Thierry Huby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/782174/publications.pdf Version: 2024-02-01

Thieddy Hiiry

#	Article	IF	CITATIONS
1	Immune cell-mediated features of non-alcoholic steatohepatitis. Nature Reviews Immunology, 2022, 22, 429-443.	22.7	174
2	Pleiotropic Roles of Scavenger Receptors in Circadian Retinal Phagocytosis: A New Function for Lysosomal SR-B2/LIMP-2 at the RPE Cell Surface. International Journal of Molecular Sciences, 2022, 23, 3445.	4.1	3
3	Macrophage SR-B1 in atherosclerotic cardiovascular disease. Current Opinion in Lipidology, 2022, 33, 167-174.	2.7	4
4	Phosphatidylserine enhances antiâ€inflammatory effects of reconstituted HDL in macrophages via distinct intracellular pathways. FASEB Journal, 2022, 36, e22274.	0.5	8
5	Phospholipid transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis is directly correlated with HDL-cholesterol levels and is not associated with cardiovascular risk. Atherosclerosis, 2021, 324, 1-8.	0.8	3
6	Tolerogenic Dendritic Cells Shape a Transmissible Gut Microbiota That Protects From Metabolic Diseases. Diabetes, 2021, 70, 2067-2080.	0.6	7
7	High-Density Lipoprotein Therapy in Stroke: Evaluation of Endothelial SR-BI-Dependent Neuroprotective Effects. International Journal of Molecular Sciences, 2021, 22, 106.	4.1	18
8	Targeted invalidation of SR-B1 in macrophages reduces macrophage apoptosis and accelerates atherosclerosis. Cardiovascular Research, 2020, 116, 554-565.	3.8	20
9	Free cholesterol transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis underlies the U-shape relationship between HDL-cholesterol and cardiovascular disease. European Journal of Preventive Cardiology, 2020, 27, 1606-1616.	1.8	45
10	Molecular determinants of SR-B1-dependent Plasmodium sporozoite entry into hepatocytes. Scientific Reports, 2020, 10, 13509.	3.3	12
11	Impaired Kupffer Cell Self-Renewal Alters the Liver Response to Lipid Overload during Non-alcoholic Steatohepatitis. Immunity, 2020, 53, 627-640.e5.	14.3	185
12	Platelet Acetyl-CoA Carboxylase Phosphorylation. JACC Basic To Translational Science, 2019, 4, 596-610.	4.1	6
13	The intestinal microbiota regulates host cholesterol homeostasis. BMC Biology, 2019, 17, 94.	3.8	125
14	Modulation of Gr1low monocyte subset impacts insulin sensitivity and weight gain upon high-fat diet in female mice. International Journal of Obesity, 2017, 41, 1805-1814.	3.4	8
15	Plasmodium P36 determines host cell receptor usage during sporozoite invasion. ELife, 2017, 6, .	6.0	91
16	Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity. Journal of Diabetes Research, 2016, 2016, 1-11.	2.3	31
17	Phosphatidylserine improves anti-inflammatory function of reconstituted HDL in macrophages via SR-BI-, Akt- and p38 MAPK-dependent pathways. Atherosclerosis, 2016, 252, e242.	0.8	1
18	αVβ3 integrin-targeted microSPECT/CT imaging of inflamed atherosclerotic plaques in mice. EJNMMI Research, 2016, 6, 29.	2.5	17

Thierry Huby

#	Article	IF	CITATIONS
19	Extended-Release Niacin/Laropiprant Improves Overall Efficacy of Postprandial Reverse Cholesterol Transport. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 285-294.	2.4	17
20	Promoting macrophage survival delays progression of pre-existing atherosclerotic lesions through macrophage-derived apoE. Cardiovascular Research, 2015, 108, 111-123.	3.8	16
21	Phosphatidylserine potently enhances anti-inflammatory activities of reconstituted HDL. Atherosclerosis, 2015, 241, e30.	0.8	4
22	Lipoprotein-Free Mitotane Exerts High Cytotoxic Activity in Adrenocortical Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2890-2898.	3.6	30
23	Adipocyte ATP-Binding Cassette G1 Promotes Triglyceride Storage, Fat Mass Growth, and Human Obesity. Diabetes, 2015, 64, 840-855.	0.6	56
24	Comparative Analyses of QTLs Influencing Obesity and Metabolic Phenotypes in Pigs and Humans. PLoS ONE, 2015, 10, e0137356.	2.5	21
25	Adrenocortical Scavenger Receptor Class B Type I Deficiency Exacerbates Endotoxic Shock and Precipitates Sepsis-Induced Mortality in Mice. Journal of Immunology, 2014, 193, 817-826.	0.8	32
26	Bcl-x Inactivation in Macrophages Accelerates Progression of Advanced Atherosclerotic Lesions in Apoe ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1142-1149.	2.4	33
27	Interleukin-6 Protects Human Macrophages from Cellular Cholesterol Accumulation and Attenuates the Proinflammatory Response. Journal of Biological Chemistry, 2011, 286, 30926-30936.	3.4	93
28	Hypocholesterolemia, foam cell accumulation, but no atherosclerosis in mice lacking ABC-transporter A1 and scavenger receptor BI. Atherosclerosis, 2011, 218, 314-322.	0.8	32
29	Cholesteryl Ester Transfer Protein Expression Partially Attenuates the Adverse Effects of SR-BI Receptor Deficiency on Cholesterol Metabolism and Atherosclerosis. Journal of Biological Chemistry, 2011, 286, 17227-17238.	3.4	42
30	Lipoprotein Lipase Inhibits Hepatitis C Virus (HCV) Infection by Blocking Virus Cell Entry. PLoS ONE, 2011, 6, e26637.	2.5	48
31	P2Y13 receptor is critical for reverse cholesterol transport. Hepatology, 2010, 52, 1477-1483.	7.3	89
32	Role of Scavenger Receptor Class B Type I in Hepatitis C Virus Entry: Kinetics and Molecular Determinants. Journal of Virology, 2010, 84, 34-43.	3.4	144
33	Macrophage Apoptosis Exerts Divergent Effects on Atherogenesis as a Function of Lesion Stage. Circulation, 2009, 119, 1795-1804.	1.6	194
34	Differential regulation of the human versus the mouse apolipoprotein AV gene by PPARalpha. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 764-771.	2.4	15
35	Conventional Dendritic Cells at the Crossroads Between Immunity and Cholesterol Homeostasis in Atherosclerosis. Circulation, 2009, 119, 2367-2375.	1.6	122
36	Scavenger Receptor BI Boosts Hepatocyte Permissiveness to Plasmodium Infection. Cell Host and Microbe, 2008, 4, 283-292.	11.0	111

THIERRY HUBY

#	Article	IF	CITATIONS
37	Association between a frequent allele of the gene encoding OATP1B1 and enhanced LDL-lowering response to fluvastatin therapy. Pharmacogenomics, 2008, 9, 1217-1227.	1.3	86
38	Coexpression of CLA-1 and Human PDZK1 in Murine Liver Modulates HDL Cholesterol Metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1298-1303.	2.4	14
39	Enhanced Dendritic Cell Survival Attenuates Lipopolysaccharide-Induced Immunosuppression and Increases Resistance to Lethal Endotoxic Shock. Journal of Immunology, 2008, 180, 6941-6946.	0.8	65
40	Coexistence of Foam Cells and Hypocholesterolemia in Mice Lacking the ABC Transporters A1 and G1. Circulation Research, 2008, 102, 113-120.	4.5	100
41	Apolipoprotein AV: gene expression, physiological role in lipid metabolism and clinical relevance. Future Lipidology, 2008, 3, 371-384.	0.5	4
42	Enhanced Immune System Activation and Arterial Inflammation Accelerates Atherosclerosis in Lupus-Prone Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1625-1631.	2.4	31
43	Secretion of Apolipoprotein E From Macrophages Occurs via a Protein Kinase A– and Calcium-Dependent Pathway Along the Microtubule Network. Circulation Research, 2007, 101, 607-616.	4.5	36
44	High-Avidity Monoclonal Antibodies against the Human Scavenger Class B Type I Receptor Efficiently Block Hepatitis C Virus Infection in the Presence of High-Density Lipoprotein. Journal of Virology, 2007, 81, 8063-8071.	3.4	133
45	Scavenger Receptor BI and BII Expression Levels Modulate Hepatitis C Virus Infectivity. Journal of Virology, 2007, 81, 3162-3169.	3.4	139
46	LDL particle subspecies are distinct in their capacity to mediate free cholesterol efflux via the SR-BI/Cla-1 receptor. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 129-138.	2.4	24
47	WO14-OR-5 INDUCTION OF APOPTOSIS IN ESTABLISHED ATHEROSCLEROTIC LESIONS PROMOTES INFLAMMATION AND MONOCYTE RECRUITMENT IN APOEâ^'/â^' MICE Atherosclerosis Supplements, 2007, 8, 15.	1.2	0
48	The interaction of natural hepatitis C virus with human scavenger receptor SRâ€BI/Cla1 is mediated by ApoBâ€containing lipoproteins. FASEB Journal, 2006, 20, 735-737.	0.5	134
49	Knockdown expression and hepatic deficiency reveal an atheroprotective role for SR-BI in liver and peripheral tissues. Journal of Clinical Investigation, 2006, 116, 2767-2776.	8.2	99
50	Thyroid Hormone Regulates the Hypotriglyceridemic Gene APOA5. Journal of Biological Chemistry, 2005, 280, 27533-27543.	3.4	64
51	Transcription Factor Sterol Regulatory Element Binding Protein 2 Regulates Scavenger Receptor Cla-1 Gene Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2358-2364.	2.4	28
52	Regulation of the Expression of the Apolipoprotein(a) Gene. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1633-1639.	2.4	16
53	Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I. EMBO Reports, 2002, 3, 1181-1187.	4.5	131
54	Functional Analysis of the Chimpanzee and Humanapo(a) Promoter Sequences. Journal of Biological Chemistry, 2001, 276, 22209-22214.	3.4	25

THIERRY HUBY

#	Article	IF	CITATIONS
55	Molecular Cloning of the cDNA Encoding the Carboxy-Terminal Domain of Chimpanzee Apolipoprotein(a): An Asp57 → Asn Mutation in Kringle IV-10 Is Associated with Poor Fibrin Binding. Biochemistry, 1999, 38, 1950-1950.	2.5	0
56	Molecular Cloning of the cDNA Encoding the Carboxy-Terminal Domain of Chimpanzee Apolipoprotein(a): An Asp57 → Asn Mutation in Kringle IV-10 Is Associated with Poor Fibrin Bindingâ€. Biochemistry, 1998, 37, 7213-7223.	2.5	15
57	Pathophysiological implication of the structural domains of lipoprotein(a). Atherosclerosis, 1997, 133, 1-6.	0.8	10
58	2.P.119 The KIV-10 Asp57 → Thr mutation in chimpanzee apo(a) abolishes fibrin binding. Atherosclerosis, 1997, 134, 141.	0.8	0
59	Expression of a Recombinant Kringle V of Human Apolipoprotein(a): Antibody Characterization and Species Specificity. Protein Expression and Purification, 1996, 8, 145-150.	1.3	5
60	Characterization of the N-Terminal and C-Terminal domains of human apolipoprotein(a): Relevance to Fibrin Binding. Biochemistry, 1995, 34, 7385-7393.	2.5	29
61	Non-enzymatic glycation of lipoprotein(a) in vitro and in vivo. Atherosclerosis, 1995, 118, 135-143.	0.8	29
62	Lipoprotein (a): implication in atherothrombosis. Atherosclerosis, 1994, 110, S69-S75.	0.8	33
63	Structural Domains of Apolipoprotein(a) and Its Interaction with Apolipoprotein B-100 in the Lipoprotein(a) Particle. Biochemistry, 1994, 33, 3335-3341.	2.5	23
64	Lipoprotein[a] in the chimpanezee: relationship of apo[a] phenotype to elevated plasma Lp[a] levels Journal of Lipid Research, 1994, 35, 263-270.	4.2	40
65	Association of elevated lipoprotein(a) levels and coronary heart disease in NIDDM patients. Relationship with apolipoprotein(a) phenotypes. Diabetologia, 1994, 37, 585-591.	6.3	6
66	Lipoprotein[a] in the chimpanezee: relationship of apo[a] phenotype to elevated plasma Lp[a] levels. Journal of Lipid Research, 1994, 35, 263-70.	4.2	25