
Benjamin Peret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7820467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Highly Repeat-Diverse (Peri) Centromeres of White Lupin (Lupinus albus L.). Frontiers in Plant Science, 2022, 13, 862079.	3.6	1
2	Identifying roles of the scion and the rootstock in regulating plant development and functioning under different phosphorus supplies in grapevine. Environmental and Experimental Botany, 2021, 185, 104405.	4.2	8
3	Dynamic Development of White Lupin Rootlets Along a Cluster Root. Frontiers in Plant Science, 2021, 12, 738172.	3.6	4
4	Pangenome of white lupin provides insights into the diversity of the species. Plant Biotechnology Journal, 2021, 19, 2532-2543.	8.3	23
5	Tissueâ€specific inactivation by cytosine deaminase/uracil phosphoribosyl transferase as a tool to study plant biology. Plant Journal, 2020, 101, 731-741.	5.7	2
6	High-quality genome sequence of white lupin provides insight into soil exploration and seed quality. Nature Communications, 2020, 11, 492.	12.8	90
7	Anatomical and hormonal description of rootlet primordium development along white lupin cluster root. Physiologia Plantarum, 2019, 165, 4-16.	5.2	15
8	Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications, 2018, 9, 1408.	12.8	110
9	Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nature Communications, 2017, 8, 15300.	12.8	268
10	A novel role for the root cap in phosphate uptake and homeostasis. ELife, 2016, 5, e14577.	6.0	79
11	Lateral root emergence in <i>Arabidopsis</i> is dependent on transcription factor LBD29 regulating auxin influx carrier <i>LAX3</i> . Development (Cambridge), 2016, 143, 3340-9.	2.5	111
12	The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nature Communications, 2015, 6, 7641.	12.8	119
13	Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis. Journal of Theoretical Biology, 2015, 366, 57-70.	1.7	12
14	Root Architecture Responses: In Search of Phosphate. Plant Physiology, 2014, 166, 1713-1723.	4.8	214
15	SnapShot: Root Development. Cell, 2013, 155, 1190-1190.e1.	28.9	4
16	Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5235-5240.	7.1	213
17	Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5229-5234.	7.1	233
18	Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Molecular Systems Biology, 2013, 9, 699.	7.2	104

Benjamin Peret

#	Article	IF	CITATIONS
19	AUX/LAX family of auxin influx carriers—an overview. Frontiers in Plant Science, 2012, 3, 225.	3.6	238
20	Analyzing Lateral Root Development: How to Move Forward. Plant Cell, 2012, 24, 15-20.	6.6	125
21	Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4668-4673.	7.1	304
22	<i>AUX/LAX</i> Genes Encode a Family of Auxin Influx Transporters That Perform Distinct Functions during <i>Arabidopsis</i> Development. Plant Cell, 2012, 24, 2874-2885.	6.6	373
23	Auxin regulates aquaporin function to facilitate lateral root emergence. Nature Cell Biology, 2012, 14, 991-998.	10.3	323
24	Root developmental adaptation to phosphate starvation: better safe than sorry. Trends in Plant Science, 2011, 16, 442-450.	8.8	457
25	SHORT-ROOT Regulates Primary, Lateral, and Adventitious Root Development in Arabidopsis Â. Plant Physiology, 2011, 155, 384-398.	4.8	163
26	The Novel Cyst Nematode Effector Protein 19C07 Interacts with the Arabidopsis Auxin Influx Transporter LAX3 to Control Feeding Site Development Â. Plant Physiology, 2011, 155, 866-880.	4.8	141
27	The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Annals of Botany, 2010, 105, 277-289.	2.9	93
28	Auxin Carriers Localization Drives Auxin Accumulation in Plant Cells Infected by <i>Frankia</i> in <i>Casuarina glauca</i> Actinorhizal Nodules. Plant Physiology, 2010, 154, 1372-1380.	4.8	75
29	Shootward and rootward: peak terminology for plant polarity. Trends in Plant Science, 2010, 15, 593-594.	8.8	39
30	Lateral root emergence: a difficult birth. Journal of Experimental Botany, 2009, 60, 3637-3643.	4.8	167
31	Arabidopsis lateral root development: an emerging story. Trends in Plant Science, 2009, 14, 399-408.	8.8	681
32	The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology, 2008, 10, 946-954.	10.3	715
33	SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and <i>Frankia</i> bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4928-4932.	7.1	259
34	A role for auxin during actinorhizal symbioses formation?. Plant Signaling and Behavior, 2008, 3, 34-35.	2.4	30
35	Auxin Influx Activity Is Associated with Frankia Infection during Actinorhizal Nodule Formation in Casuarina glauca Â. Plant Physiology, 2007, 144, 1852-1862.	4.8	84