List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7822143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cutaneous metastasis of primary diffuse large Bâ€cell lymphoma of the central nervous system developing 4 years after complete remission: Diagnosis confirmed by comparison of clones. Journal of Cutaneous Pathology, 2022, 49, 90-94.	0.7	1
2	The pivotal role of cytotoxic NK cells in mediating the therapeutic effect of anti-CD47 therapy in mycosis fungoides. Cancer Immunology, Immunotherapy, 2022, 71, 919-932.	2.0	4
3	Effective treatment of mogamulizumab-induced head and neck dermatitis withÂfluconazole in a patient with peripheral T-Cell lymphoma. JAAD Case Reports, 2022, 20, 44-46.	0.4	1
4	Understanding Cell Lines, Patient-Derived Xenograft and Genetically Engineered Mouse Models Used to Study Cutaneous T-Cell Lymphoma. Cells, 2022, 11, 593.	1.8	6
5	Repetitive expanded Tâ€cell receptor clonotypes impart the classic T helper 2 Sézary cell phenotype. British Journal of Dermatology, 2022, 187, 265-267.	1.4	1
6	Exhausted Markers in Cutaneous T-Cell Lymphoma: The Face that Launched a Thousand Ships. Journal of Investigative Dermatology, 2022, 142, 512-515.	0.3	0
7	HSR22-182: Real-World Treatment Patterns Among Patients With Sézary Syndrome in the United States Between 2018 and 2020. Journal of the National Comprehensive Cancer Network: JNCCN, 2022, 20, HSR22-182.	2.3	0
8	Real-world treatment patterns in patients with Sézary syndrome in the United States and the impact of Covid-19 Journal of Clinical Oncology, 2022, 40, e19578-e19578.	0.8	0
9	Treatment of earlyâ€stage mycosis fungoides: results from the PROspective Cutaneous Lymphoma International Prognostic Index (PROCLIPI) study*. British Journal of Dermatology, 2021, 184, 722-730.	1.4	39
10	Should we be imaging lymph nodes at initial diagnosis of earlyâ€stage mycosis fungoides? Results from the PROspective Cutaneous Lymphoma International Prognostic Index (PROCLIPI) international study*. British Journal of Dermatology, 2021, 184, 524-531.	1.4	18
11	Phase I Study of the CD47 Blocker TTI-621 in Patients with Relapsed or Refractory Hematologic Malignancies. Clinical Cancer Research, 2021, 27, 2190-2199.	3.2	110
12	The PROVe Study: US Real-World Experience with Chlormethine/Mechlorethamine Gel in Combination with Other Therapies for Patients with Mycosis Fungoides Cutaneous T-Cell Lymphoma. American Journal of Clinical Dermatology, 2021, 22, 407-414.	3.3	24
13	Response to brentuximab vedotin versus physician's choice by CD30 expression and large cell transformation status in patients with mycosis fungoides: An ALCANZA sub-analysis. European Journal of Cancer, 2021, 148, 411-421.	1.3	27
14	Randomized phase 3 ALCANZA study of brentuximab vedotin vs physician's choice in cutaneous T-cell lymphoma: final data. Blood Advances, 2021, 5, 5098-5106.	2.5	46
15	Research Techniques Made Simple: Skin-Targeted DrugÂand Vaccine Delivery Using Dissolvable Microneedle Arrays. Journal of Investigative Dermatology, 2021, 141, 2549-2557.e1.	0.3	1
16	Intralesional TTI-621, a novel biologic targeting the innate immune checkpoint CD47, in patients with relapsed or refractory mycosis fungoides or SA©zary syndrome: a multicentre, phase 1 study. Lancet Haematology,the, 2021, 8, e808-e817.	2.2	42
17	Updates from Ongoing, First-in-Human Phase 1 Dose Escalation and Expansion Study of TTI-621, a Novel Biologic Targeting CD47, in Patients with Relapsed or Refractory Hematologic Malignancies. Blood, 2021, 138, 2448-2448.	0.6	6
18	Clinical Response to Anti-CD47 Immunotherapy Is Associated with Rapid Reduction of Exhausted Bystander CD4+ BTLA+ T Cells in Tumor Microenvironment of Mycosis Fungoides. Cancers, 2021, 13, 5982.	1.7	7

#	Article	IF	CITATIONS
19	Characteristics associated with significantly worse quality of life in mycosis fungoides/Sézary syndrome from the Prospective Cutaneous Lymphoma International Prognostic Index () Tj ETQq1 1 0.784314 rgE	3T1/Øverlo	ck7Þ0 Tf 50 7
20	Evaluating patients' unmet needs in hidradenitis suppurativa: Results from the Global Survey Of Impact and Healthcare Needs (VOICE) Project. Journal of the American Academy of Dermatology, 2020, 82, 366-376.	0.6	165
21	The Utility of T-Cell Clonality in Differential Diagnostics of Acute Graft-versus-Host Disease from Drug Hypersensitivity Reaction. Journal of Investigative Dermatology, 2020, 140, 1282-1285.	0.3	6
22	The synergistic proapoptotic effect of PARP-1 and HDAC inhibition in cutaneous T-cell lymphoma is mediated via Blimp-1. Blood Advances, 2020, 4, 4788-4797.	2.5	9
23	17910 Using clonality of T-cell repertoire to distinguish between drug hypersensitivity reaction and acute graft-versus-host disease. Journal of the American Academy of Dermatology, 2020, 83, AB87.	0.6	0
24	AML-373: Tagraxofusp, a CD123-Targeted Therapy, in Patients with Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN): Results of a Landmark Clinical Trial. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, S209-S210.	0.2	1
25	TCL-127: Impact of Concomitant Steroids on Mogamulizumab Efficacy in MAVORIC. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, S252-S253.	0.2	1
26	æ·è,‰èнè,;å'Œ Sézary 综å•徿,£è€ç"Ÿæ´»è~é‡ç"ç©¶. British Journal of Dermatology, 2020, 182, e10	9.1.4	0
27	Genome-wide transcriptome analysis of the STAT6-regulated genes in advanced-stage cutaneous T-cell lymphoma. Blood, 2020, 136, 1748-1759.	0.6	25
28	Patient-reported quality of life in patients with relapsed/refractory cutaneous T-cell lymphoma: Results from the randomised phase III ALCANZA study. European Journal of Cancer, 2020, 133, 120-130.	1.3	21
29	A study of quality of life in people with mycosis fungoides and Sézary syndrome. British Journal of Dermatology, 2020, 182, e96.	1.4	0
30	United States Cutaneous Lymphoma Consortium recommendations for treatment of cutaneous lymphomas during the COVID-19 pandemic. Journal of the American Academy of Dermatology, 2020, 83, 703-704.	0.6	22
31	The Course of Mycosis Fungoides under Cytokine Pathway Blockers: A Multicentre Analysis of Real-Life Clinical Data. Acta Dermato-Venereologica, 2020, 100, adv00277.	0.6	8
32	Updates from Ongoing, First-in-Human Phase 1 Dose Escalation and Expansion Study of TTI-621, a Novel Biologic Targeting CD47, in Patients with Relapsed or Refractory Hematologic Malignancies. Blood, 2020, 136, 41-43.	0.6	5
33	Co-Inhibition of IL-2, IL-9 and IL-15 By the Novel Immunomodulator, Bnz-1, Provides Clinical Efficacy in Patients with Refractory Cutaneous T Cell Lymphoma in a Phase 1/2 Clinical Trial. Blood, 2020, 136, 37-37.	0.6	2
34	FINAL DATA FROM THE PHASE 3 ALCANZA STUDY: BRENTUXIMAB VEDOTIN (BV) VS PHYSICIAN'S CHOICE (PC) IN PATIENTS (PTS) WITH CD30-POSITIVE (CD30+) CUTANEOUS T-CELL LYMPHOMA (CTCL). Hematological Oncology, 2019, 37, 286-288.	0.8	2
35	Defining B2 involvement in Sezary syndrome results from the PROCLIPI study. European Journal of Cancer, 2019, 119, S6.	1.3	0
36	Prognostic factors in mycosis fungoides: the PROCLIPI study. European Journal of Cancer, 2019, 119, S26.	1.3	1

#	Article	IF	CITATIONS
37	Brentuximab vedotin (BV) versus physician's choice (PC) of methotrexate or bexarotene in adult patients with previously treated CD30-positive cutaneous T-cell lymphoma (CTCL; mycosis fungoides) Tj ETQq1 results from the phase 3 ALCANZA study. European Journal of Cancer, 2019, 119, S31.	1 0,78431 1.3	4 rgBT /Over
38	Anti-CD7 immunotherapy is mediated by cytotoxic CD107a+IFN-γ– NK cells and can be potentiated by interferon-α in cutaneous lymphoma. European Journal of Cancer, 2019, 119, S33.	1.3	1
39	An overall response in skin is associated with improved HRQoL in patients with MF/SS enrolled in the PROCLIPI study. European Journal of Cancer, 2019, 119, S38-S39.	1.3	0
40	Blocking TNF-α/Th17 pathway with monoclonal cytokine antibodies may aggravate the course of mycosis fungoides: a multicenter retrospective analysis of real-world clinical data. European Journal of Cancer, 2019, 119, S42.	1.3	0
41	Treatment of early-phase mycosis fungoides: results from the Prospective Cutaneous Lymphoma International (PROCLIPI) study. European Journal of Cancer, 2019, 119, S27.	1.3	0
42	LB1060 Cytokine profile of Sézary Syndrome in relationship with expression of checkpoint inhibitors on Sézary cells. Journal of Investigative Dermatology, 2019, 139, B4.	0.3	0
43	T-cell receptor rearrangements in the skin and blood of patients in the PROCLIPI study: detection of clonal rearrangements in the skin (and blood) correlates with the B-class of MF and SS patients. European Journal of Cancer, 2019, 119, S25.	1.3	0
44	Nail Changes in Sézary Syndrome: A Single-Center Study and Review of the Literature. Journal of Cutaneous Medicine and Surgery, 2019, 23, 380-387.	0.6	8
45	Targeting CD47 in Sézary syndrome with SIRPαFc. Blood Advances, 2019, 3, 1145-1153.	2.5	77
46	Rare Cutaneous T-Cell Lymphomas. Hematology/Oncology Clinics of North America, 2019, 33, 135-148.	0.9	12
47	The PROCLIPI international registry of earlyâ€stage mycosis fungoides identifies substantial diagnostic delay in most patients. British Journal of Dermatology, 2019, 181, 350-357.	1.4	127
48	Safety of Mogamulizumab in Mycosis Fungoides and Sézary Syndrome: Final Results from the Phase 3 Mavoric Study. Blood, 2019, 134, 5300-5300.	0.6	3
49	Dysregulation of the TOX-RUNX3 pathway in cutaneous T-cell lymphoma. Oncotarget, 2019, 10, 3104-3113.	0.8	26
50	Interferon-α2b-induced STAT3 suppression in myeloid-derived suppressor cells in mycosis fungoides. Cancer Immunology, Immunotherapy, 2018, 67, 1177-1178.	2.0	1
51	Therapeutic and prognostic significance of PARP-1 in advanced mycosis fungoides and Sezary syndrome. Experimental Dermatology, 2018, 27, 188-190.	1.4	8
52	Therapeutic reduction of cell-mediated immunosuppression in mycosis fungoides and Sézary syndrome. Cancer Immunology, Immunotherapy, 2018, 67, 423-434.	2.0	23
53	The effect of phototherapy on progression to tumors in patients with patch and plaque stage of mycosis fungoides. Journal of Dermatological Treatment, 2018, 29, 272-276.	1.1	15
54	A panel of three miRNAs in mycosis fungoides: a new prognostic tool?. Journal of Laboratory and Precision Medicine, 2018, 3, 41-41.	1.1	0

#	Article	IF	CITATIONS
55	Onychodystrophy in Sézary syndrome. Journal of the American Academy of Dermatology, 2018, 79, 972-973.	0.6	5
56	Lymph node imaging in patch/plaque mycosis fungoides; enlarged LN are infrequent but lymphomatous nodal involvement may occur and upstage patients to advanced disease. European Journal of Cancer, 2018, 101, S25-S26.	1.3	0
57	Quality of life in patients with mycosis fungoides and Sezary syndrome is significantly worse in female patients, Sézary syndrome and those with more extensive skin involvement. European Journal of Cancer, 2018, 101, S39.	1.3	1
58	Phase 1, single-arm, open-label, dose escalation trial of microneedle array-doxorubicin in patients with mycosis fungoides. European Journal of Cancer, 2018, 101, S32.	1.3	2
59	Intralesional Injection of the CD47-blocking immune checkpoint inhibitor TTI-621 (SIRPaFc) induces antitumor activity in patients with relapsed/refractory mycosis fungoides and Sézary syndrome: Interim results of a multicenter Phase 1 trial. European Journal of Cancer, 2018, 101, S34.	1.3	7
60	Dual-Positive CD4/CD8 Primary Cutaneous Peripheral T-Cell Lymphoma Previously Classified as Mycosis Fungoides a Tumor D'Emblée. American Journal of Dermatopathology, 2018, 40, 836-840.	0.3	2
61	Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncology, The, 2018, 19, 1192-1204.	5.1	398
62	Intralesional Administration of the CD47 Antagonist TTI-621 (SIRPαFc) Induces Responses in Both Injected and Non-Injected Lesions in Patients with Relapsed/Refractory Mycosis Fungoides and Sézary Syndrome: Interim Results of a Multicenter Phase I Trial. Blood, 2018, 132, 1653-1653.	0.6	11
63	Cutaneous T-cell lymphomas: modern data of pathogenesis, clinics and therapy. Oncogematologiya, 2018, 13, 25-38.	0.1	2
64	Superior Clinical Benefit of Brentuximab Vedotin in Mycosis Fungoides Versus Physician's Choice Irrespective of CD30 Level or Large Cell Transformation Status in the Phase 3 ALCANZA Study. Blood, 2018, 132, 1646-1646.	0.6	0
65	The biomarker landscape in mycosis fungoides and Sézary syndrome. Experimental Dermatology, 2017, 26, 668-676.	1.4	26
66	Brentuximab vedotin or physician's choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet, The, 2017, 390, 555-566.	6.3	444
67	RESPONSE BY STAGE IN CD30-POSITIVE (CD30+) CUTANEOUS T CELL LYMPHOMA (CTCL) PATIENTS RECEIVING BRENTUXIMAB VEDOTIN (BV) VS PHYSICIAN'S CHOICE (PC) IN THE PHASE 3 ALCANZA STUDY. Hematological Oncology, 2017, 35, 245-247.	0.8	1
68	PATIENTâ€REPORTED OUTCOMES AND QUALITY OF LIFE IN PATIENTS WITH CUTANEOUS T CELL LYMPHOMA: RESULTS FROM THE PHASE 3 ALCANZA STUDY. Hematological Oncology, 2017, 35, 247-248.	0.8	2
69	Hypopigmented Mycosis Fungoides with Large Cell Transformation in a Child. Pediatric Dermatology, 2017, 34, e260-e264.	0.5	4
70	A phase 1 dose-escalation trial of intratumoral TTI-621, a novel immune checkpoint inhibitor targeting CD47, in subjects with relapsed or refractory percutaneously-accessible solid tumors and mycosis fungoides Journal of Clinical Oncology, 2017, 35, TPS3101-TPS3101.	0.8	4
71	Romidepsin controls chronic lymphocytic leukemia in a patient with mycosis fungoides. Hematology Reports, 2016, 8, 6840.	0.3	3
72	Cutaneous Small/Medium CD4+ Pleomorphic T-Cell Lymphoma–Like Nodule in a Patient With Erythema Chronicum Migrans. American Journal of Dermatopathology, 2016, 38, 448-452.	0.3	6

#	Article	IF	CITATIONS
73	Interleukin-12 immunohistochemistry as a diagnostic tool for patch-stage mycosis fungoides. Journal of the American Academy of Dermatology, 2016, 75, 1053-1054.	0.6	2
74	CD56â^' extranodal natural killer (NK)/T-cell lymphoma, nasal type presenting as skin ulcers in a white man. JAAD Case Reports, 2016, 2, 390-396.	0.4	7
75	Computer-aided classification of melanocytic lesions using dermoscopic images. Journal of the American Academy of Dermatology, 2015, 73, 769-776.	0.6	79
76	Photodynamic Therapy with 5% ^ ^delta;-Aminolevulinic Acid is Safe and Effective Treatment of Acne Vulgaris in Japanese Patients. Laser Therapy, 2014, 23, 115-120.	0.8	18
77	Hair Follicle Nevus of the Abdominal Skin: An Unusual Extracephalic Presentation. Pediatric Dermatology, 2014, 31, e85-6.	0.5	7
78	Distinct age-matched serum biomarker profiles in patients with cutaneous T-cell lymphoma. Experimental Dermatology, 2014, 23, 598-600.	1.4	10
79	Bullous Sweet's Syndrome After Granulocyte Colonyâ€6timulating Factor Therapy in a Child with Congenital Neutropenia. Pediatric Dermatology, 2014, 31, e61-2.	0.5	6
80	Non-random geographic distribution of patients with cutaneous T-cell lymphoma in the Greater Pittsburgh Area. Dermatology Online Journal, 2014, 20, .	0.2	27
81	Diagnostic Inaccuracy of Smartphone Applications for Melanoma Detection. JAMA Dermatology, 2013, 149, 422.	2.0	337
82	Immediate early response gene X-1, a potential prognostic biomarker in cancers. Expert Opinion on Therapeutic Targets, 2013, 17, 593-606.	1.5	20
83	Early scrotal approximation after hemiscrotectomy in patients with Fournier's gangrene prevents scrotal reconstruction with skin graft. Canadian Urological Association Journal, 2013, 7, 481.	0.3	21
84	Cutaneous Manifestations of Unspecified Peripheral T-Cell Lymphoma May Be Indicative of Disease Activity and Predict Response to Therapy. Journal of Clinical Oncology, 2012, 30, e283-e285.	0.8	5
85	Adverse Effects of Denileukin Diftitox and Their Management in Patients With Cutaneous T-Cell Lymphoma. Clinical Journal of Oncology Nursing, 2012, 16, E164-E172.	0.3	21
86	Resistance of Sézary cells to TNFâ€Î±â€induced apoptosis is mediated in part by a loss of TNFR1 and a high level of the IER3 expression. Experimental Dermatology, 2012, 21, 287-292.	1.4	24
87	Low-dose electron beam radiation and romidepsin therapy for symptomatic cutaneous T-cell lymphoma lesions. British Journal of Dermatology, 2012, 167, 194-197.	1.4	29
88	Vaccination with photodynamic therapyâ€ŧreated macrophages induces highly suppressive Tâ€regulatory cells. Photodermatology Photoimmunology and Photomedicine, 2011, 27, 97-107.	0.7	12
89	Targeting of sebaceous glands by Î′â€aminolevulinic acidâ€based photodynamic therapy: An in vivo study. Lasers in Surgery and Medicine, 2011, 43, 376-381.	1.1	22
90	Clonal T-Cell Receptor Î ³ -Chain Gene Rearrangements in Differential Diagnosis of Lymphomatoid Papulosis From Skin Metastasis of Nodal Anaplastic Large-Cell Lymphoma. Archives of Dermatology, 2011, 147, 943.	1.7	5

#	Article	IF	CITATIONS
91	Chapter 12. PDT for Cutaneous Leishmaniasis. Comprehensive Series in Photochemical and Photobiological Sciences, 2011, , 303-326.	0.3	1
92	Therapeutic advances in cutaneous T-cell lymphoma. Skin Therapy Letter, 2011, 16, 1-5.	0.3	5
93	Monitoring the efficacy of antimicrobial photodynamic therapy in a murine model of cutaneous leishmaniasis using <i>L. major</i> expressing GFP. Journal of Biophotonics, 2010, 3, 328-335.	1.1	17
94	Comparative splitâ€face study of 5â€aminolevulinic acid photodynamic therapy with intense pulsed light for photorejuvenation of Asian skin. Journal of Dermatology, 2010, 37, 1005-1010.	0.6	27
95	Enhanced Susceptibility to <i>Leishmania</i> Infection in Resistant Mice in the Absence of Immediate Early Response Gene X-1. Journal of Immunology, 2009, 183, 7994-8003.	0.4	19
96	Optimization of topical photodynamic therapy with 3,7â€bis(diâ€ <i>n</i> â€butylamino)phenothiazinâ€5â€ium bromide for cutaneous leishmaniasis. Lasers in Surgery and Medicine, 2009, 41, 358-365.	1.1	25
97	Photochemistry-based immune modulation in the treatment of cutaneous leishmaniasis. , 2009, , .		1
98	Prospects for the use of differentiationâ€modulating agents as adjuvant of photodynamic therapy for proliferative dermatoses. Journal of Dermatology, 2008, 35, 197-205.	0.6	11
99	The role of mannose receptor during experimental leishmaniasis. Journal of Leukocyte Biology, 2007, 81, 1188-1196.	1.5	52
100	Parasiticidal effect of δâ€aminolevulinic acidâ€based photodynamic therapy for cutaneous leishmaniasis is indirect and mediated through the killing of the host cells. Experimental Dermatology, 2007, 16, 651-660.	1.4	100
101	Photodynamic therapy for cutaneous leishmaniasis: the effectiveness of topical phenothiaziniums in parasite eradication and Th1 immune response stimulation. Photochemical and Photobiological Sciences, 2007, 6, 1067-1075.	1.6	61
102	Real-time fluorescence monitoring of phenothiazinium photosensitizers and their anti-mycobacterial photodynamic activity against Mycobacterium bovis BCG in in vitro and in vivo models of localized infection. Photochemical and Photobiological Sciences, 2007, 6, 1117.	1.6	39
103	A Mechanistic Study of δ-Aminolevulinic Acid-Based Photodynamic Therapy for Cutaneous Leishmaniasis. Journal of Investigative Dermatology, 2007, 127, 1546-1549.	0.3	50
104	Clinical manifestations and classification of Old World cutaneous leishmaniasis. International Journal of Dermatology, 2007, 46, 132-142.	0.5	93
105	T helper type 1 cytokines and keratinocyte growth factor play a critical role in pseudoepitheliomatous hyperplasia initiation during cutaneous leishmaniasis. Archives of Dermatological Research, 2007, 299, 315-325.	1.1	17
106	Photoinactivation of Mycobacteria In Vitro and in a New Murine Model of Localized Mycobacterium bovis BCG-Induced Granulomatous Infection. Antimicrobial Agents and Chemotherapy, 2006, 50, 1828-1834.	1.4	73
107	The Role of Photosensitizer Molecular Charge and Structure on the Efficacy of Photodynamic Therapy against Leishmania Parasites. Chemistry and Biology, 2006, 13, 839-847.	6.2	68
108	Photodynamic therapy against intracellular pathogens: Problems and potentials. Medical Laser Application: International Journal for Laser Treatment and Research, 2006, 21, 251-260.	0.4	32

#	Article	IF	CITATIONS
109	The Role of HLA A2 and Cw2 in the Pathogenesis of Human Demodicosis. Dermatology, 2005, 210, 109-114.	0.9	28
110	The potential for photodynamic therapy in the treatment of localized infections. Photodiagnosis and Photodynamic Therapy, 2005, 2, 247-262.	1.3	142