antitumoral Responses. Journal of Immunology, 2015, 194, 5895-5902.	0.4	83
77	A <scp>THEMIS</scp> : <scp>SHP</scp> 1 complex promotes Tâ€eell survival. EMBO Journal, 2015, 34, 393-409.	3.5	84
78	Vaccine molecules targeting Xcr1 on crossâ€presenting DCs induce protective CD8 ⁺ Tâ€cell responses against influenza virus. European Journal of Immunology, 2015, 45, 624-635.	1.6	98
79	A Death Notice for In-Vitro-Generated GM-CSF Dendritic Cells?. Immunity, 2015, 42, 988-990.	6.6	38
80	Rapid Sequestration of Leishmania mexicana by Neutrophils Contributes to the Development of Chronic Lesion. PLoS Pathogens, 2015, 11, e1004929.	2.1	103
81	Site- and allele-specific polycomb dysregulation in T-cell leukaemia. Nature Communications, 2015, 6, 6094.	5.8	47
82	Early T Cell Activation: Integrating Biochemical, Structural, and Biophysical Cues. Annual Review of Immunology, 2015, 33, 539-561.	9.5	125
83	Dynamics and Transcriptomics of Skin Dendritic Cells and Macrophages in an Imiquimod-Induced, Biphasic Mouse Model of Psoriasis. Journal of Immunology, 2015, 195, 4953-4961.	0.4	72
84	INFRAFRONTIERproviding mutant mouse resources as research tools for the international scientific community. Nucleic Acids Research, 2015, 43, D1171-D1175.	6.5	34
85	Dissolving Microneedle Delivery of Nanoparticle-Encapsulated Antigen Elicits Efficient Cross-Priming and Th1 Immune Responses by Murine Langerhans Cells. Journal of Investigative Dermatology, 2015, 135, 425-434.	0.3	78
86	Abstract 2518: Effective vaccination against melanoma in an animal study: Combination of laser-assisted dermal skin delivery and cross-presenting XCR1+ dermal DCs targeting. , 2015, , .		0
87	Abstract A54: Laser-assisted intradermal delivery of Xcl1-specific fusion vaccines induces potent antitumor response. , 2015, , .		Ο
88	Langerhans cells promote early germinal center formation in response to <i>Leishmania</i> â€derived cutaneous antigens. European Journal of Immunology, 2014, 44, 2955-2967.	1.6	23
89	Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. Journal of Clinical Investigation, 2014, 124, 4577-4589.	3.9	111
90	Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor–independent TCR signaling hub. Nature Immunology, 2014, 15, 384-392.	7.0	119

#	Article	IF	CITATIONS
91	The origins and functions of dendritic cells and macrophages in the skin. Nature Reviews Immunology, 2014, 14, 417-428.	10.6	396
92	Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO Journal, 2014, 33, 1104-1116.	3.5	316
93	Vav1 controls T cell polarization and susceptibility to central nervous system autoimmunity. Journal of Neuroimmunology, 2014, 275, 64.	1.1	0
94	Progressive replacement of embryo-derived cardiac macrophages with age. Journal of Experimental Medicine, 2014, 211, 2151-2158.	4.2	374
95	Integrative biology of T cell activation. Nature Immunology, 2014, 15, 790-797.	7.0	87
96	François Kourilsky 1934–2014. Nature Immunology, 2014, 15, 825-825.	7.0	0
97	Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature Immunology, 2014, 15, 929-937.	7.0	921
98	IL-23 from Langerhans Cells Is Required for the Development of Imiquimod-Induced Psoriasis-Like Dermatitis by Induction of IL-17A-Producing 3िंT Cells. Journal of Investigative Dermatology, 2014, 134, 1912-1921.	0.3	142
99	Enhancement of Adaptive Immunity by the Human Vaccine Adjuvant AS01 Depends on Activated Dendritic Cells. Journal of Immunology, 2014, 193, 1920-1930.	0.4	220
100	Î ³ δT cell subsets play opposing roles in regulating experimental autoimmune encephalomyelitis. Cellular Immunology, 2014, 290, 39-51.	1.4	71
101	An ITAM-Syk-CARD9 signalling axis triggers contact hypersensitivity by stimulating IL-1 production in dendritic cells. Nature Communications, 2014, 5, 3755.	5.8	82
102	Exploitation of Langerhans cells for in vivo DNA vaccine delivery into the lymph nodes. Gene Therapy, 2014, 21, 566-574.	2.3	19
103	Computational Modeling of the Main Signaling Pathways Involved in Mast Cell Activation. Current Topics in Microbiology and Immunology, 2014, 382, 69-93.	0.7	22
104	Sox17 Regulates Liver Lipid Metabolism and Adaptation to Fasting. PLoS ONE, 2014, 9, e104925.	1.1	15
105	The lymphoid lineage–specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nature Immunology, 2013, 14, 858-866.	7.0	100
106	Extrathymic induction of Foxp3 ⁺ regulatory T cells declines with age in a T ell intrinsic manner. European Journal of Immunology, 2013, 43, 2598-2604.	1.6	32
107	Highly self-reactive naive CD4 T cells are prone to differentiate into regulatory T cells. Nature Communications, 2013, 4, 2209.	5.8	59
108	New insights into lymphocyte activation and differentiation. Current Opinion in Immunology, 2013, 25, 297-299.	2.4	0

#	Article	IF	CITATIONS
109	Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. Immunity, 2013, 38, 1073-1079.	6.6	26
110	Origins and Functional Specialization of Macrophages and of Conventional and Monocyte-Derived Dendritic Cells in Mouse Skin. Immunity, 2013, 39, 925-938.	6.6	651
111	Skin Dendritic Cell Targeting <i>via</i> Microneedle Arrays Laden with Antigen-Encapsulated Poly- <scp>d</scp> , <scp>l</scp> -lactide- <i>co</i> -Glycolide Nanoparticles Induces Efficient Antitumor and Antiviral Immune Responses. ACS Nano, 2013, 7, 2042-2055.	7.3	192
112	Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. Journal of Experimental Medicine, 2013, 210, 1977-1992.	4.2	976
113	Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. Immunity, 2013, 38, 79-91.	6.6	2,528
114	Conventional and Monocyte-Derived CD11b+ Dendritic Cells Initiate and Maintain T Helper 2 Cell-Mediated Immunity to House Dust Mite Allergen. Immunity, 2013, 38, 322-335.	6.6	770
115	Proteomic Analysis of the SH2Domain-containing Leukocyte Protein of 76 kDa (SLP76) Interactome. Molecular and Cellular Proteomics, 2013, 12, 2874-2889.	2.5	11
116	The membrane adaptor LAT is proteolytically cleaved following Fas engagement in a tyrosine phosphorylation-dependent fashion. Biochemical Journal, 2013, 450, 511-521.	1.7	12
117	Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunology, 2013, 6, 498-510.	2.7	749
118	Neutrophils Exert a Suppressive Effect on Th1 Responses to Intracellular Pathogen Brucella abortus. PLoS Pathogens, 2013, 9, e1003167.	2.1	37
119	Multicolor fate mapping of Langerhans cell homeostasis. Journal of Experimental Medicine, 2013, 210, 1657-1664.	4.2	135
120	Differential Postselection Proliferation Dynamics of αβ T Cells, Foxp3+ Regulatory T Cells, and Invariant NKT Cells Monitored by Genetic Pulse Labeling. Journal of Immunology, 2013, 191, 2384-2392.	0.4	22
121	CCR7 Plays No Appreciable Role in Trafficking of Central Memory CD4 T Cells to Lymph Nodes. Journal of Immunology, 2013, 191, 3119-3127.	0.4	34
122	Regulation of Foxp3+ Inducible Regulatory T Cell Stability by SOCS2. Journal of Immunology, 2013, 190, 3235-3245.	0.4	41
123	Specialized role of migratory dendritic cells in peripheral tolerance induction. Journal of Clinical Investigation, 2013, 123, 844-54.	3.9	252
124	Skin Langerin+ Dendritic Cells Transport Intradermally Injected Anti–DEC-205 Antibodies but Are Not Essential for Subsequent Cytotoxic CD8+ T Cell Responses. Journal of Immunology, 2012, 188, 2146-2155.	0.4	27
125	Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute graft-versus-host disease. Nature Medicine, 2012, 18, 135-142.	15.2	206
126	CD64 Expression Distinguishes Monocyte-Derived and Conventional Dendritic Cells and Reveals Their Distinct Role during Intramuscular Immunization. Journal of Immunology, 2012, 188, 1751-1760.	0.4	243

#	Article	IF	CITATIONS
127	Conditional ablation of CD205 ⁺ conventional dendritic cells impacts the regulation of T-cell immunity and homeostasis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11288-11293.	3.3	67
128	The Thymic Niche Does Not Limit Development of the Naturally Diverse Population of Mouse Regulatory T Lymphocytes. Journal of Immunology, 2012, 189, 3831-3837.	0.4	10
129	Determining the role of mononuclear phagocytes in prion neuroinvasion from the skin. Journal of Leukocyte Biology, 2012, 91, 817-828.	1.5	13
130	Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs. Blood, 2012, 119, 1623-1633.	0.6	138
131	<scp>CD</scp> 64 distinguishes macrophages from dendritic cells in the gut and reveals the <scp>T</scp> h1â€inducing role of mesenteric lymph node macrophages during colitis. European Journal of Immunology, 2012, 42, 3150-3166.	1.6	430
132	Dynamic migration of Î ³ δ intraepithelial lymphocytes requires occludin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7097-7102.	3.3	142
133	Alloantigen Presentation by Recipient Non-Professional Antigen Presenting Cells Induces Lethal Acute GVHD. Biology of Blood and Marrow Transplantation, 2012, 18, S362-S363.	2.0	0
134	Differential processing of self-antigens by subsets of thymic stromal cells. Current Opinion in Immunology, 2012, 24, 99-104.	2.4	20
135	A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia. European Journal of Immunology, 2012, 42, 2395-2408.	1.6	54
136	Transcutaneous vaccination via laser microporation. Journal of Controlled Release, 2012, 162, 391-399.	4.8	86
137	Tuning of Natural Killer Cell Reactivity by NKp46 and Helios Calibrates T Cell Responses. Science, 2012, 335, 344-348.	6.0	190
138	A voltage-gated sodium channel mediates positive selection of T cells. Nature Immunology, 2012, 13, 810-812.	7.0	4
139	Dominant Role of CD80–CD86 Over CD40 and ICOSL in the Massive Polyclonal B Cell Activation Mediated by LATY136F CD4+ T Cells. Frontiers in Immunology, 2012, 3, 27.	2.2	13
140	Activation of <scp>CD</scp> 4 ⁺ <scp>F</scp> oxp3 ⁺ regulatory <scp>T</scp> cells proceeds normally in the absence of <scp>B</scp> cells during <scp>EAE</scp> . European Journal of Immunology, 2012, 42, 1164-1173.	1.6	37
141	Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis. Journal of Experimental Medicine, 2012, 209, 565-580.	4.2	199
142	The need for littermate controls. European Journal of Immunology, 2012, 42, 45-47.	1.6	61
143	Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8+ T cells and activating Foxp3+ regulatory T cells. Journal of Clinical Investigation, 2012, 122, 1700-1711.	3.9	146
144	Le(a)t but not least Nature Immunology 2011 12 E02 E02		

La(s)t but not least. Nature Immunology, 2011, 12, 592-593.

7.0 5

#	Article	IF	CITATIONS
145	Skin-Resident Murine Dendritic Cell Subsets Promote Distinct and Opposing Antigen-Specific T Helper Cell Responses. Immunity, 2011, 35, 260-272.	6.6	379
146	Plasmacytoid Dendritic Cells Are Crucial for the Initiation of Inflammation and T Cell Immunity InÂVivo. Immunity, 2011, 35, 958-971.	6.6	205
147	Cell-to-Cell Interactions and Signals Involved in the Reconstitution of Peripheral CD8+ TCM and TEM Cell Pools. PLoS ONE, 2011, 6, e17423.	1.1	8
148	The Role of Direct Presentation by Donor Dendritic Cells in Rejection of Minor Histocompatibility Antigen-Mismatched Skin and Hematopoietic Cell Grafts. Transplantation, 2011, 91, 154-160.	0.5	13
149	Steady state migratory RelB ⁺ langerin ⁺ dermal dendritic cells mediate peripheral induction of antigenâ€specific CD4 ⁺ CD25 ⁺ Foxp3 ⁺ regulatory T cells. European Journal of Immunology, 2011, 41, 1420-1434.	1.6	76
150	Integrated Tâ€cell receptor and costimulatory signals determine TGFâ€Î²â€dependent differentiation and maintenance of Foxp3 ⁺ regulatory T cells. European Journal of Immunology, 2011, 41, 1242-1248.	1.6	81
151	The earliest intrathymic precursors of CD8α ⁺ thymic dendritic cells correspond to myeloidâ€ŧype doubleâ€negative 1c cells. European Journal of Immunology, 2011, 41, 2165-2175.	1.6	43
152	High TCR diversity ensures optimal function andhomeostasis of Foxp3 ⁺ regulatory Tcells. European Journal of Immunology, 2011, 41, 3101-3113.	1.6	82
153	Thymus-specific serine protease contributes to the diversification of the functional endogenous CD4 T cell receptor repertoire. Journal of Experimental Medicine, 2011, 208, 3-11.	4.2	44
154	Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development (Cambridge), 2011, 138, 3647-3656.	1.2	734
155	Langerin+ Dermal Dendritic Cells Are Critical for CD8+ T Cell Activation and IgH γ-1 Class Switching in Response to Gene Gun Vaccines. Journal of Immunology, 2011, 186, 1377-1383.	0.4	41
156	Serine residues in the LAT adaptor are essential for TCR-dependent signal transduction. Journal of Leukocyte Biology, 2011, 89, 63-73.	1.5	12
157	Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development (Cambridge), 2011, 138, 4333-4333.	1.2	17
158	Cutting Edge: Expression of XCR1 Defines Mouse Lymphoid-Tissue Resident and Migratory Dendritic Cells of the CD81±+ Type. Journal of Immunology, 2011, 187, 4411-4415.	0.4	202
159	Thymus-specific serine protease controls autoreactive CD4 T cell development and autoimmune diabetes in mice. Journal of Clinical Investigation, 2011, 121, 1810-1821.	3.9	36
160	Skin-draining lymph nodes contain dermis-derived CD103â^' dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells. Blood, 2010, 115, 1958-1968.	0.6	286
161	Crucial roles of B7-H1 and B7-DC expressed on mesenteric lymph node dendritic cells in the generation of antigen-specific CD4+Foxp3+ regulatory T cells in the establishment of oral tolerance. Blood, 2010, 116, 2266-2276.	0.6	64
162	Lymphoproliferative disorders involving T helper effector cells with defective LAT signalosomes. Seminars in Immunopathology, 2010, 32, 117-125.	2.8	7

#	Article	IF	CITATIONS
163	Contrasting roles of macrophages and dendritic cells in controlling initial pulmonary <i>Brucella</i> infection. European Journal of Immunology, 2010, 40, 3458-3471.	1.6	81
164	From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. European Journal of Immunology, 2010, 40, 2089-2094.	1.6	120
165	Constant TCR triggering suggests that the TCR expressed on intestinal intraepithelial γδT cells is functional <i>in vivo</i> . European Journal of Immunology, 2010, 40, 3378-3388.	1.6	25
166	Foxp3+ T Cells Induce Perforin-Dependent Dendritic Cell Death in Tumor-Draining Lymph Nodes. Immunity, 2010, 32, 266-278.	6.6	152
167	Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development. EMBO Journal, 2010, 29, 1285-1298.	3.5	40
168	Disentangling the complexity of the skin dendritic cell network. Immunology and Cell Biology, 2010, 88, 366-375.	1.0	92
169	Egocentric pre–T–cell receptors. Nature, 2010, 467, 793-794.	13.7	0
170	The T helper type 2 response to cysteine proteases requires dendritic cell–basophil cooperation via ROS-mediated signaling. Nature Immunology, 2010, 11, 608-617.	7.0	287
171	Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunological Reviews, 2010, 234, 177-198.	2.8	177
172	CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. Journal of Experimental Medicine, 2010, 207, 189-206.	4.2	350
173	The Mandatory Role of IL-10–Producing and OX40 Ligand-Expressing Mature Langerhans Cells in Local UVB-Induced Immunosuppression. Journal of Immunology, 2010, 184, 5670-5677.	0.4	43
174	Intra- and Intercompartmental Movement of γδT Cells: Intestinal Intraepithelial and Peripheral γδT Cells Represent Exclusive Nonoverlapping Populations with Distinct Migration Characteristics. Journal of Immunology, 2010, 185, 5160-5168.	0.4	82
175	Langerhans Cells Prime IL-17–Producing T Cells and Dampen Genital Cytotoxic Responses following Mucosal Immunization. Journal of Immunology, 2010, 184, 4842-4851.	0.4	33
176	Compensatory role of Langerhans cells and langerin-positive dermal dendritic cells in the sensitization phase of murine contact hypersensitivity. Journal of Allergy and Clinical Immunology, 2010, 125, 1154-1156.e2.	1.5	69
177	Pathogenic Bacteria and Dead Cells Are Internalized by a Unique Subset of Peyer's Patch Dendritic Cells That Express Lysozyme. Gastroenterology, 2010, 138, 173-184.e3.	0.6	94
178	Lack of Retinoic Acid Leads to Increased Langerin-Expressing Dendritic Cells in Gut-Associated Lymphoid Tissues. Gastroenterology, 2010, 138, 1468-1478.e6.	0.6	40
179	LAT signaling pathology: an "autoimmune―condition without T cell self-reactivity. Trends in Immunology, 2010, 31, 253-259.	2.9	23
180	Priming of CD8+ and CD4+ T Cells in Experimental Leishmaniasis Is Initiated by Different Dendritic Cell Subtypes. Journal of Immunology, 2009, 182, 774-783.	0.4	93

#	Article	IF	CITATIONS
181	Structural Bases for the Affinity-Driven Selection of a Public TCR against a Dominant Human Cytomegalovirus Epitope. Journal of Immunology, 2009, 183, 430-437.	0.4	93
182	Expansion of peripheral naturally occurring T regulatory cells by Fms-like tyrosine kinase 3 ligand treatment. Blood, 2009, 113, 6277-6287.	0.6	106
183	Heterogeneity of natural Foxp3 ⁺ T cells: A committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1903-1908.	3.3	481
184	STAT6 Deletion Converts the Th2 Inflammatory Pathology Afflicting <i>Lat<i>Y136F</i> </i> Mice into a Lymphoproliferative Disorder Involving Th1 and CD8 Effector T Cells. Journal of Immunology, 2009, 182, 2680-2689.	0.4	19
185	CD93 is required for maintenance of antibody secretion and persistence of plasma cells in the bone marrow niche. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3895-3900.	3.3	114
186	Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. Journal of Experimental Medicine, 2009, 206, 3089-3100.	4.2	328
187	Langerhans cells are critical in the development of atopic dermatitisâ€like inflammation and symptoms in mice. Journal of Cellular and Molecular Medicine, 2009, 13, 2658-2672.	1.6	65
188	<i>In vivo</i> application of mAb directed against the γδTCR does not deplete but generates "invisible―γĨ´T cells. European Journal of Immunology, 2009, 39, 372-379.	1.6	86
189	Thymusâ€specific serine protease regulates positive selection of a subset of CD4 ⁺ thymocytes. European Journal of Immunology, 2009, 39, 956-964.	1.6	104
190	Peripheral Thy1 ⁺ lymphocytes rearranging TCRâ€Î³Î´genes in LATâ€deficient mice. European Journal of Immunology, 2009, 39, 2596-2605.	1.6	3
191	Alloantigenâ€specific <i>de novoâ€</i> induced Foxp3 ⁺ Treg revert <i>in vivo</i> and do not protect from experimental GVHD. European Journal of Immunology, 2009, 39, 3091-3096.	1.6	127
192	Deflecting a Canonical Antiviral T Cell Response. Immunity, 2009, 30, 169-171.	6.6	0
193	Loss of the LAT Adaptor Converts Antigen-Responsive T Cells into Pathogenic Effectors that Function Independently of the T Cell Receptor. Immunity, 2009, 31, 197-208.	6.6	105
194	Revisiting the follicular helper T cell paradigm. Nature Immunology, 2009, 10, 371-372.	7.0	8
195	Structural bases for the selection of a public TCR against the HCMV NLV epitope. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s142-s143.	0.3	0
196	The proline-rich sequence of CD3ε controls T cell antigen receptor expression on and signaling potency in preselection CD4+CD8+ thymocytes. Nature Immunology, 2008, 9, 522-532.	7.0	91
197	CD3 ITAMs count!. Nature Immunology, 2008, 9, 583-584.	7.0	8
198	Role of β7 Integrin and the Chemokine/Chemokine Receptor Pair CCL25/CCR9 in Modeled TNF-Dependent Crohn's Disease. Gastroenterology, 2008, 134, 2025-2035.	0.6	96

#	Article	IF	CITATIONS
199	Retrovirus-Specificity of Regulatory T Cells Is Neither Present nor Required in Preventing Retrovirus-Induced Bone Marrow Immune Pathology. Immunity, 2008, 29, 782-794.	6.6	52
200	C.P.8.12 Mannosidase I inhibition rescues the human α-sarcoglycan R77C recurrent mutation. Neuromuscular Disorders, 2008, 18, 785.	0.3	0
201	Mannosidase I inhibition rescues the human α-sarcoglycan R77C recurrent mutation. Human Molecular Genetics, 2008, 17, 1214-1221.	1.4	54
202	Langerin Expressing Cells Promote Skin Immune Responses under Defined Conditions. Journal of Immunology, 2008, 180, 4722-4727.	0.4	106
203	Non-T Cell Activation Linker Promotes Mast Cell Survival by Dampening the Recruitment of SHIP1 by Linker for Activation of T Cells. Journal of Immunology, 2008, 180, 3689-3698.	0.4	35
204	Cutting Edge: Langerin+ Dendritic Cells in the Mesenteric Lymph Node Set the Stage for Skin and Gut Immune System Cross-Talk. Journal of Immunology, 2008, 180, 4361-4365.	0.4	49
205	Th2 Lymphoproliferative Disorder of <i>Lat Y136F</i> Mutant Mice Unfolds Independently of TCR-MHC Engagement and Is Insensitive to the Action of Foxp3+ Regulatory T Cells. Journal of Immunology, 2008, 180, 1565-1575.	0.4	165
206	Tumor Immunotherapy by Epicutaneous Immunization Requires Langerhans Cells. Journal of Immunology, 2008, 180, 1991-1998.	0.4	88
207	Antigen-specific T-T interactions regulate CD4 T-cell expansion. Blood, 2008, 112, 1249-1258.	0.6	57
208	A Novel ZAP-70 Dependent FRET Based Biosensor Reveals Kinase Activity at both the Immunological Synapse and the Antisynapse. PLoS ONE, 2008, 3, e1521.	1.1	42
209	How Do T Cells Discriminate Self from Nonself?. , 2008, , 133-171.		0
210	Identification of a novel population of Langerin+ dendritic cells. Journal of Experimental Medicine, 2007, 204, 3147-3156.	4.2	453
211	LAT and NTAL Mediate Immunoglobulin E-Induced Sustained Extracellular Signal-Regulated Kinase Activation Critical for Mast Cell Survival. Molecular and Cellular Biology, 2007, 27, 4406-4415.	1.1	18
212	Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. Journal of Experimental Medicine, 2007, 204, 3133-3146.	4.2	378
213	Epidermal Langerhans Cells Are Dispensable for Humoral and Cell-Mediated Immunity Elicited by Gene Gun Immunization. Journal of Immunology, 2007, 179, 886-893.	0.4	55
214	Colitis and Colitis-Associated Cancer Are Exacerbated in Mice Deficient for Tumor Protein 53-Induced Nuclear Protein 1. Molecular and Cellular Biology, 2007, 27, 2215-2228.	1.1	85
215	CCR9 is a homing receptor for plasmacytoid dendritic cells to the small intestine. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6347-6352.	3.3	213
216	Impaired Accumulation of Antigen-Specific CD8 Lymphocytes in Chemokine CCL25-Deficient Intestinal Epithelium and Lamina Propria. Journal of Immunology, 2007, 178, 7598-7606.	0.4	85

#	Article	IF	CITATIONS
217	The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. Journal of Experimental Medicine, 2007, 204, 3119-3131.	4.2	379
218	Roles of the C-terminal tyrosine residues of LAT in GPVI-induced platelet activation: insights into the mechanism of PLCl ³ 2 activation. Blood, 2007, 110, 2466-2474.	0.6	69
219	What guides MHC-restricted TCR recognition?. Seminars in Immunology, 2007, 19, 225-235.	2.7	38
220	Kinetic evidence for a ligand-binding-induced conformational transition in the T cell receptor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16639-16644.	3.3	35
221	Th2 Lymphoproliferative Disorders Resulting from Defective LAT Signalosomes. Novartis Foundation Symposium, 2007, 281, 93-102.	1.2	3
222	Mature DC from skin and skin-draining LN retain the ability to acquire and efficiently present targeted antigen. European Journal of Immunology, 2007, 37, 1184-1193.	1.6	23
223	Germ-line and rearrangedTcrd transcription distinguishbona fide NK cells and NK-like γδ T cells. European Journal of Immunology, 2007, 37, 1442-1452.	1.6	72
224	Deletion of the LIME adaptor protein minimally affects T and B cell development and function. European Journal of Immunology, 2007, 37, 3259-3269.	1.6	15
225	How much can a T-cell antigen receptor adapt to structurally distinct antigenic peptides?. EMBO Journal, 2007, 26, 1972-1983.	3.5	89
226	Langerhans cells – revisiting the paradigm using genetically engineered mice. Trends in Immunology, 2006, 27, 132-139.	2.9	102
227	Multiplicity and plasticity of natural killer cell signaling pathways. Blood, 2006, 107, 2364-2372.	0.6	83
228	Visualization of the earliest steps of Î ³ δT cell development in the adult thymus. Nature Immunology, 2006, 7, 995-1003.	7.0	173
229	Lymphocyte activation. Current Opinion in Immunology, 2006, 18, 233-236.	2.4	1
230	Complex regulation of CCR9 at multiple discrete stages of T cell development. European Journal of Immunology, 2006, 36, 73-81.	1.6	60
231	Distinct orientation of the alloreactive monoclonal CD8 T cell activation program by three different peptide/MHC complexes. European Journal of Immunology, 2006, 36, 1856-1866.	1.6	19
232	The Th2 Lymphoproliferation Developing in LatY136F Mutant Mice Triggers Polyclonal B Cell Activation and Systemic Autoimmunity. Journal of Immunology, 2006, 177, 2285-2293.	0.4	47
233	'TaiLoRing' the response of dendritic cells to pathogens. Nature Immunology, 2005, 6, 749-750.	7.0	18
234	Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nature Immunology, 2005, 6, 17-21.	7.0	153

#	Article	IF	CITATIONS
235	Rapidin vivo analysis of mutant forms of the LAT adaptor usingPax5-Lat double-deficient pro-B?cells. European Journal of Immunology, 2005, 35, 977-986.	1.6	4
236	Chemical Inhibitors when Timing Is Critical: A Pharmacological Concept for the Maturation of T Cell Contacts. ChemBioChem, 2005, 6, 152-161.	1.3	8
237	Single and Combined Deletions of the NTAL/LAB and LAT Adaptors Minimally Affect B-Cell Development and Function. Molecular and Cellular Biology, 2005, 25, 4455-4465.	1.1	42
238	Autistic effector T cells in mice with a point mutation in the LAT adaptor fail to respond to Listeria monocytogenes infection. International Immunology, 2005, 17, 951-957.	1.8	2
239	Disruption of the langerin / CD207 Gene Abolishes Birbeck Granules without a Marked Loss of Langerhans Cell Function. Molecular and Cellular Biology, 2005, 25, 88-99.	1.1	104
240	Selective Defect in Antigen-Induced TCR Internalization at the Immune Synapse of CD8 T Cells Bearing the ZAP-70(Y292F) Mutation. Journal of Immunology, 2005, 175, 3140-3149.	0.4	24
241	The H-2KkMHC Peptide-Binding Groove Anchors the Backbone of an Octameric Antigenic Peptide in an Unprecedented Mode. Journal of Immunology, 2005, 175, 3819-3825.	0.4	9
242	The Type 1 Cysteinyl Leukotriene Receptor Triggers Calcium Influx and Chemotaxis in Mouse αβ- and γδ Effector T Cells. Journal of Immunology, 2005, 175, 713-719.	0.4	39
243	Dynamics and Function of Langerhans Cells In Vivo. Immunity, 2005, 22, 643-654.	6.6	870
244	Role of the LAT Adaptor in T ell Development and Th2 Differentiation. Advances in Immunology, 2005, 87, 1-25.	1.1	55
245	Cross- and alloreactivity, MHC restriction: lesson from TCR-pMHC structures. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c498-c498.	0.3	Ο
246	Negative Regulation of Mast Cell Signaling and Function by the Adaptor LAB/NTAL. Journal of Experimental Medicine, 2004, 200, 1001-1014.	4.2	132
247	Chemokine Receptor CCR9 Contributes to the Localization of Plasma Cells to the Small Intestine. Journal of Experimental Medicine, 2004, 199, 411-416.	4.2	208
248	Selective Generation of Gut-Tropic T Cells in Gut-Associated Lymphoid Tissues: Requirement for GALT Dendritic Cells and Adjuvant. Annals of the New York Academy of Sciences, 2004, 1029, 405-407.	1.8	11
249	Response to Cohn: What determines the overall geometry of TCR–peptide–MHC interactions?. Trends in Immunology, 2004, 25, 9-10.	2.9	1
250	Linker for Activation of T Cells Integrates Positive and Negative Signaling in Mast Cells. Journal of Immunology, 2004, 173, 5086-5094.	0.4	48
251	Two genes, three messengers: hybrid transcript between a gene expressed at specific stages of T-cell and sperm maturation and an unrelated adjacent gene. Immunogenetics, 2003, 54, 681-692.	1.2	4
252	An evolutionary and structural perspective on T cell antigen receptor function. Immunological Reviews, 2003, 191, 7-27.	2.8	53

#	Article	IF	CITATIONS
253	Platelet aggregation induced by the C-terminal peptide of thrombospondin-1 requires the docking protein LAT but is largely independent of alphallb/beta3. Journal of Thrombosis and Haemostasis, 2003, 1, 320-329.	1.9	16
254	CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nature Immunology, 2003, 4, 241-247.	7.0	240
255	LAT regulates $\hat{I}^{3}\hat{I}^{T}$ cell homeostasis and differentiation. Nature Immunology, 2003, 4, 999-1008.	7.0	120
256	Glimpses at TCR Trans-Species Crossreactivity. Immunity, 2003, 19, 463-464.	6.6	6
257	What do TCR–pMHC crystal structures teach us about MHC restriction and alloreactivity?. Trends in Immunology, 2003, 24, 429-437.	2.9	109
258	Selective Generation of Gut Tropic T Cells in Gut-associated Lymphoid Tissue (GALT). Journal of Experimental Medicine, 2003, 198, 963-969.	4.2	439
259	IMMUNOLOGY: Switching Off TCR Signaling. Science, 2003, 302, 1162-1163.	6.0	7
260	TP53INP1s and Homeodomain-interacting Protein Kinase-2 (HIPK2) Are Partners in Regulating p53 Activity. Journal of Biological Chemistry, 2003, 278, 37722-37729.	1.6	140
261	Induction of T Helper Type 2 Immunity by a Point Mutation in the LAT Adaptor. Science, 2002, 296, 2036-2040.	6.0	263
262	CD38 Is Associated with Lipid Rafts and upon Receptor Stimulation Leads to Akt/Protein Kinase B and Erk Activation in the Absence of the CD3-I¶ Immune Receptor Tyrosine-based Activation Motifs. Journal of Biological Chemistry, 2002, 277, 13-22.	1.6	99
263	Identification of Mouse Langerin/CD207 in Langerhans Cells and Some Dendritic Cells of Lymphoid Tissues. Journal of Immunology, 2002, 168, 782-792.	0.4	150
264	A T Cell Receptor CDR3Î ² Loop Undergoes Conformational Changes of Unprecedented Magnitude Upon Binding to a Peptide/MHC Class I Complex. Immunity, 2002, 16, 345-354.	6.6	201
265	Tyrosine 315 determines optimal recruitment of ZAP-70 to the T cell antigen receptor. European Journal of Immunology, 2002, 32, 568-575.	1.6	15
266	Structure of two new T cell receptors highlights the recognition of allogeneic MHC molecules. Acta Crystallographica Section A: Foundations and Advances, 2002, 58, c282-c282.	0.3	0
267	Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor γδ+ gut intraepithelial lymphocytes. Blood, 2001, 98, 2626-2632.	0.6	292
268	Les liaisons dangereuses. Nature Immunology, 2001, 2, 196-198.	7.0	7
269	The tight interallelic positional coincidence that distinguishes T-cell receptor Jalpha usage does not result from homologous chromosomal pairing during ValphaJalpha rearrangement. EMBO Journal, 2001, 20, 4717-4729.	3.5	40
270	T Cell Development and T Cell Responses in Mice with Mutations Affecting Tyrosines 292 or 315 of the Zap-70 Protein Tyrosine Kinase. Journal of Experimental Medicine, 2001, 194, 491-506.	4.2	53

#	Article	IF	CITATIONS
271	CD8β Endows CD8 with Efficient Coreceptor Function by Coupling T Cell Receptor/CD3 to Raft-associated CD8/p56lck Complexes. Journal of Experimental Medicine, 2001, 194, 1485-1495.	4.2	189
272	The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. European Journal of Immunology, 2000, 30, 262-271.	1.6	337
273	Relationships between natural T cells, atopy, IgE levels, and IL-4 production. Allergy: European Journal of Allergy and Clinical Immunology, 2000, 55, 286-290.	2.7	37
274	Crystal structure of a T cell receptor bound to an allogeneic MHC molecule. Nature Immunology, 2000, 1, 291-297.	7.0	199
275	The 21- and 23-kD forms of TCRζ are generated by specific ITAM phosphorylations. Nature Immunology, 2000, 1, 322-328.	7.0	92
276	Chromosomal localization of two mouse genes encoding thymus-specific serine peptidase and thymus-expressed acidic protein. Immunogenetics, 2000, 51, 984-986.	1.2	10
277	The mouse and human IGSF6 (DORA) genes map to the inflammatory bowel disease 1 locus and are embedded in an intron of a gene of unknown function. Immunogenetics, 2000, 52, 112-120.	1.2	18
278	Essential Role of CD8 Palmitoylation in CD8 Coreceptor Function. Journal of Immunology, 2000, 165, 2068-2076.	0.4	160
279	The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. , 2000, 30, 262.		9
280	The crystal structure of a murine TCR bound to an allogeneic MHC molecule. Acta Crystallographica Section A: Foundations and Advances, 2000, 56, s287-s287.	0.3	0
281	Function of the CD3 Subunits of the Pre-TCR and TCR Complexes during T Cell Development. Advances in Immunology, 1999, 72, 103-148.	1.1	67
282	T Cell Recognition of Hapten. Journal of Biological Chemistry, 1999, 274, 3622-3631.	1.6	18
283	Differential gene expression in CD3e- and RAG1-deficient thymuses: definition of a set of genes potentially involved in thymocyte maturation. Immunogenetics, 1999, 50, 255-270.	1.2	64
284	IMMUNOLOGY:Dancing the Immunological Two-Step. Science, 1999, 285, 207-208.	6.0	27
285	Crippling of CD3-ζ ITAMs Does Not Impair T Cell Receptor Signaling. Immunity, 1999, 10, 409-420.	6.6	93
286	Structural features of the interaction between an anti-clonotypic antibody and its cognate T-cell antigen receptor. Journal of Molecular Biology, 1999, 287, 773-780.	2.0	7
287	Glimpses at the recognition of peptide/MHC complexes by T-cell antigen receptors. Immunological Reviews, 1998, 163, 187-196.	2.8	24
288	Quantitative aspects of T-cell recognition: from within the antigen-presenting cell to within the T cell. BioEssays, 1998, 20, 412-422.	1.2	29

#	Article	IF	CITATIONS
289	Lymphocyte development The (knock-) ins and outs of lymphoid development. Current Opinion in Immunology, 1998, 10, 155-157.	2.4	8
290	CD8 Expression Allows T Cell Signaling by Monomeric Peptide-MHC Complexes. Immunity, 1998, 9, 467-473.	6.6	108
291	Natural and Engineered Disorders of Lymphocyte Development. Science, 1998, 280, 237-243.	6.0	92
292	IMMUNOLOGY:Enhanced: Translating Affinity into Response. , 1998, 281, 528-529.		12
293	The CD3-γΠε and CD3-ζ/η Modules Are Each Essential for Allelic Exclusion at the T Cell Receptor β Locus but Are Both Dispensable for the Initiation of  V to (D)J Recombination at the T Cell Receptor–β, –γ, and –Î Loci. Journal of Experimental Medicine, 1998, 187, 105-116.	´ 4.2	44
294	The Single Positive T Cells Found in CD3-ζ/ηâ^'/â^' Mice Overtly React with Self–Major Histocompatibility Complex Molecules upon Restoration of Normal Surface Density of T Cell Receptor–CD3 Complex. Journal of Experimental Medicine, 1997, 185, 707-716.	4.2	48
295	The Common Cytokine Receptor γ Chain Controls Survival of γ/δT Cells. Journal of Experimental Medicine, 1997, 186, 1277-1285.	4.2	59
296	CD45 and RPTPα display different protein tyrosine phosphatase activities in T lymphocytes. Biochemical Journal, 1997, 327, 867-876.	1.7	17
297	The three-dimensional structure of a T-cell antigen receptor Valpha Vbeta heterodimer reveals a novel arrangement of the Vbeta domain. EMBO Journal, 1997, 16, 4205-4216.	3.5	92
298	Qualitatively distinct signaling through T cell antigen receptor subunits. European Journal of Immunology, 1997, 27, 707-716.	1.6	37
299	CD2-mediated signaling in T cells lacking the ζ-chain-specific immune receptor tyrosine-based activation (ITAM) motif. European Journal of Immunology, 1997, 27, 2233-2238.	1.6	10
300	Analysis of immunoreceptor tyrosine-based activation motif (ITAM) binding to ZAP-70 by surface plasmon resonance. European Journal of Immunology, 1997, 27, 3010-3014.	1.6	24
301	Germline genomic structure of the B10.A mouseTcra-V2 gene subfamily. Immunogenetics, 1996, 44, 298-305.	1.2	18
302	Characterization of T cell receptor single-chain Fv fragments secreted by myeloma cells. European Journal of Immunology, 1996, 26, 2410-2416.	1.6	14
303	The CD8β polypeptide is required for the recognition of an altered peptide ligand as an agonist. European Journal of Immunology, 1996, 26, 2999-3007.	1.6	18
304	Functions of TCR and pre-TCR subunits: lessons from gene ablation. Current Opinion in Immunology, 1996, 8, 383-393.	2.4	69
305	Two faces are better than one. Nature, 1996, 384, 518-519.	13.7	8
306	CD8β Increases CD8 Coreceptor Function and Participation in TCR–Ligand Binding. Journal of Experimental Medicine, 1996, 184, 2439-2444.	4.2	79

#	Article	IF	CITATIONS
307	Germline genomic structure of the B10.A mouse Tcra-V2 gene subfamily. Immunogenetics, 1996, 44, 298-305.	1.2	3
308	Covalent assembly of a soluble T cell receptor-peptide-major histocompatibility class I complex Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7184-7189.	3.3	20
309	Reactivity of mouse T-cell hybridomas expressing human Vbeta gene segments with staphylococcal and streptococcal superantigens. Infection and Immunity, 1996, 64, 987-994.	1.0	28
310	The cytoplasmic tail of the T cell receptor ζ chain is required for signaling via CD26. European Journal of Immunology, 1995, 25, 295-297.	1.6	41
311	CD8 modulation of T-cell antigen receptor–ligand interactions on living cytotoxic T lymphocytes. Nature, 1995, 373, 353-356.	13.7	231
312	Early T-cell Development in CD3-deficient Mice. Immunological Reviews, 1995, 148, 171-199.	2.8	40
313	New nomenclature for the Reth motif (or ARH1/TAM/ARAM/YXXL). Trends in Immunology, 1995, 16, 110.	7.5	249
314	Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene EMBO Journal, 1995, 14, 4641-4653.	3.5	359
315	Normal development and function of natural killer cells in CD3 epsilon delta 5/delta 5 mutant mice Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7545-7549.	3.3	28
316	Different roles for the Fc epsilon RI gamma chain as a function of the receptor context Journal of Experimental Medicine, 1995, 181, 247-255.	4.2	42
317	Expression of genes encoding the pre-TCR and CD3 complex during thymus development. International Immunology, 1995, 7, 1659-1664.	1.8	63
318	TCR/CD3 coupling to Fas-based cytotoxicity Journal of Experimental Medicine, 1995, 181, 781-786.	4.2	196
319	Tyrosine-phosphorylated T cell receptor ζ chain associates with the actin cytoskeleton upon Activation of mature T lymphocytes. Immunity, 1995, 3, 623-633.	6.6	157
320	Genetic Dissection of the Transducing Subunits of the T-Cell Antigen Receptor. Annals of the New York Academy of Sciences, 1995, 766, 173-181.	1.8	2
321	Generation of a Panel of Transfected Murine Cells Expressing Human V? Annals of the New York Academy of Sciences, 1995, 756, 120-123.	1.8	0
322	Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO Journal, 1995, 14, 4641-53.	3.5	136
323	Dynamic adhesion of CD8-positive cells to antibody-coated surfaces: the initial step is independent of microfilaments and intracellular domains of cell-binding molecules Journal of Cell Biology, 1994, 125, 945-953.	2.3	48
324	Different use of T cell receptor transducing modules in two populations of gut intraepithelial lymphocytes are related to distinct pathways of T cell differentiation Journal of Experimental Medicine, 1994, 180, 673-679.	4.2	115

0

#	Article	IF	CITATIONS
325	Induction of tolerance to self MHC class I molecules expressed under the control of milk protein or β-globin gene promoters. International Immunology, 1994, 6, 277-287.	1.8	46
326	Chromosomal location of the Syk and ZAP-70 tyrosine kinase genes in mice and humans. Immunogenetics, 1994, 40, 300-2.	1.2	16
327	The degree of CD8 dependence of cytolytic T cell precursors is determined by the nature of the T cell receptor (TCR) and influences negative selection in TCR-transgenic mice. European Journal of Immunology, 1994, 24, 1572-1577.	1.6	44
328	Double-negative thymocyte subsets in CD3′ chain-deficient mice: Absence of HSA+CD44â^'CD25â^' cells. European Journal of Immunology, 1994, 24, 1903-1907.	1.6	50
329	Characterization of the GTP/GDP binding site in the murine CD3-ζ polypeptide chain. Immunology Letters, 1994, 43, 167-175.	1.1	3
330	The V beta complementarity determining region 1 of a major histocompatibility complex (MHC) class I-restricted T cell receptor is involved in the recognition of peptide/MHC I and superantigen/MHC II complex Journal of Experimental Medicine, 1994, 179, 1087-1097.	4.2	45
331	Analysis of the (YXXL/I)2 Signalling Motifs Found in the Cytoplasmic Segment of the Mouse CD3-ζ Chain. Advances in Experimental Medicine and Biology, 1994, 365, 45-51.	0.8	2
332	Different patterns of calcium signaling triggered through two components of the B lymphocyte antigen receptor Journal of Biological Chemistry, 1994, 269, 6491-6497.	1.6	63
333	Reconstitution of CD3 zeta coupling to calcium mobilization via genetic complementation. Journal of Biological Chemistry, 1994, 269, 32828-32834.	1.6	16
334	Different patterns of calcium signaling triggered through two components of the B lymphocyte antigen receptor. Journal of Biological Chemistry, 1994, 269, 6491-7.	1.6	53
335	Reconstitution of CD3 zeta coupling to calcium mobilization via genetic complementation. Journal of Biological Chemistry, 1994, 269, 32828-34.	1.6	13
336	The cytoplasmic tail of the T cell receptor ζ chain is dispensable for antigen-mediated T cell activation. European Journal of Immunology, 1993, 23, 2257-2262.	1.6	25
337	Transmembrane signalling through the T-cell-receptor-CD3 complex. Current Opinion in Immunology, 1993, 5, 324-333.	2.4	94
338	The cysteine residues in the cytoplasmic tail of CD8 $\hat{I}\pm$ are required for its coreceptor function. Molecular Immunology, 1993, 30, 755-764.	1.0	18
339	Characterization of T cell repertoire changes in acute Kawasaki disease Journal of Experimental Medicine, 1993, 177, 791-796.	4.2	192
340	T cell development in mice lacking the CD3-zeta/eta gene EMBO Journal, 1993, 12, 4347-4355.	3.5	213
341	The (YXXL/I)2 signalling motif found in the cytoplasmic segments of the bovine leukaemia virus envelope protein and Epstein-Barr virus latent membrane protein 2A can elicit early and late lymphocyte activation events EMBO Journal, 1993, 12, 5105-5112.	3.5	99

Mechanisms of Peripheral Tolerance., 1993, , 115-122.

#	Article	IF	CITATIONS
343	The (YXXL/I)2 signalling motif found in the cytoplasmic segments of the bovine leukaemia virus envelope protein and Epstein-Barr virus latent membrane protein 2A can elicit early and late lymphocyte activation events. EMBO Journal, 1993, 12, 5105-12.	3.5	56
344	T cell activation and thymic tolerance induction require different adhesion intensities of the CD8 co-receptor. International Immunology, 1992, 4, 1169-1174.	1.8	19
345	Distinct mechanisms of extrathymic T cell tolerance due to differential expression of self antigen. International Immunology, 1992, 4, 581-590.	1.8	124
346	Influence of antigen density on degree of clonal deletion in T cell receptor transgenic mice. International Immunology, 1992, 4, 541-547.	1.8	31
347	H-2-restricted cytolytic T lymphocytes specific for HLA display T cell receptors of limited diversity Journal of Experimental Medicine, 1992, 176, 439-447.	4.2	102
348	Threshold tolerance in H-2Kb-specific TCR transgenic mice expressing mutant H-2Kb: conversion of helper-independent to helper-dependent CTL. International Immunology, 1992, 4, 1419-1428.	1.8	25
349	CD3 zeta dependence of the CD2 pathway of activation in T lymphocytes and natural killer cells Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1492-1496.	3.3	85
350	The T cell receptor/CD3 complex is composed of at least two autonomous transduction modules. Cell, 1992, 68, 83-95.	13.5	440
351	Regulation of TCR $\hat{I}\pm$ and \hat{I}^2 gene allelic exclusion during T-cell development. Trends in Immunology, 1992, 13, 315-322.	7.5	275
352	Preferential positive selection of Vα2+CD8+ T cells in mouse strains expressing both H-2k and T cell receptor Vαa haplotypes: determination with a Vα2-specific monoclonal antibody. European Journal of Immunology, 1992, 22, 399-404.	1.6	79
353	A versatile method to produce antibodies to human T cell receptor Vβ segments: frequency determination of human Vβ2+ T cells that react with toxic-shock syndrome toxin-1. European Journal of Immunology, 1992, 22, 2749-2752.	1.6	33
354	Role of CD3 delta in surface expression of the TCR/CD3 complex and in activation for killing analyzed with a CD3 delta-negative cytotoxic T lymphocyte variant. Journal of Immunology, 1992, 148, 657-64.	0.4	44
355	Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell, 1991, 65, 293-304.	13.5	509
356	Ablation of "tolerance―and induction of diabetes by virus infection in viral antigen transgenic mice. Cell, 1991, 65, 305-317.	13.5	1,181
357	Distinct mechanisms of peripheral tolerance in transgenic mice. Research in Immunology, 1991, 142, 417-420.	0.9	5
358	Engineered secreted T-cell receptor alpha beta heterodimers Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8077-8081.	3.3	67
359	Fluorescence-based Monitoring of Interleukin-2 Gene Expression. Immunological Reviews, 1991, 119, 95-103.	2.8	1
360	Non-Deletional Mechanisms of Peripheral and Central Tolerance: Studies with Transgenic Mice with Tissue-Specific Expression of a Foreign MHC Class I Antigen. Immunological Reviews, 1991, 122, 47-67.	2.8	101

#	Article	IF	CITATIONS
361	Involvement of both T cell receptor Vα and Vβ variable region domains and α chain junctional region in viral antigen recognition. European Journal of Immunology, 1991, 21, 2195-2202.	1.6	74
362	Monoclonal antibodies raised against engineered soluble mouse T cell receptors and specific for Vα8-, Vβ2- or Vβ10-bearing T cells. European Journal of Immunology, 1991, 21, 3035-3040.	1.6	80
363	Each of the two productive T cell receptor α-gene rearrangements found in both the A10 and BM 3.3 T cell clones give rise to an α chain which can contribute to the constitution of a surface-expressed αβ dimer. International Immunology, 1991, 3, 719-729.	1.8	57
364	Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation Journal of Experimental Medicine, 1991, 173, 471-481.	4.2	590
365	Wild type and tailless CD8 display similar interaction with microfilaments during capping. Journal of Cell Science, 1991, 100, 329-337.	1.2	11
366	Wild type and tailless CD8 display similar interaction with microfilaments during capping. Journal of Cell Science, 1991, 100 (Pt 2), 329-37.	1.2	5
367	Genomic organization of the mouse T cell receptor V alpha family EMBO Journal, 1990, 9, 2141-2150.	3.5	63
368	Autoimmunity: A T-cell receptor perspective. Journal of Autoimmunity, 1990, 3, 109-111.	3.0	1
369	A signaling role for the cytoplasmic segment of the CD8 alpha chain detected under limiting stimulatory conditions Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 2339-2343.	3.3	59
370	Genomic organization of the mouse T cell receptor V alpha family. EMBO Journal, 1990, 9, 2141-50.	3.5	25
371	A novel type of aberrant T cell receptor alpha-chain gene rearrangement. Implications for allelic exclusion and the V-J recombination process. Journal of Immunology, 1990, 144, 4410-9.	0.4	42
372	Visualizing interleukin 2 gene expression at the single cell level. European Journal of Immunology, 1989, 19, 1619-1624.	1.6	21
373	Derivation of a T cell hybridoma variant deprived of functional T cell receptor α and β chain transcripts reveals a nonfunctional α-mRNA of BW5147 origin. European Journal of Immunology, 1989, 19, 2269-2274.	1.6	182
374	The mouseCD3-?, -?, and -? genes reside within 50 kilobases on chromosome 9, whereasCD3-? maps to chromosome 1, band H. Immunogenetics, 1989, 29, 265-268.	1.2	36
375	Recognition of insulin on MHC-class-II-expressing L929 cells by antibody and T cells. Research in Immunology, 1989, 140, 67-74.	0.9	11
376	Comparison of phosphorylation and internalization of the antigen receptor/CD3 complex, CD8, and class I MHC-encoded proteins on T cells. Role of intracytoplasmic domains analyzed with hybrid CD8/class I molecules. Journal of Immunology, 1989, 143, 1905-14.	0.4	12
377	Gene transfer of the ly-3 chain gene of the mouse cd8 molecular complex: co-transfer with the ly-2 polypeptide gene results in detectable cell surface expression of the ly-3 antigenic determinants. European Journal of Immunology, 1988, 18, 613-620.	1.6	48
378	Clonal analysis of human T cell activation by the Mycoplasma arthritidis mitogen (MAS). European Journal of Immunology, 1988, 18, 1733-1738.	1.6	73

#	Article	IF	CITATIONS
379	A T cell clone expresses two T cell receptor α genes but uses one αβ heterodimer for allorecognition and self MHC-restricted antigen recognition. Cell, 1988, 55, 49-59.	13.5	190
380	Structure-function analysis of la molecules: in-phase insertion mutagenesis of the amino-terminal domain of the El²k polypeptide chain. Biochimie, 1988, 70, 927-935.	1.3	0
381	Reconstitution of MHC class I specificity by transfer of the T cell receptor and Lyt-2 genes. Cell, 1987, 50, 545-554.	13.5	221
382	Cotransfer of the Ed alpha and Ad beta genes into L cells results in the surface expression of a functional mixed-isotype Ia molecule Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 3958-3962.	3.3	44
383	Idiotope-specific T cell clones that recognize syngeneic immunoglobulin fragments in the context of class II molecules. European Journal of Immunology, 1986, 16, 1373-1378.	1.6	179
384	Transfer and expression of MHC genes. Trends in Immunology, 1986, 7, 106-112.	7.5	7
385	Direct evidence for chromosomal inversion during T-cell receptor β-gene rearrangements. Nature, 1986, 319, 28-33.	13.7	152
386	Analysis of the Expression and Function of Class-II Major Histocompatibility Complex-Encoded Molecules by DNA-Mediated Gene Transfer. Annual Review of Immunology, 1986, 4, 281-315.	9.5	107
387	Ia-transfected L-cell fibroblasts present a lysozyme peptide but not the native protein to lysozyme-specific T cells Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 5885-5889.	3.3	65
388	L3T4 but not LFA-1 participates in antigen presentation by Ak-positive L-Cell transformants. Immunogenetics, 1985, 22, 247-256.	1.2	11
389	Genes, structures and function of T lymphocyte antigen receptors. Trends in Immunology, 1985, 6, 281-286.	7.5	4
390	Role of L3T4 in antigen-driven activation of a class I-specific T cell hybridoma Journal of Experimental Medicine, 1985, 162, 369-374.	4.2	56
391	Expression of specific cytolytic activity by H-2I region-restricted, influenza virus-specific T lymphocyte clones Journal of Experimental Medicine, 1985, 162, 171-187.	4.2	123
392	Major histocompatibility complex-restricted antigen receptor on T cells. VIII. Role of the LFA-1 molecule Journal of Experimental Medicine, 1985, 161, 635-640.	4.2	36
393	Gene transfer of H-2 class II genes: Antigen presentation by mouse fibroblast and hamster B-cell lines. Cell, 1984, 36, 319-327.	13.5	139
394	Reactivity of the Anti-Human T Cell Monoclonal Antibodies Submitted to the Workshop on One Anti-Class I and One Anti Class II Cytotoxic T Cell Clone. , 1984, , 294-297.		0
395	Expression and Characterization of Leucocyte Antigens. , 1984, , 694-724.		0
396	Expression of I–Ak class II genes in mouse L cells after DNA-mediated gene transfer. Nature, 1983, 305, 440-443.	13.7	62

#	Article	IF	CITATIONS
397	Murine H-2Dd-reactive monoclonal antibodies recognize shared antigenic determinant(s) on human HLA-B7 or HLA-B27 molecules or both. Immunogenetics, 1983, 17, 357-370.	1.2	21
398	Distinct HLA-DR epitopes and distinct families of HLA-DR molecules defined by 15 monoclonal antibodies (mAb) either anti-DR or allo-anti-lak crossreacting with human DR molecule. I. Cross-inhibition studies of mAb cell surface fixation and differential binding of mAb to detergent-solubilized HLA molecules immobilized to a solid phase by a first mAb. European Journal of Immunology, 1983, 13, 106-111.	1.6	111
399	Expression and function of transplantation antigens with altered or deleted cytoplasmic domains. Cell, 1983, 34, 535-544.	13.5	113
400	A 55,000 Mr surface antigen on activated human T lymphocytes defined by a monoclonal antibody. Human Immunology, 1983, 8, 153-165.	1.2	39
401	THE EFFECT OF IN VIVO APPLICATION OF MONOCLONAL ANTIBODIES SPECIFIC FOR HUMAN CYTOTOXIC T CELLS IN RHESUS MONKEYS. Transplantation, 1983, 35, 374-377.	0.5	11
402	Genes of the Major Histocompatibility Complex of the Mouse. Annual Review of Immunology, 1983, 1, 529-568.	9.5	459
403	Human cytotoxic, specific anti HLAâ€A, â€B, â€C T″ymphocyte clones are OKT3 positive, but may change their OKT4 and 8 phenotypes during culture. Tissue Antigens, 1983, 22, 82-85.	1.0	1
404	Structural and genetic analyses of HLA class I molecules using monoclonal xenoantibodies. Tissue Antigens, 1983, 22, 107-117.	1.0	183
405	Genes of the Major Histocompatibility Complex. Cold Spring Harbor Symposia on Quantitative Biology, 1983, 47, 1051-1065.	2.0	7
406	Transformation of murine LMTK- cells with purified HLA class I genes. I. Modification of conformation of murine beta 2-microglobulin upon its association with HLA heavy chains. Journal of Immunology, 1983, 130, 1432-8.	0.4	33
407	Exon/intron organization and complete nucleotide sequence of an HLA gene Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 893-897.	3.3	251
408	Epitopic analysis of detergent-solubilized HLA molecules by solid-phase radioimmunoassay. Journal of Immunological Methods, 1982, 54, 9-22.	0.6	49
409	Human cytotoxic T cell structures associated with expression of cytolysis. I. Analysis at the clonal cell level of the cytolysis-inhibiting effect of 7 monoclonal antibodies. European Journal of Immunology, 1982, 12, 739-747.	1.6	190
410	Immortalizing human T-cell function. Trends in Immunology, 1982, 3, 94-95.	7.5	1
411	Inhibition of Human T Cell Mediated Cytolysis by Monoclonal Antibodies to Effector Cell Surface Structures. Advances in Experimental Medicine and Biology, 1982, 146, 563-573.	0.8	5
412	Human T Cell Clones: Function, Specificity, and Cell Surface Markers. , 1982, , 425-437.		4
413	Expansion of human lymphocyte populations expressing specific immune reactivities. III. Specific colonies, either cytotoxic or proliferative, obtained from a population of responder cells primed in vitro. Preliminary immunogenetic analysis. Human Immunology, 1981, 2, 1-13.	1.2	47
414	Cloned cytotoxic T lymphocytes: A new, complementary approach to HLAâ€ŧyping. Tissue Antigens, 1981, 18, 75-78.	1.0	5

#	Article	IF	CITATIONS
415	Clones of Human Cytotoxic T Lymphocytes Derived from an Allosensitized Individual: HLA Specificity and Cell Surface Markers. Scandinavian Journal of Immunology, 1981, 14, 213-224.	1.3	48
416	An antigenic determinant of human beta 2-microglobulin masked by the association with HLA heavy chains at the cell surface: analysis using monoclonal antibodies. Journal of Immunology, 1981, 127, 1542-8.	0.4	65
417	Cross-reactions between mouse Ia and human HLA-D/DR antigens analyzed with monoclonal alloantibodies. Journal of Immunology, 1981, 126, 2424-9.	0.4	32
418	Expansion of Human Lymphocyte Populations Expressing, Specific Immune Reactivities. II. A Comparison of Immune Reactivities in Human Tlymphocyte Lines Derived from Allogeneically Primed Cultures, Maintained with Lectins or Conditioned Medium. Tissue Antigens, 1980, 15, 297-312.	1.0	14
419	Production, expansion, and clonal analysis of T cells with specific HLA-restricted male lysis. Journal of Experimental Medicine, 1980, 152, 182s-190s.	4.2	33
420	Expansion of human lymphocyte populations expressing specific immune reactivities. I. Differential effects of various lectins on the expression of alloreactive cytotoxicity by primed cells. Journal of Immunology, 1979, 123, 1781-7.	0.4	8
421	Macrophages Maintain Epithelial Barrier Integrity in the Distal Colon by Limiting the Absorption of Fluids Containing Fungal Products. SSRN Electronic Journal, 0, , .	0.4	Ο