List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7819851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The newly-assisted catalytic mechanism of surface hydroxyl species performed as the promoter in syngas-to-C2 species on the Cu-based bimetallic catalysts. Green Energy and Environment, 2023, 8, 487-498.	8.7	2
2	C2H2 semi-hydrogenation on the PdxMy cluster/graphdiyne catalysts: Effects of cluster composition and size on the activity and selectivity. Green Energy and Environment, 2022, 7, 500-511.	8.7	10
3	Three-dimensional, heteroatom-enriched, porous carbon nanofiber flexible paper for free-standing supercapacitor electrode materials derived from microalgae oil. Fuel Processing Technology, 2022, 225, 107055.	7.2	19
4	The roles of Rh crystal phase and facet in syngas conversion to ethanol. Chemical Engineering Science, 2022, 248, 117186.	3.8	10
5	Metal halide perovskites for photocatalysis applications. Journal of Materials Chemistry A, 2022, 10, 407-429.	10.3	61
6	Biomass-derived porous carbons support in phase change materials for building energy efficiency: a review. Materials Today Energy, 2022, 23, 100905.	4.7	26
7	C2H2 semi-hydrogenation over Cu catalysts: Revealing the influence of Cu active site types on the catalytic performance. Chemical Engineering Science, 2022, 251, 117494.	3.8	4
8	Theoretical insight into mercury species adsorption on graphene-based Pt single-atom catalysts. RSC Advances, 2022, 12, 5797-5806.	3.6	5
9	A predicted new catalyst to replace noble metal Pd for CO oxidative coupling to DMO. Catalysis Science and Technology, 2022, 12, 2542-2554.	4.1	3
10	Removal of ions from produced water using Powder River Basin coal. International Journal of Coal Science and Technology, 2022, 9, 1.	6.0	4
11	The role of CO2 over different binary catalysts in methanol synthesis. Catalysis Today, 2022, , .	4.4	0
12	C2H2 semi-hydrogenation: Engineering the surface structure of Pt-based bimetallic catalysts to adjust catalytic performance. Fuel, 2022, 321, 124118.	6.4	7
13	A quantitative structure activity relationship (QSAR) model for predicting the rate constant of the reaction between VOCs and NO3 radicals. Chemical Engineering Journal, 2022, 448, 136413.	12.7	8
14	Syngas Conversion to C ₂ Species over WC and M/WC (M = Cu or Rh) Catalysts: Identifying the Function of Surface Termination and Supported Metal Type. ACS Applied Materials & Interfaces, 2022, 14, 19491-19504.	8.0	2
15	Intrinsic activity and selectivity enhancement of single-atom Rh in syngas-to-C2 oxygenates by engineering the local coordination atom. Applied Surface Science, 2022, 597, 153755.	6.1	3
16	Core–Shell Covalently Linked Graphitic Carbon Nitride–Melamine–Resorcinol–Formaldehyde Microsphere Polymers for Efficient Photocatalytic CO ₂ Reduction to Methanol. Journal of the American Chemical Society, 2022, 144, 9576-9585.	13.7	62
17	High thermal stability Si-Al based N-carrier for efficient and stable chemical looping ammonia generation. Applied Energy, 2022, 323, 119519.	10.1	10
18	Robust "dry amine―solid CO2 sorbent synthesized by a facile, cost-effective and environmental friendly pathway. Chemical Engineering Journal, 2021, 404, 126447.	12.7	18

#	Article	IF	CITATIONS
19	Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chemical Engineering Journal, 2021, 405, 127011.	12.7	104
20	Engineering Ni/SiO2 catalysts for enhanced CO2 methanation. Fuel, 2021, 285, 119151.	6.4	76
21	Effect of calcium ferrites on carbon dioxide gasification reactivity and kinetics of pine wood derived char. Renewable Energy, 2021, 163, 445-452.	8.9	19
22	Experimental investigation of CO2 adsorption and desorption on multi-type amines loaded HZSM-5 zeolites. Chemical Engineering Journal, 2021, 406, 126882.	12.7	45
23	Advance in Using Plasma Technology for Modification or Fabrication of Carbonâ€Based Materials and Their Applications in Environmental, Material, and Energy Fields. Advanced Functional Materials, 2021, 31, 2006287.	14.9	55
24	Highly dispersed Ru nanoparticles on a bipyridine-linked covalent organic framework for efficient photocatalytic CO ₂ reduction. Sustainable Energy and Fuels, 2021, 5, 2871-2876.	4.9	30
25	A novel Bi ₂ S ₃ /KTa _{0.75} Nb _{0.25} O ₃ nanocomposite with high efficiency for photocatalytic and piezocatalytic N ₂ fixation. Journal of Materials Chemistry A 2021 9 13344-13354	10.3	109
26	Metal–support interactions in Fe–Cu–K admixed with SAPO-34 catalysts for highly selective transformation of CO ₂ and H ₂ into lower olefins. Journal of Materials Chemistry A, 2021, 9, 21877-21887.	10.3	11
27	Nanostructure rod-like TiO2-reduced graphene oxide composite aerogels for highly-efficient visible-light photocatalytic CO2 reduction. Journal of Alloys and Compounds, 2021, 861, 158598.	5.5	26
28	Modification of Catalytic Properties of Hollandite Manganese Oxide by Ag Intercalation for Oxidative Acetalization of Ethanol to Diethoxyethane. ACS Catalysis, 2021, 11, 5347-5357.	11.2	14
29	Application of percarbonate and peroxymonocarbonate in decontamination technologies. Journal of Environmental Sciences, 2021, 105, 100-115.	6.1	30
30	C ₂ H ₂ Selective Hydrogenation to C ₂ H ₄ : Engineering the Surface Structure of Pd-Based Alloy Catalysts to Adjust the Catalytic Performance. Journal of Physical Chemistry C, 2021, 125, 15251-15261.	3.1	13
31	Theoretical DFT Study on the Mechanisms of CO/CO2 Conversion in Chemical Looping Catalyzed by Calcium Ferrite. Journal of Physical Chemistry A, 2021, 125, 8159-8167.	2.5	2
32	A techno-economic analysis of solar catalytic chemical looping biomass refinery for sustainable production of high purity hydrogen. Energy Conversion and Management, 2021, 243, 114341.	9.2	9
33	A new method for preparing excellent electrical conductivity carbon nanofibers from coal extraction residual. Cleaner Engineering and Technology, 2021, 4, 100109.	4.0	3
34	C2H2 semi-hydrogenation on the metal M (MÂ=ÂCu, Ag, Au) alloyed single-atom Pd catalysts: Effects of Pd coordination number and environment on the catalytic performance. Chemical Engineering Science, 2021, 243, 116786.	3.8	8
35	Cu2O-catalyzed C2H2 selective hydrogenation: Use of S for efficiently enhancing C2H4 selectivity and reducing the formation of green oil precursor. Chemical Engineering Science, 2021, 246, 116984.	3.8	6
36	Visible-light-driven photocatalytic CO ₂ reduction over ketoenamine-based covalent organic frameworks: role of the host functional groups. Catalysis Science and Technology, 2021, 11, 1717-1724.	4.1	46

#	Article	IF	CITATIONS
37	CO oxidative coupling to dimethyl oxalate over Pd monolayer supported on SiC substrate: insight into the effects of different exposed terminals. Molecular Catalysis, 2021, 515, 111926.	2.0	1
38	High-performance nano-structured Ni based catalysts for high-temperature CO2CH4 reforming—Greenhouse gases to syngas. Catalysis Today, 2020, 339, 344-351.	4.4	8
39	CO ₂ Adsorption on Hazelnut-Shell-Derived Nitrogen-Doped Porous Carbons Synthesized by Single-Step Sodium Amide Activation. Industrial & Engineering Chemistry Research, 2020, 59, 7046-7053.	3.7	88
40	First principle study of feasibility of dinitrogen reduction to ammonia on two-dimensional transition metal phthalocyanine monolayer. Applied Surface Science, 2020, 500, 144032.	6.1	34
41	Kinetics and mechanism of CO2 gasification of coal catalyzed by Na2CO3, FeCO3 and Na2CO3–FeCO3. Journal of the Energy Institute, 2020, 93, 922-933.	5.3	31
42	The adsorption of phosphate on hydroxylated alpha-SiO2 (0 0 1) surface and influence of typical anions: A theoretical study. Applied Surface Science, 2020, 501, 144233.	6.1	24
43	Mechanistic research on NO removal by K2S2O8 with electrochemical catalysis. Chemical Engineering Journal, 2020, 382, 122873.	12.7	21
44	Rare earth elements of fly ash from Wyoming's Powder River Basin coal. Journal of Rare Earths, 2020, 38, 219-226.	4.8	33
45	Dimethyl oxalate synthesis via CO oxidation on Pd-doped Ag(111) surface: A theoretic study. Molecular Catalysis, 2020, 484, 110731.	2.0	8
46	Two-Dimensional Transition Metal Porphyrin Sheets as a Promising Single-Atom-Catalyst for Dinitrogen Electrochemical Reduction to Ammonia: A Theoretical Study. Journal of Physical Chemistry C, 2020, 124, 1492-1499.	3.1	30
47	Promising zirconia-mixed Al-based nitrogen carriers for chemical looping of NH3: Reduced NH3 decomposition and improved NH3 yield. Fuel, 2020, 264, 116821.	6.4	24
48	Electrochemical ammonia synthesis catalyzed with a CoFe layered double hydroxide – A new initiative in clean fuel synthesis. Journal of Cleaner Production, 2020, 250, 119525.	9.3	20
49	High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation. Applied Catalysis B: Environmental, 2020, 268, 118474.	20.2	226
50	Enhanced liquid tar production as fuels/chemicals from Powder River Basin coal through CaO catalyzed stepwise degradation in eco-friendly supercritical CO2/ethanol. Energy, 2020, 191, 116563.	8.8	3
51	Effective carbon dioxide stabilization of nanofibers electrospun from raw coal tar and polyacrylonitrile. Journal of Cleaner Production, 2020, 276, 123229.	9.3	7
52	A win-win method for generating carbon material precursors of carbon nanofibers from coal and CO2 and the associated mechanism. Fuel, 2020, 272, 117712.	6.4	4
53	Unveiling the critical role of p-d hybridization interaction in M13â^'nGan clusters on CO2 adsorption. Fuel, 2020, 280, 118446.	6.4	9
54	Improved methanol synthesis performance of Cu/ZnO/Al2O3 catalyst by controlling its precursor structure. Green Energy and Environment, 2020, , .	8.7	16

#	Article	IF	CITATIONS
55	Simultaneous Removal of SO ₂ and Hg ⁰ by Composite Oxidant NaClO/NaClO ₂ in a Packed Tower. ACS Omega, 2020, 5, 17931-17939.	3.5	4
56	Titanium oxyhydroxide – A new effective candidate for resolving the challenging water quality issue of high alkalinity. Journal of Environmental Chemical Engineering, 2020, 8, 104447.	6.7	0
57	Enhanced near-zero-CO2-emission chemicals-oriented oil production from coal with inherent CO2 recycling: Part l—PRB coal fast pyrolysis coupled with CO2/CH4 reforming. International Journal of Coal Science and Technology, 2020, 7, 433-443.	6.0	3
58	Synthesis of Highly Nanoporous β-Silicon Carbide from Corn Stover and Sandstone. ACS Sustainable Chemistry and Engineering, 2020, 8, 14896-14904.	6.7	11
59	Effects of mixture of CO2 /CH4 as pyrolysis atmosphere on pine wood pyrolysis products. Renewable Energy, 2020, 162, 1243-1254.	8.9	20
60	Flexible carbon nanofibers for high-performance free-standing supercapacitor electrodes derived from Powder River Basin coal. Fuel, 2020, 278, 117985.	6.4	37
61	Lithium Enrichment in the No. 21 Coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China. Minerals (Basel, Switzerland), 2020, 10, 521.	2.0	12
62	Carbon Nanofibers Prepared from Solar Pyrolysis of Pinewood as Binder-free Electrodes for Flexible Supercapacitors. Cell Reports Physical Science, 2020, 1, 100079.	5.6	15
63	The volume expansion effect of amine during CO2 adsorption process: An experimental study combined with theoretical calculations. Journal of Colloid and Interface Science, 2020, 572, 190-197.	9.4	9
64	Insight into Crystal Phase Dependent CO Dissociation on Rh Catalyst from DFT and Microkinetic Modeling. Journal of Physical Chemistry C, 2020, 124, 6756-6769.	3.1	7
65	Perspectives on the Active Sites and Catalyst Design for the Hydrogenation of Dimethyl Oxalate. ACS Catalysis, 2020, 10, 4465-4490.	11.2	69
66	Mechanism study on CO2 capture by [TETAH][HCOO]-PEG200 mixed system. International Journal of Greenhouse Gas Control, 2020, 96, 103013.	4.6	7
67	Preparation of biomass-derived porous carbon supported Ni nanoparticles for CO ₂ reforming of CH ₄ . New Journal of Chemistry, 2020, 44, 12503-12513.	2.8	4
68	Advances in electrocatalytic ammonia synthesis under mild conditions. Progress in Energy and Combustion Science, 2020, 81, 100860.	31.2	38
69	Effect of copper on highly effective Fe-Mn based catalysts during production of light olefins via Fischer-Tropsch process with low CO2 emission. Applied Catalysis B: Environmental, 2020, 278, 119302.	20.2	58
70	Probe into the effects of surface composition and ensemble effect of active sites on the catalytic performance of C2H2 semi-hydrogenation over the Pd-Ag bimetallic catalysts. Chemical Engineering Science, 2020, 218, 115549.	3.8	30
71	High-performance mesoporous (AlN/Al2O3) for enhanced NH3 yield during chemical looping ammonia generation technology. International Journal of Hydrogen Energy, 2020, 45, 9903-9913.	7.1	23
72	Degradation of ibuprofen in the carbon dots/Fe3O4@carbon sphere pomegranate-like composites activated persulfate system. Separation and Purification Technology, 2020, 242, 116820.	7.9	42

#	Article	IF	CITATIONS
73	Highly efficient methane decomposition to H2 and CO2 reduction to CO via redox looping of Ca2FexAl2-xO5 supported NiyFe3-yO4 nanoparticles. Applied Catalysis B: Environmental, 2020, 271, 118938.	20.2	24
74	NMR Techniques and Prediction Models for the Analysis of Species Formed in CO ₂ Capture Processes with Amine-Based Sorbents: A Critical Review. ACS Sustainable Chemistry and Engineering, 2020, 8, 6173-6193.	6.7	50
75	A new approach of reduction of carbon dioxide emission and optimal use of carbon and hydrogen content for the desired syngas production from coal. Journal of Cleaner Production, 2020, 265, 121786.	9.3	12
76	Green and efficient two-step degradation approach for converting Powder River Basin coal into fuels/chemicals and insights into their chemical compositions. Applied Energy, 2020, 264, 114739.	10.1	15
77	Shape-tailorable amine grafted silica aerogel microsphere for CO2 capture. Green Chemical Engineering, 2020, 1, 140-146.	6.3	8
78	Thermodynamics of NaHCO3 decomposition during Na2CO3-based CO2 capture. Journal of Environmental Sciences, 2019, 78, 74-80.	6.1	15
79	Understanding the catalytic mechanisms of CO2 hydrogenation to methanol on unsupported and supported Ga-Ni clusters. Applied Energy, 2019, 253, 113623.	10.1	34
80	CO2 hydrogenation to light olefins with high-performance Fe0.30Co0.15Zr0.45K0.10O1.63. Journal of Catalysis, 2019, 377, 224-232.	6.2	37
81	Low-energy-consumption and environmentally friendly CO2 capture via blending alcohols into amine solution. Applied Energy, 2019, 254, 113696.	10.1	39
82	Carbon nanofiber generation from the precursor containing unprecedently high percentage of inexpensive coal-derived carbon material. Journal of Cleaner Production, 2019, 236, 117621.	9.3	8
83	The new role of surface adsorbed CH (x = 1–3) intermediates as a co-adsorbed promoter in self-promoting syngas conversion to form CH intermediates and C2 oxygenates on the Rh-doped Cu catalyst. Journal of Catalysis, 2019, 377, 1-12.	6.2	18
84	Improvement of dispersion stability of filler based on fly ash by adding sodium hexametaphosphate in gas-sealing coating. Journal of Cleaner Production, 2019, 235, 259-271.	9.3	18
85	Recent progress in theoretical and computational studies on the utilization of lignocellulosic materials. Green Chemistry, 2019, 21, 9-35.	9.0	96
86	Clean and low-cost synthesis of high purity beta-silicon carbide with carbon fiber production residual and a sandstone. Journal of Cleaner Production, 2019, 238, 117875.	9.3	16
87	Synergistic enhancement of chemical looping-based CO ₂ splitting with biomass cascade utilization using cyclic stabilized Ca ₂ Fe ₂ O ₅ aerogel. Journal of Materials Chemistry A, 2019, 7, 1216-1226.	10.3	43
88	New insight into the reaction mechanism of carbon disulfide hydrolysis and the impact of H ₂ S with density functional modeling. New Journal of Chemistry, 2019, 43, 2347-2352.	2.8	7
89	Highly efficient and stable calcium looping based pre-combustion CO2 capture for high-purity H2 production. Materials Today Energy, 2019, 13, 233-238.	4.7	13
90	First-Principle Study on Heterofullerenes: Effective and Multifunctional in Hg Removal. Industrial & amp; Engineering Chemistry Research, 2019, 58, 11101-11110.	3.7	8

#	Article	IF	CITATIONS
91	C ₂ H ₂ Selective Hydrogenation over the M@Pd and M@Cu (M = Au, Ag, Cu, and) Tj ETQ Activity and Selectivity. Journal of Physical Chemistry C, 2019, 123, 16107-16117.	9q1 1 0.78 3.1	34314 rgBT 15
92	Catalytic synthesis of non-carbon fuel NH3 from easily available N2 and H2O over FeO(100) surface: study of reaction mechanism using the density functional theory. New Journal of Chemistry, 2019, 43, 10066-10072.	2.8	5
93	Resolving a Decade-Long Question of Oxygen Defects in Raman Spectra of Ceria-Based Catalysts at Atomic Level. Journal of Physical Chemistry C, 2019, 123, 18889-18894.	3.1	53
94	A new and different insight into the promotion mechanisms of Ga for the hydrogenation of carbon dioxide to methanol over a Ga-doped Ni(211) bimetallic catalyst. Nanoscale, 2019, 11, 9969-9979.	5.6	10
95	Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis. Bioresource Technology, 2019, 284, 466-473.	9.6	92
96	Networked Hâ^ž filtering for Takagi–Sugeno fuzzy systems under multi-output multi-rate sampling. Journal of the Franklin Institute, 2019, 356, 3661-3691.	3.4	10
97	Effect of CaO and biomass ash on catalytic hydrogasification behavior of coal char. Fuel, 2019, 249, 103-111.	6.4	13
98	A DFT study and microkinetic analysis of CO oxidation to dimethyl oxalate over Pd stripe and Pd single atom-doped Cu(111) surfaces. Applied Surface Science, 2019, 479, 1057-1067.	6.1	10
99	Surface modification of porous g-C ₃ N ₄ materials using a waste product for enhanced photocatalytic performance under visible light. Green Chemistry, 2019, 21, 5934-5944.	9.0	31
100	CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10, 5698.	12.8	571
101	Temperature modulation of defects in NH ₂ -UiO-66(Zr) for photocatalytic CO ₂ reduction. RSC Advances, 2019, 9, 37733-37738.	3.6	47
102	A DFT study on dimethyl oxalate synthesis over PdML/Ni(1 1 1) and PdML/Co(1 1 1) surfaces. Applied S Science, 2019, 465, 498-508.	urface 6.1	9
103	N-doped carbons with hierarchically micro- and mesoporous structure derived from sawdust for high performance supercapacitors. Microporous and Mesoporous Materials, 2019, 279, 323-333.	4.4	50
104	Facile synthesis of nitrogen-enriched nanoporous carbon materials for high performance supercapacitors. Journal of Colloid and Interface Science, 2019, 538, 199-208.	9.4	52
105	DFT study on CO oxidative coupling to DMO over Pd4/TiO2 and Pd4/TiO2-Ov: A role of oxygen vacancy on support. Computational Materials Science, 2019, 159, 1-11.	3.0	11
106	Evaluation of natural goethite on the removal of arsenate and selenite from water. Journal of Environmental Sciences, 2019, 76, 133-141.	6.1	42
107	Coal and coal byproducts: A large and developable unconventional resource for critical materials – Rare earth elements. Journal of Rare Earths, 2018, 36, 337-338.	4.8	30
108	Catalytic Oxidation of Hydrogen Sulfide on Fe/WSAC Catalyst Surface Modification via NH ₃ -NTP: Influence of Gas Gap and Dielectric Thickness. Industrial & Engineering Chemistry Research, 2018, 57, 2873-2881.	3.7	5

#	Article	IF	CITATIONS
109	Graphene: A review of applications in the petroleum industry. Journal of Petroleum Science and Engineering, 2018, 167, 152-159.	4.2	49
110	High efficient styrene mineralization through novel NiO-TiO2-Al2O3 packed pre-treatment/treatment/post-treatment dielectric barrier discharge plasma. Chemical Engineering Journal, 2018, 343, 759-769.	12.7	32
111	Characterization of Powder River Basin coal pyrolysis with cost-effective and environmentally-friendly composite Na Fe catalysts in a thermogravimetric analyzer and a fixed-bed reactor. International Journal of Hydrogen Energy, 2018, 43, 6918-6935.	7.1	11
112	Costâ€Effective Palladiumâ€Doped Cu Bimetallic Materials to Tune Selectivity and Activity by using Doped Atom Ensembles as Active Sites for Efficient Removal of Acetylene from Ethylene. ChemCatChem, 2018, 10, 2424-2432.	3.7	27
113	Selective photocatalytic carbon dioxide conversion with Pt@Ag-TiO2 nanoparticles. Catalysis Communications, 2018, 108, 98-102.	3.3	20
114	Hydrogen-Bonding Interactions in Pyridinium-Based Ionic Liquids and Dimethyl Sulfoxide Binary Systems: A Combined Experimental and Computational Study. ACS Omega, 2018, 3, 1823-1833.	3.5	53
115	Syngas Production from Chemicalâ€Looping Reforming of Methane Using Ironâ€Doped Cerium Oxides. Energy Technology, 2018, 6, 1610-1617.	3.8	11
116	CO oxidative coupling to dimethyl oxalate over Pd–Me (Me = Cu, Al) catalysts: a combined DFT and kinetic study. Physical Chemistry Chemical Physics, 2018, 20, 7317-7332.	2.8	22
117	Novel Na2SO4@SiO2 phase change material with core-shell structures for high temperature thermal storage. Solar Energy Materials and Solar Cells, 2018, 178, 280-288.	6.2	51
118	NH3 molecule adsorption on spinel-type ZnFe2O4 surface: A DFT and experimental comparison study. Applied Surface Science, 2018, 442, 778-786.	6.1	27
119	Progress in Nonoxidative Dehydroaromatization of Methane in the Last 6 Years. Industrial & Engineering Chemistry Research, 2018, 57, 1768-1789.	3.7	97
120	Thermodynamic and Kinetic Study on Carbon Dioxide Hydrogenation to Methanol over a Ga ₃ Ni ₅ (111) Surface: The Effects of Step Edge. Journal of Physical Chemistry C, 2018, 122, 315-330.	3.1	26
121	A DFT Study on the Catalytic CO Oxidative Coupling to Dimethyl Oxalate on Al-Doped Core–Shell Pd Clusters. Journal of Physical Chemistry C, 2018, 122, 1169-1179.	3.1	20
122	Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of inner-looping redox reaction and promoting mechanisms. Applied Energy, 2018, 212, 931-943.	10.1	89
123	Amine-impregnated silicic acid composite as an efficient adsorbent for CO 2 capture. Applied Energy, 2018, 223, 293-301.	10.1	37
124	Single-atom silver-manganese nanocatalysts based on atom-economy design for reaction temperature-controlled selective hydrogenation of bioresources-derivable diethyl oxalate to ethyl glycolate and acetaldehyde diethyl acetal. Applied Catalysis B: Environmental, 2018, 232, 348-354.	20.2	21
125	The effect of lanthanide promoters on NiInAl/SiO2 catalyst for methanol synthesis. Fuel, 2018, 222, 513-522.	6.4	17
126	A novel solar powered biomass pyrolysis reactor for producing fuels and chemicals. Journal of Analytical and Applied Pyrolysis, 2018, 132, 19-32.	5.5	26

#	Article	IF	CITATIONS
127	Application of Ag/AgBr/GdVO 4 composite photocatalyst in wastewater treatment. Journal of Environmental Sciences, 2018, 63, 68-75.	6.1	48
128	A new insight into the theoretical design of highly dispersed and stable ceria supported metal nanoparticles. Journal of Colloid and Interface Science, 2018, 512, 775-783.	9.4	8
129	Silica aerogels formed from soluble silicates and methyl trimethoxysilane (MTMS) using CO2 gas as a gelation agent. Ceramics International, 2018, 44, 821-829.	4.8	35
130	A novel low-cost method of silica aerogel fabrication using fly ash and trona ore with ambient pressure drying technique. Powder Technology, 2018, 323, 310-322.	4.2	66
131	A method to explore the quantitative interactions between metal and ceria for M/CeO2 catalysts. Surface Science, 2018, 669, 79-86.	1.9	7
132	Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process. Applied Energy, 2018, 211, 431-442.	10.1	119
133	H2 Thermal Desorption Spectra on Pt(111): A Density Functional Theory and Kinetic Monte Carlo Simulation Study. Catalysts, 2018, 8, 450.	3.5	14
134	Application of density functional theory in studying CO2 capture with TiO2-supported K2CO3 being an example. Applied Energy, 2018, 231, 167-178.	10.1	18
135	N-doped hierarchically micro- and mesoporous carbons with superior performance in supercapacitors. Electrochimica Acta, 2018, 291, 103-113.	5.2	40
136	Enhanced lattice oxygen reactivity over Fe2O3/Al2O3 redox catalyst for chemical-looping dry (CO2) reforming of CH4: Synergistic La-Ce effect. Journal of Catalysis, 2018, 368, 38-52.	6.2	65
137	A cost-effective approach to realization of the efficient methane chemical-looping combustion by using coal fly ash as a support for oxygen carrier. Applied Energy, 2018, 230, 393-402.	10.1	16
138	Green, safe, fast, and inexpensive removal of CO2 from aqueous KHCO3 solutions using a nanostructured catalyst TiO(OH)2: A milestone toward truly low-cost CO2 capture that can ease implementation of the Paris Agreement. Nano Energy, 2018, 53, 508-512.	16.0	15
139	Facilely synthesized porous polymer as support of poly(ethyleneimine) for effective CO2 capture. Energy, 2018, 157, 1-9.	8.8	34
140	Mild degradation of Powder River Basin sub-bituminous coal in environmentally benign supercritical CO2-ethanol system to produce valuable high-yield liquid tar. Applied Energy, 2018, 225, 460-470.	10.1	29
141	The catalytic CO oxidative coupling to dimethyl oxalate on Pd clusters anchored on defected graphene: A theoretical study. Molecular Catalysis, 2018, 453, 100-112.	2.0	13
142	TiO(OH) ₂ can exceed the critical limit of conventional CO ₂ sorbents: modification needed for high capacity and selectivity. Chemical Communications, 2018, 54, 8395-8398.	4.1	4
143	Self-activated, nanostructured composite for improved CaL-CLC technology. Chemical Engineering Journal, 2018, 351, 1038-1046.	12.7	63
144	Rare earth elements: Properties and applications to methanol synthesis catalysis via hydrogenation of carbon oxides. Journal of Rare Earths, 2018, 36, 1127-1135.	4.8	28

#	Article	IF	CITATIONS
145	Insight into mechanism of iron-oxides reduction in atmospheres of CH4 and CO. Chemical Physics Letters, 2018, 706, 708-714.	2.6	8
146	Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture. Nature Communications, 2018, 9, 2672.	12.8	122
147	Supercritical water oxidation of 2-, 3- and 4-nitroaniline: A study on nitrogen transformation mechanism. Chemosphere, 2018, 205, 426-432.	8.2	28
148	Progress in O2 separation for oxy-fuel combustion–A promising way for cost-effective CO2 capture: A review. Progress in Energy and Combustion Science, 2018, 67, 188-205.	31.2	135
149	Effect of surfactants on the properties of a gas-sealing coating modified with fly ash and cement. Journal of Materials Science, 2018, 53, 15142-15156.	3.7	8
150	First-principles and experimental studies of [ZrO(OH)] ⁺ or ZrO(OH) ₂ for enhancing CO ₂ desorption kinetics – imperative for significant reduction of CO ₂ capture energy consumption. Journal of Materials Chemistry A, 2018, 6, 17671-17681.	10.3	13
151	A Self‣upported λâ€MnO ₂ Film Electrode used for Electrochemical Lithium Recovery from Brines. ChemPlusChem, 2018, 83, 521-528.	2.8	42
152	Visual Assay of Glutathione in Vegetables and Fruits Using Quantum Dot Ratiometric Hybrid Probes. Journal of Agricultural and Food Chemistry, 2018, 66, 6431-6438.	5.2	27
153	Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds. Catalysis Science and Technology, 2018, 8, 3428-3449.	4.1	89
154	The cost-effective Cu-based catalysts for the efficient removal of acetylene from ethylene: The effects of Cu valence state, surface structure and surface alloying on the selectivity and activity. Chemical Engineering Journal, 2018, 351, 732-746.	12.7	36
155	Application of mass spectrometry in the characterization of chemicals in coalâ€derived liquids. Mass Spectrometry Reviews, 2017, 36, 543-579.	5.4	39
156	A Facile Synthesis of Highly Stable Modified Carbon Nanotubes as Efficient Oxygen Reduction Reaction Catalysts. ChemistrySelect, 2017, 2, 1932-1938.	1.5	0
157	A DFT study on lignin dissolution in imidazolium-based ionic liquids. RSC Advances, 2017, 7, 12670-12681.	3.6	100
158	First principles study of elemental mercury (Hg0) adsorption on low index CoMnO3 surfaces. Applied Surface Science, 2017, 408, 135-141.	6.1	10
159	An Experimental and Theoretical Study on the Unexpected Catalytic Activity of Triethanolamine for the Carboxylative Cyclization of Propargylic Amines with CO ₂ . ChemSusChem, 2017, 10, 2001-2007.	6.8	38
160	Electrochemical nitrate reduction by using a novel Co 3 O 4 /Ti cathode. Water Research, 2017, 120, 1-11.	11.3	202
161	Design of efficient mono-aminosilane precursors for atomic layer deposition of SiO ₂ thin films. RSC Advances, 2017, 7, 22672-22678.	3.6	16
162	Progress in catalytic synthesis of advanced carbon nanofibers. Journal of Materials Chemistry A, 2017, 5, 13863-13881.	10.3	38

#	Article	IF	CITATIONS
163	TiO(OH)2 – highly effective catalysts for optimizing CO2 desorption kinetics reducing CO2 capture cost: A new pathway. Scientific Reports, 2017, 7, 2943.	3.3	21
164	Biomass pyrolysis-gasification over Zr promoted CaO-HZSM-5 catalysts for hydrogen and bio-oil co-production with CO2 capture. International Journal of Hydrogen Energy, 2017, 42, 16031-16044.	7.1	33
165	Thermogravimetric and kinetics investigation of pine wood pyrolysis catalyzed with alkali-treated CaO/ZSM-5. Energy Conversion and Management, 2017, 146, 182-194.	9.2	57
166	Modified carbon nanotubes/tetraethylenepentamine for CO2 capture. Fuel, 2017, 206, 10-18.	6.4	92
167	Computation-predicted, stable, and inexpensive single-atom nanocatalyst Pt@Mo ₂ C – an important advanced material for H ₂ production. Journal of Materials Chemistry A, 2017, 5, 14658-14672.	10.3	34
168	Lithium adsorption performance of a three-dimensional porous H ₂ TiO ₃ -type lithium ion-sieve in strong alkaline Bayer liquor. RSC Advances, 2017, 7, 18883-18891.	3.6	39
169	Catalytic gasification of a Powder River Basin coal with CO2 and H2O mixtures. Fuel Processing Technology, 2017, 161, 145-154.	7.2	19
170	Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol. Applied Catalysis B: Environmental, 2017, 209, 530-542.	20.2	81
171	A cost-effective approach to reducing carbon deposition and resulting deactivation of oxygen carriers for improvement of energy efficiency and CO2 capture during methane chemical-looping combustion. Applied Energy, 2017, 193, 381-392.	10.1	20
172	Ionic Liquids: Advanced Solvents for CO2 Capture. Green Energy and Technology, 2017, , 153-176.	0.6	5
173	C ₂ Oxygenate Synthesis via Fischer–Tropsch Synthesis on Co ₂ C and Co/Co ₂ C Interface Catalysts: How To Control the Catalyst Crystal Facet for Optimal Selectivity. ACS Catalysis, 2017, 7, 8285-8295.	11.2	81
174	Measurement and Correlation of High Pressure Phase Equilibria for CO ₂ + Alkanes and CO ₂ + Crude Oil Systems. Journal of Chemical & Engineering Data, 2017, 62, 3807-3822.	1.9	13
175	Recovery of rare earth elements with ionic liquids. Green Chemistry, 2017, 19, 4469-4493.	9.0	126
176	Fe ₂ O ₃ , a cost effective and environmentally friendly catalyst for the generation of NH ₃ – a future fuel – using a new Al ₂ O ₃ -looping based technology. Chemical Communications, 2017, 53, 10664-10667.	4.1	31
177	Catalytic Methane Dehydroaromatization with Stable Nano Fe Doped on Mo/HZSM-5 Synthesized with a Simple and Environmentally Friendly Method and Clarification of a Perplexing Catalysis Mechanism Dilemma in This Field for a Period of Time. Industrial & amp; Engineering Chemistry Research, 2017, 56, 11398-11412	3.7	28
178	Synthesis of Cu/Zn/Al/Mg catalysts on methanol production by different precipitation methods. Molecular Catalysis, 2017, 441, 190-198.	2.0	27
179	Enhanced photocatalytic CO ₂ reduction over Co-doped NH ₂ -MIL-125(Ti) under visible light. RSC Advances, 2017, 7, 42819-42825.	3.6	53
180	Low-Pressure Hydrogenation of CO ₂ to CH ₃ OH Using Ni-In-Al/SiO ₂ Catalyst Synthesized via a Phyllosilicate Precursor. ACS Catalysis, 2017, 7, 5679-5692.	11.2	103

#	Article	IF	CITATIONS
181	A High Performance Low Temperature Direct Carbon Fuel Cell. ECS Transactions, 2017, 78, 2519-2526.	0.5	4
182	High-quality oil and gas from pyrolysis of Powder River Basin coal catalyzed by an environmentally-friendly, inexpensive composite iron-sodium catalysts. Fuel Processing Technology, 2017, 167, 334-344.	7.2	25
183	Efficient CO ₂ Capture by Nitrogen-Doped Biocarbons Derived from Rotten Strawberries. Industrial & Engineering Chemistry Research, 2017, 56, 14115-14122.	3.7	62
184	Synthesis of methanol from CO ₂ hydrogenation promoted by dissociative adsorption of hydrogen on a Ga ₃ Ni ₅ (221) surface. Physical Chemistry Chemical Physics, 2017, 19, 18539-18555.	2.8	43
185	Efficient Ionicâ€Liquidâ€Promoted Chemical Fixation of CO ₂ into αâ€Alkylidene Cyclic Carbonates. ChemSusChem, 2017, 10, 1120-1127.	6.8	99
186	Facile decoration of carbon fibers with Ag nanoparticles for adsorption and photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2017, 202, 314-325.	20.2	59
187	The recent progress and future of oxygen reduction reaction catalysis: A review. Renewable and Sustainable Energy Reviews, 2017, 69, 401-414.	16.4	300
188	Supercritical drying: a promising technique on synthesis of sorbent for CO _{2 capture. International Journal of Global Warming, 2017, 12, 228.}	0.5	1
189	Upregulation of heme oxygenase-1 in Kupffer cells blocks mast cell degranulation and inhibits dendritic cell migration in vitro. Molecular Medicine Reports, 2017, 15, 3796-3802.	2.4	5
190	Application of Supercritical Technologies in Clean Energy Production. Advances in Chemical and Materials Engineering Book Series, 2017, , 588-616.	0.3	0
191	Supercritical drying: a promising technique on synthesis of sorbent for CO _{2 capture. International Journal of Global Warming, 2017, 12, 228.}	0.5	0
192	CO2 capture using nanoporous TiO(OH)2/tetraethylenepentamine. Fuel, 2016, 183, 601-608.	6.4	41
193	Selective denitrification of flue gas by O3 and ethanol mixtures in a duct: Investigation of processes and mechanisms. Journal of Hazardous Materials, 2016, 311, 218-229.	12.4	9
194	Characterization of the Oxygenated Chemicals Produced from Supercritical Methanolysis of Modified Lignites. Energy & Fuels, 2016, 30, 2636-2646.	5.1	22
195	Role of Hydrogen Peroxide Preoxidizing on CO ₂ Adsorption of Nitrogen-Doped Carbons Produced from Coconut Shell. ACS Sustainable Chemistry and Engineering, 2016, 4, 2806-2813.	6.7	92
196	Tunable catalytic properties of multi-metal–organic frameworks for aerobic styrene oxidation. Chemical Engineering Journal, 2016, 299, 135-141.	12.7	100
197	The application of a modified dissolving model to the separation of major components in low-temperature coal tar. Fuel Processing Technology, 2016, 149, 313-319.	7.2	16
198	CO2 removal from flue gas with amine-impregnated titanate nanotubes. Nano Energy, 2016, 25, 1-8.	16.0	69

#	Article	IF	CITATIONS
199	New Copper(I)/DBU Catalyst System for the Carboxylative Cyclization of Propargylic Amines with Atmospheric CO ₂ : An Experimental and Theoretical Study. ACS Sustainable Chemistry and Engineering, 2016, 4, 5553-5560.	6.7	59
200	Effects of strong interactions between Ti and ceria on the structures of Ti/CeO ₂ . Physical Chemistry Chemical Physics, 2016, 18, 32494-32502.	2.8	6
201	Extraction of lithium with functionalized lithium ion-sieves. Progress in Materials Science, 2016, 84, 276-313.	32.8	258
202	A DFT study of Hg0 adsorption on Co3O4 (1 1 0) surface. Chemical Engineering Journal, 2016, 289, 349-355.	12.7	42
203	Enhanced CO ₂ Capture Capacity of Nitrogen-Doped Biomass-Derived Porous Carbons. ACS Sustainable Chemistry and Engineering, 2016, 4, 1439-1445.	6.7	313
204	Effect of fluoride doping for catalytic ozonation of low-temperature denitrification over cerium–titanium catalysts. Journal of Alloys and Compounds, 2016, 665, 411-417.	5.5	18
205	Effects of CO and CO ₂ on the desulfurization of H ₂ S using a ZnO sorbent: a density functional theory study. Physical Chemistry Chemical Physics, 2016, 18, 11150-11156.	2.8	16
206	Adsorption of CO ₂ by Petroleum Coke Nitrogen-Doped Porous Carbons Synthesized by Combining Ammoxidation with KOH Activation. Industrial & Engineering Chemistry Research, 2016, 55, 757-765.	3.7	75
207	Separation and structural characterization of the value-added chemicals from mild degradation of lignites: A review. Applied Energy, 2016, 170, 415-436.	10.1	129
208	Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel. Chemical Engineering Journal, 2016, 283, 1059-1068.	12.7	72
209	Adsorption mechanism of elemental mercury (HgO) on the surface of MnCl2 (1 1 0) studied by Density Functional Theory. Chemical Engineering Journal, 2016, 283, 58-64.	12.7	23
210	Highly Cost-Effective Nitrogen-Doped Porous Coconut Shell-Based CO ₂ Sorbent Synthesized by Combining Ammoxidation with KOH Activation. Environmental Science & Technology, 2015, 49, 7063-7070.	10.0	173
211	Mechanistic Study on Water Gas Shift Reaction on the Fe ₃ O ₄ (111) Reconstructed Surface. Journal of Physical Chemistry C, 2015, 119, 28934-28945.	3.1	44
212	Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Advances, 2015, 5, 14610-14630.	3.6	796
213	Amine-Based CO ₂ Capture Technology Development from the Beginning of 2013—A Review. ACS Applied Materials & Interfaces, 2015, 7, 2137-2148.	8.0	686
214	Z-scheme SnO2â^`x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Solar Energy Materials and Solar Cells, 2015, 137, 175-184.	6.2	364
215	Progress in oxygen carrier development of methane-based chemical-looping reforming: A review. Applied Energy, 2015, 151, 143-156.	10.1	416
216	Application of computational chemistry in understanding the mechanisms of mercury removal technologies: a review. Energy and Environmental Science, 2015, 8, 3109-3133.	30.8	64

#	Article	IF	CITATIONS
217	Extraction of Coal Tar Distillate by Supercritical <i>n</i> -Pentane: A Study on Dissolving Capacity and Selectivity. Energy & Fuels, 2015, 29, 3992-4000.	5.1	5
218	Catalytic Coal Gasification. , 2015, , 179-199.		11
219	A new mesoporous amine-TiO2 based pre-combustion CO2 capture technology. Applied Energy, 2015, 147, 214-223.	10.1	41
220	Magnetic titanium dioxide based nanomaterials: synthesis, characteristics, and photocatalytic application in pollutant degradation. Journal of Materials Chemistry A, 2015, 3, 17511-17524.	10.3	77
221	CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst. Applied Energy, 2015, 145, 295-305.	10.1	74
222	Nitrogen-doped porous carbon spheres derived from <scp>d</scp> -glucose as highly-efficient CO ₂ sorbents. RSC Advances, 2015, 5, 37964-37969.	3.6	57
223	Abatement of SO2–NOx binary gas mixtures using a ferruginous active absorbent: Part I. Synergistic effects and mechanism. Journal of Environmental Sciences, 2015, 30, 55-64.	6.1	11
224	Facile synthesis of an amine hybrid aerogel with high adsorption efficiency and regenerability for air capture via a solvothermal-assisted sol–gel process and supercritical drying. Green Chemistry, 2015, 17, 3436-3445.	9.0	47
225	In Situ Catalyzing Gas Conversion Using Char as a Catalyst/Support during Brown Coal Gasification. Energy & Fuels, 2015, 29, 1590-1596.	5.1	21
226	Development of monolithic adsorbent via polymeric sol–gel process for low-concentration CO2 capture. Applied Energy, 2015, 147, 308-317.	10.1	71
227	Density functional theory study on the reaction between hematite and methane during chemical looping process. Applied Energy, 2015, 159, 132-144.	10.1	77
228	An environmentally benign and low-cost approach to synthesis of thermally stable industrial catalyst Cu/SiO2 for the hydrogenation of dimethyl oxalate to ethylene glycol. Applied Catalysis A: General, 2015, 505, 52-61.	4.3	40
229	Development of composited rare-earth promoted cobalt-based Fischer–Tropsch synthesis catalysts with high activity and selectivity. Applied Catalysis A: General, 2015, 505, 276-283.	4.3	20
230	Development of catalysts for hydrogen production through the integration of steam reforming of methane and high temperature water gas shift. Energy, 2015, 90, 748-758.	8.8	30
231	Tetraethylenepentamine modified protonated titanate nanotubes for CO 2 capture. Fuel Processing Technology, 2015, 138, 663-669.	7.2	39
232	Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for CO2 sorption. Nano Energy, 2015, 11, 235-246.	16.0	82
233	New insights into synergistic effects and active species toward HgO emission control by Fe(VI) absorbent. Fuel, 2015, 140, 309-316.	6.4	6
234	Catalytic CO2 gasification of a Powder River Basin coal. Fuel Processing Technology, 2015, 130, 107-116.	7.2	39

#	Article	IF	CITATIONS
235	High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 2015, 168-169, 1-8.	20.2	128
236	New Application of Z-Scheme Ag ₃ PO ₄ /g-C ₃ N ₄ Composite in Converting CO ₂ to Fuel. Environmental Science & Technology, 2015, 49, 649-656.	10.0	812
237	Sulfate Radical and Its Application in Decontamination Technologies. Critical Reviews in Environmental Science and Technology, 2015, 45, 1756-1800.	12.8	392
238	Catalytic hydrogen production from fossil fuels via the water gas shift reaction. Applied Energy, 2015, 139, 335-349.	10.1	105
239	Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(ΙΙ) from aqueous solutions. Journal of Environmental Sciences, 2015, 27, 9-20.	6.1	78
240	Synthesis of nitrogen-doped carbon with three-dimensional mesostructures for CO2 capture. Journal of Materials Science, 2015, 50, 1221-1227.	3.7	19
241	Catalytic effects of Zr doping ion on ceria-based catalyst. Fuel Processing Technology, 2015, 131, 1-6.	7.2	19
242	Amine-modified ordered mesoporous silica: The effect of pore size on CO2 capture performance. Applied Surface Science, 2015, 324, 286-292.	6.1	92
243	A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke. Carbon, 2015, 81, 465-473.	10.3	158
244	QSAR models for oxidative degradation of organic pollutants in the Fenton process. Journal of the Taiwan Institute of Chemical Engineers, 2015, 46, 140-147.	5.3	40
245	Development of K and N based composite CO2 sorbents (KN) dried with a supercritical fluid. Chemical Engineering Journal, 2015, 262, 1192-1198.	12.7	15
246	Effect of the interactions between Pt species and ceria on Pt/ceria catalysts for water gas shift: The XPS studies. Chemical Engineering Journal, 2015, 259, 293-302.	12.7	62
247	The buckling deformation and mechanical properties of aerogels prepared with polyethoxydisiloxane. Microporous and Mesoporous Materials, 2015, 202, 183-188.	4.4	6
248	Synthesis and Applications of Ionic Liquids in Clean Energy and Environment: A Review. Current Organic Chemistry, 2015, 19, 455-468.	1.6	55
249	Use of one-pot wet gel or precursor preparation and supercritical drying procedure for development of a high-performance CO ₂ sorbent. RSC Advances, 2014, 4, 43448-43453.	3.6	24
250	Use of monolithic silicon carbide aerogel as a reusable support for development of regenerable CO ₂ adsorbent. RSC Advances, 2014, 4, 64193-64199.	3.6	22
251	Emerging contaminants in surface waters in China—a short review. Environmental Research Letters, 2014, 9, 074018.	5.2	72
252	Toward predicting the mercury removal by chlorine on the ZnO surface. Chemical Engineering Journal, 2014, 244, 364-371.	12.7	32

#	Article	IF	CITATIONS
253	Catalytic CH4 reforming with CO2 over activated carbon based catalysts. Applied Catalysis A: General, 2014, 469, 387-397.	4.3	59
254	Indirect coal to liquid technologies. Applied Catalysis A: General, 2014, 476, 158-174.	4.3	60
255	Characterization of the mechanism of gasification of a powder river basin coal with a composite catalyst for producing desired syngases and liquids. Applied Catalysis A: General, 2014, 475, 116-126.	4.3	23
256	Inexpensive calcium-modified potassium carbonate sorbent for CO2 capture from flue gas: Improved SO2 resistance, enhanced capacity and stability. Fuel, 2014, 125, 50-56.	6.4	20
257	Effects of an environmentally-friendly, inexpensive composite iron–sodium catalyst on coal gasification. Fuel, 2014, 116, 341-349.	6.4	63
258	Preparation of monolith SiC aerogel with high surface area and large pore volume and the structural evolution during the preparation. Ceramics International, 2014, 40, 8265-8271.	4.8	65
259	Choosing a proper exchange–correlation functional for the computational catalysis on surface. Physical Chemistry Chemical Physics, 2014, 16, 18563-18569.	2.8	21
260	Review of the progress in preparing nano TiO2: An important environmental engineering material. Journal of Environmental Sciences, 2014, 26, 2139-2177.	6.1	202
261	High efficiency photocatalytic conversion of CO ₂ with H ₂ O over Pt/TiO ₂ nanoparticles. RSC Advances, 2014, 4, 44442-44451.	3.6	59
262	A nanostructured CeO ₂ promoted Pd/α-alumina diethyl oxalate catalyst with high activity and stability. RSC Advances, 2014, 4, 48901-48904.	3.6	18
263	Highly efficient and reversible CO ₂ adsorption by amine-grafted platelet SBA-15 with expanded pore diameters and short mesochannels. Green Chemistry, 2014, 16, 4009-4016.	9.0	82
264	A new aerogel based CO ₂ adsorbent developed using a simple sol–gel method along with supercritical drying. Chemical Communications, 2014, 50, 12158-12161.	4.1	83
265	The effects of bimetallic Co–Ru nanoparticles on Co/RuO 2 /Al 2 O 3 catalysts for the water gas shift and methanation. International Journal of Hydrogen Energy, 2014, 39, 14808-14816.	7.1	19
266	Comparing Two New Composite Photocatalysts, <i>t</i> -LaVO ₄ /g-C ₃ N ₄ and <i>m</i> -LaVO ₄ /g-C ₃ N ₄ , for Their Structures and Performances. Industrial &amo: Engineering Chemistry Research. 2014. 53, 5905-5915.	3.7	137
267	The effect of nitrogen doping on mercury oxidation/chemical adsorption on the CuCo ₂ O ₄ (110) surface: a molecular-level description. Physical Chemistry Chemical Physics, 2014, 16, 13508-13516.	2.8	10
268	Enhanced photodegradation activity of methyl orange over Z-scheme type MoO ₃ –g-C ₃ N ₄ composite under visible light irradiation. RSC Advances, 2014, 4, 13610-13619.	3.6	205
269	Effect of Ce on 5Âwt% Ni/ZSM-5 catalysts in the CO 2 reforming of CH 4 reaction. International Journal of Hydrogen Energy, 2014, 39, 15482-15496.	7.1	50
270	Research on influencing factors and mechanism of CO 2 absorption by poly-amino-based ionic liquids. International Journal of Greenhouse Gas Control, 2014, 31, 33-40.	4.6	27

#	Article	IF	CITATIONS
271	The progress in water gas shift and steam reforming hydrogen production technologies – A review. International Journal of Hydrogen Energy, 2014, 39, 16983-17000.	7.1	492
272	Pyrolysis characteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant. Thermochimica Acta, 2014, 589, 1-10.	2.7	55
273	CH4 dissociation on the perfect and defective MgO(001) supported Ni4. Fuel, 2014, 123, 285-292.	6.4	31
274	Catalytic CO2 reforming of CH4 over Cr-promoted Ni/char for H2 production. International Journal of Hydrogen Energy, 2014, 39, 10141-10153.	7.1	31
275	Effect of silica sources on nanostructures of resorcinol–formaldehyde/silica and carbon/silicon carbide composite aerogels. Microporous and Mesoporous Materials, 2014, 197, 77-82.	4.4	36
276	The effects of cornstalk addition on the product distribution and yields and reaction kinetics of lignite liquefaction. Applied Energy, 2014, 130, 1-6.	10.1	14
277	The effect of post-processing conditions on aminosilane functionalizaiton of mesocellular silica foam for post-combustion CO2 capture. Fuel, 2014, 123, 66-72.	6.4	37
278	Capturing CO ₂ with Amine-Impregnated Titanium Oxides. Energy & Fuels, 2013, 27, 5433-5439.	5.1	57
279	O2 Adsorption and Oxidative Activity on Gold-Based Catalysts with and without a Ceria Support. Journal of Physical Chemistry C, 2013, 117, 18986-18993.	3.1	23
280	Zr(O)Cl2 catalyst for selective conversion of biorenewable carbohydrates and biopolymers to biofuel precursor 5-hydroxymethylfurfural in aqueous medium. Fuel, 2013, 111, 598-605.	6.4	25
281	Review of recent advances in carbon dioxide separation and capture. RSC Advances, 2013, 3, 22739.	3.6	632
282	Applications of Nanomaterial-Based Membranes in Pollution Control. Critical Reviews in Environmental Science and Technology, 2013, 43, 2389-2438.	12.8	21
283	Preparation of fiber reinforced porous silicon carbide monoliths. Materials Letters, 2013, 110, 141-143.	2.6	7
284	Characterization and stability of a new, high-capacity amine-functionalized CO2 sorbent. International Journal of Greenhouse Gas Control, 2013, 18, 51-56.	4.6	13
285	H2 and COx generation from coal gasification catalyzed by a cost-effective iron catalyst. Applied Catalysis A: General, 2013, 464-465, 207-217.	4.3	50
286	Catalytic regeneration of mercury sorbents. Journal of Hazardous Materials, 2013, 262, 642-648.	12.4	14
287	Tetraethylenepentamine-Modified Silica Nanotubes for Low-Temperature CO ₂ Capture. Energy & Fuels, 2013, 27, 7673-7680.	5.1	36
288	Study on carbon deposition associated with catalytic CH4 reforming by using density functional theory. Fuel, 2013, 113, 712-718.	6.4	101

MAO-HONG FAN

#	Article	IF	CITATIONS
289	Enhancement of CO2 adsorption and amine efficiency of titania modified by moderate loading of diethylenetriamine. Journal of Materials Chemistry A, 2013, 1, 6208.	10.3	63
290	Catalytic gasification of a Powder River Basin coal. Fuel, 2013, 103, 161-170.	6.4	73
291	Use of a Robust and Inexpensive Nanoporous TiO ₂ for Pre-combustion CO ₂ Separation. Energy & Fuels, 2013, 27, 6938-6947.	5.1	20
292	New CO ₂ Sorbent Synthesized with Nanoporous TiO(OH) ₂ and K ₂ CO ₃ . Energy & Fuels, 2013, 27, 7628-7636.	5.1	28
293	On the CO ₂ Capture in Water-Free Monoethanolamine Solution: An ab Initio Molecular Dynamics Study. Journal of Physical Chemistry B, 2013, 117, 5971-5977.	2.6	30
294	Adsorption of Mercury with Modified Thief Carbons. Journal of Environmental Engineering, ASCE, 2012, 138, 386-391.	1.4	9
295	Special Issue on Advances in Research and Development of Sustainable Environmental Technologies. Journal of Environmental Engineering, ASCE, 2012, 138, 231-231.	1.4	0
296	Extraction of ionic liquids from aqueous solutions by humic acid: an environmentally benign, inexpensive and simple procedure. Chemical Communications, 2012, 48, 392-394.	4.1	9
297	Dynamic separation of ultradilute CO2 with a nanoporous amine-based sorbent. Chemical Engineering Journal, 2012, 189-190, 13-23.	12.7	80
298	Removal of tetracycline from water by Fe-Mn binary oxide. Journal of Environmental Sciences, 2012, 24, 242-247.	6.1	125
299	Bisphenol A oxidative removal by ferrate (Fe(VI)) under a weak acidic condition. Separation and Purification Technology, 2012, 84, 46-51.	7.9	60
300	Evaluation of FeOOH performance on selenium reduction. Separation and Purification Technology, 2012, 84, 29-34.	7.9	52
301	Use of Nanoporous FeOOH as a Catalytic Support for NaHCO ₃ Decomposition Aimed at Reduction of Energy Requirement of Na ₂ CO ₃ /NaHCO ₃ Based CO ₂ Separation Technology. Journal of Physical Chemistry C, 2011, 115, 15532-15544.	3.1	80
302	Desorption Kinetics of the Monoethanolamine/Macroporous TiO ₂ -Based CO ₂ Separation Process. Energy & Fuels, 2011, 25, 2988-2996.	5.1	29
303	CO ₂ Separation by a New Solid Kâ^'Fe Sorbent. Energy & Fuels, 2011, 25, 1919-1925.	5.1	54
304	Reaction Kinetics of CO ₂ Carbonation with Mg-Rich Minerals. Journal of Physical Chemistry A, 2011, 115, 7638-7644.	2.5	28
305	Supported Monoethanolamine for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2011, 50, 11343-11349.	3.7	24

#	Article	IF	CITATIONS
307	Mercury Removal. , 2011, , 247-292.		7
308	Interaction Mechanism between Fe3O4 Nanoparticles and Sodium 2-dodecylbenzenesulfonate. Current Nanoscience, 2011, 7, 366-370.	1.2	7
309	Temperature dependent microstructure of MTES modified hydrophobic silica aerogels. Materials Letters, 2011, 65, 606-609.	2.6	68
310	Long-term joint effect of nutrients and temperature increase on algal growth in Lake Taihu, China. Journal of Environmental Sciences, 2011, 23, 222-227.	6.1	35
311	Reaction kinetic model for a recent co-produced water treatment technology. Journal of Environmental Sciences, 2011, 23, 360-365.	6.1	10
312	Factors affecting the direct mineralization of CO2 with olivine. Journal of Environmental Sciences, 2011, 23, 1233-1239.	6.1	48
313	Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent. Energy and Environmental Science, 2011, 4, 2070.	30.8	214
314	Enhancement of acidic dye biosorption capacity on poly(ethylenimine) grafted anaerobic granular sludge. Journal of Hazardous Materials, 2011, 189, 27-33.	12.4	68
315	Degradable Dual pH―and Temperatureâ€Responsive Photoluminescent Dendrimers. Chemistry - A European Journal, 2011, 17, 5319-5326.	3.3	63
316	Activated carbon based selective purification of medical grade NO starting from arc discharge method. Carbon, 2011, 49, 2197-2205.	10.3	7
317	Aerobic granulation for methylene blue biodegradation in a sequencing batch reactor. Desalination, 2011, 276, 233-238.	8.2	46
318	Formation of disinfection by-products in the chlorination of ammonia-containing effluents: Significance of Cl2/N ratios and the DOM fractions. Journal of Hazardous Materials, 2011, 190, 645-651.	12.4	27
319	Use of multifunctional nanoporous TiO(OH)2 for catalytic NaHCO3 decomposition-eventually for Na2CO3/NaHCO3 based CO2 separation technology. Separation and Purification Technology, 2011, 80, 364-374.	7.9	45
320	Fluorescence-Functionalized Magnetic Nanocomposites as Tracking and Targeting Systems: Their Preparation and Characterizations. Current Nanoscience, 2011, 7, 563-567.	1.2	8
321	Role of final cover soil in regulating volatile organic compounds: emissions from solid waste disposal sites in developing countries. International Journal of Environment and Pollution, 2010, 43, 3.	0.2	4
322	The Current State of Water Quality and Technology Development for Water Pollution Control in China. Critical Reviews in Environmental Science and Technology, 2010, 40, 519-560.	12.8	207
323	Kinetics of SO2 Absorption with Fly Ash Slurry with Concomitant Production of a Useful Wastewater Coagulant. Journal of Environmental Engineering, ASCE, 2010, 136, 308-315.	1.4	0
324	Preface: Environmental Pollution and Control in China. Critical Reviews in Environmental Science and Technology, 2010, 40, 451-451.	12.8	1

#	Article	IF	CITATIONS
325	Air Pollution and Control in Different Areas of China. Critical Reviews in Environmental Science and Technology, 2010, 40, 452-518.	12.8	58
326	Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery. Nanomedicine, 2010, 5, 1205-1217.	3.3	97
327	The Enhanced Dissolution of \hat{l}^2 -Cyclodextrin in Some Hydrophilic Ionic Liquids. Journal of Physical Chemistry A, 2010, 114, 3926-3931.	2.5	28
328	Chemical Degradation of Drinking Water Disinfection Byproducts by Millimeter-Sized Particles of Ironâ^'Silicon and Magnesiumâ^'Aluminum Alloys. Journal of the American Chemical Society, 2010, 132, 2500-2501.	13.7	33
329	Prodrugs Forming High Drug Loading Multifunctional Nanocapsules for Intracellular Cancer Drug Delivery. Journal of the American Chemical Society, 2010, 132, 4259-4265.	13.7	532
330	Hydrogen Storage on Carbon Adsorbents. , 2010, , 137-163.		2
331	Application of Green Chemistry in Energy Production. Journal of Physical Chemistry A, 2010, 114, 3743-3743.	2.5	3
332	Responses of Ceriodaphnia dubia to Photocatalytic Nano-Titanium dioxide Particles. , 2010, , 1-21.		1
333	Recent Developments in CO2 Emission Control Technology. Journal of Environmental Engineering, ASCE, 2009, 135, 377-377.	1.4	1
334	Chargeâ€Reversal Drug Conjugate for Targeted Cancer Cell Nuclear Drug Delivery. Advanced Functional Materials, 2009, 19, 3580-3589.	14.9	291
335	Pilotâ€scale treatment of wasteâ€water from carbon production by a combined physical–chemical process. Journal of Chemical Technology and Biotechnology, 2009, 84, 966-971.	3.2	5
336	Aerobic granules for lowâ€strength wastewater treatment: formation, structure, and microbial community. Journal of Chemical Technology and Biotechnology, 2009, 84, 1015-1020.	3.2	25
337	Preliminary study of alkaline single flowing Zn–O2 battery. Electrochemistry Communications, 2009, 11, 2191-2194.	4.7	52
338	Ultrasound-enhanced coagulation for Microcystis aeruginosa removal. Ultrasonics Sonochemistry, 2009, 16, 334-338.	8.2	74
339	Preparation and application of nanoglued binary titania–silica aerogel. Journal of Hazardous Materials, 2009, 161, 175-182.	12.4	59
340	Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of Hazardous Materials, 2009, 161, 1052-1057.	12.4	281
341	Production of a new wastewater treatment coagulant from fly ash with concomitant flue gas scrubbing. Journal of Hazardous Materials, 2009, 162, 1430-1437.	12.4	26
342	Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 2009, 166, 904-910.	12.4	504

#	Article	IF	CITATIONS
343	Characteristics and defluoridation performance of granular activated carbons coated with manganese oxides. Journal of Hazardous Materials, 2009, 168, 1140-1146.	12.4	102
344	Nano-NiOOH prepared by splitting method as super high-speed charge/discharge cathode material for rechargeable alkaline batteries. Journal of Power Sources, 2009, 188, 308-312.	7.8	14
345	Measurements and correlation of viscosities and conductivities for the mixtures of imidazolium ionic liquids with molecular solutes. Chemical Engineering Journal, 2009, 147, 27-35.	12.7	77
346	Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347, 38-44.	4.7	95
347	An organic-reagent-free method for determination of chromium(VI) in steel alloys, sewage sludge and wastewater. Analytica Chimica Acta, 2009, 640, 58-62.	5.4	12
348	Facile Synthesis of Polyester Dendrimers from Sequential Click Coupling of Asymmetrical Monomers. Journal of the American Chemical Society, 2009, 131, 14795-14803.	13.7	104
349	Progresses Made in Coal-Based Energy and Fuel Production. Energy & amp; Fuels, 2009, 23, 4709-4709.	5.1	2
350	Effects of Ionic Liquids on the Characteristics of Synthesized Nano Fe(0) Particles. Inorganic Chemistry, 2009, 48, 10435-10441.	4.0	28
351	Mn3O4 doped with nano-NaBiO3: A high capacity cathode material for alkaline secondary batteries. Journal of Alloys and Compounds, 2009, 470, 75-79.	5.5	14
352	Solvent extraction of selected endocrine-disrupting phenols using ionic liquids. Separation and Purification Technology, 2008, 61, 324-331.	7.9	191
353	Oxidative decomposition of p-nitroaniline in water by solar photo-Fenton advanced oxidation process. Journal of Hazardous Materials, 2008, 153, 187-193.	12.4	77
354	Ozone treatment of process water from a dry-mill ethanol plant. Bioresource Technology, 2008, 99, 1801-1805.	9.6	16
355	Extraction of isoflavonoids from Pueraria by combining ultrasound with microwave vacuum. Chemical Engineering and Processing: Process Intensification, 2008, 47, 2256-2261.	3.6	23
356	Anaerobic co-digestion of biosolids and organic fraction of municipal solid waste by sequencing batch process. Fuel Processing Technology, 2008, 89, 485-489.	7.2	64
357	Policy study on development and utilization of clean coal technology in China. Fuel Processing Technology, 2008, 89, 475-484.	7.2	39
358	Photocatalytic Applications of Micro- and Nano-TiO ₂ in Environmental Engineering. Critical Reviews in Environmental Science and Technology, 2008, 38, 197-226.	12.8	182
359	Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 2008, 20, 14-27.	6.1	1,765
360	Reduction of Nitrite by Ultrasound-Dispersed Nanoscale Zero-Valent Iron Particles. Industrial & Engineering Chemistry Research, 2008, 47, 8550-8554.	3.7	53

#	Article	IF	CITATIONS
361	Arsenite oxidation by ferrate in aqueous solution. Trace Metals and Other Contaminants in the Environment, 2007, 9, 623-639.	0.1	3
362	Catalytic Oxidation of CO and CH4 as Well as Mixture of CO and CH4 with Nano and Micro Fe2O3. Environmental Engineering Science, 2007, 24, 1065-1071.	1.6	9
363	Considerations for the design and operation of a membrane bioreactor. International Journal of Biotechnology, 2007, 9, 188.	1.2	0
364	Breakthrough Adsorption Study of Migratory Nickel in Fineâ€Grained Soil. Water Environment Research, 2007, 79, 1023-1032.	2.7	7
365	Factors Affecting Ionic Liquids Based Removal of Anionic Dyes from Water. Environmental Science & Technology, 2007, 41, 5090-5095.	10.0	116
366	Effect of amendment on phytoextraction of arsenic by Vetiveria Zizanioides from soil. International Journal of Environmental Science and Technology, 2007, 4, 339-344.	3.5	31
367	Fabrication of Prussian Blue/Multiwalled Carbon Nanotubes/Glass Carbon Electrode through Sequential Deposition. Industrial & Engineering Chemistry Research, 2007, 46, 6847-6851.	3.7	43
368	Reaction Kinetics for the Catalytic Oxidation of Sulfur Dioxide with Microscale and Nanoscale Iron Oxides. Industrial & Engineering Chemistry Research, 2007, 46, 80-86.	3.7	24
369	Nano silver oxide (AgO) as a super high charge/discharge rate cathode material for rechargeable alkaline batteries. Journal of Materials Chemistry, 2007, 17, 4820.	6.7	49
370	Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation. Ultrasonics Sonochemistry, 2007, 14, 761-766.	8.2	139
371	Removal of phenols from water environment by activated carbon, bagasse ash and wood charcoal. Chemical Engineering Journal, 2007, 129, 133-142.	12.7	191
372	Pilot plant evaluation of PFS from coal-fired power plant waste. Chemical Engineering and Processing: Process Intensification, 2007, 46, 257-261.	3.6	10
373	Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents. Chemical Engineering and Processing: Process Intensification, 2007, 46, 1030-1039.	3.6	164
374	A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. Journal of Hazardous Materials, 2007, 148, 172-177.	12.4	230
375	Adsorbents for capturing mercury in coal-fired boiler flue gas. Journal of Hazardous Materials, 2007, 146, 1-11.	12.4	322
376	Application of nanotechnologies in separation and purification. Separation and Purification Technology, 2007, 58, 1-1.	7.9	5
377	Nano- and micro-iron oxide catalysts for controlling the emission of carbon monoxide and methane. Separation and Purification Technology, 2007, 58, 40-48.	7.9	30
378	Oxidation of As(III) by potassium permanganate. Journal of Environmental Sciences, 2007, 19, 783-786.	6.1	58

#	Article	IF	CITATIONS
379	Effect of competing solutes on arsenic(V) adsorption using iron and aluminum oxides. Journal of Environmental Sciences, 2007, 19, 910-919.	6.1	143
380	Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery. Chemosphere, 2006, 65, 1182-1187.	8.2	68
381	Spectroscopic ellipsometry study of FePt nanoparticle films. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3801-3804.	1.8	3
382	Biohydrogen-production from beer lees biomass by cow dung compost. Biomass and Bioenergy, 2006, 30, 493-496.	5.7	125
383	Thermoanalytical studies of byproduct streams from dry-mill ethanol production. Chemical Engineering and Processing: Process Intensification, 2006, 45, 618-623.	3.6	0
384	Synthesis, Properties, and Environmental Applications of Nanoscale Iron-Based Materials: A Review. Critical Reviews in Environmental Science and Technology, 2006, 36, 405-431.	12.8	393
385	Kinetic Fluorimetric Measurement of Trace Resorcinol1 in Phenol Mixtures. Journal of Fluorescence, 2006, 17, 113-118.	2.5	11
386	SYNTHESIS, PROPERTIES AND ENVIRONMENTAL APPLICATIONS OF NANOSCALE IRON-BASED MATERIALS: A REVIEW. Comments on Inorganic Chemistry, 2006, 27, 1-32.	5.2	6
387	The recovery of acetic acid with sulfur dioxide. Biochemical Engineering Journal, 2005, 22, 207-210.	3.6	7
388	Pilot-scale tests of poly ferric sulfate synthesized using SO2 at Des Moines Water Works. Chemical Engineering and Processing: Process Intensification, 2005, 44, 413-419.	3.6	11
389	Production of a complex coagulant from fly ash. Chemical Engineering Journal, 2005, 106, 269-277.	12.7	38
390	The extraction of lactic acid with sulfur dioxide. Biochemical Engineering Journal, 2005, 24, 157-160.	3.6	6
391	Adsorption of arsenic(V) by activated carbon prepared from oat hulls. Chemosphere, 2005, 61, 478-483.	8.2	165
392	Absorption of dilute SO2 gas stream with conversion to polymeric ferric sulfate for use in water treatment. Chemical Engineering Journal, 2004, 98, 265-273.	12.7	17
393	Optical properties of monodispersive FePt nanoparticle films. Physica Status Solidi A, 2004, 201, 3031-3036.	1.7	5
394	Comparison of corrosivity of polymeric sulfate ferric and ferric chloride as coagulants in water treatment. Chemical Engineering and Processing: Process Intensification, 2004, 43, 955-964.	3.6	37
395	A novel Hg control technology derived from quantum chemistry. Chemical Engineering Journal, 2004, 104, 93-95.	12.7	0
396	Preparation of activated carbon from forest and agricultural residues through CO activation. Chemical Engineering Journal, 2004, 105, 53-59.	12.7	347

#	Article	IF	CITATIONS
397	Steam activation of chars produced from oat hulls and corn stover. Bioresource Technology, 2004, 93, 103-107.	9.6	120
398	Photoacoustic measurement of iron in composite coagulant. Chemical Engineering and Processing: Process Intensification, 2003, 42, 553-559.	3.6	4
399	The kinetics of producing sulfate-based complex coagulant from fly ash. Chemical Engineering and Processing: Process Intensification, 2003, 42, 1019-1025.	3.6	13
400	Reaction Kinetics for a Novel Flue Gas Cleaning Technology. Environmental Science & Technology, 2003, 37, 1404-1407.	10.0	17
401	Comparisons of Polymeric and Conventional Coagulants in Arsenic(V) Removal. Water Environment Research, 2003, 75, 308-313.	2.7	37
402	Relationships among loss-on-ignition and unburned carbons, and the FTIR photoacoustic spectra of fly ashes. International Journal of Environment and Pollution, 2003, 19, 301.	0.2	1
403	Evaluation of producing fuel and chemicals from corn stover pre-treated with flue gas. International Journal of Environmental Technology and Management, 2003, 3, 290.	0.2	1
404	Preliminary studies of the oxidation of arsenic(III) by potassium ferrate. International Journal of Environment and Pollution, 2002, 18, 91.	0.2	29
405	Synthesis, Characterization, and Coagulation of Polymeric Ferric Sulfate. Journal of Environmental Engineering, ASCE, 2002, 128, 483-490.	1.4	40
406	A process for synthesising polymeric ferric sulphate using sulphur dioxide from coal combustion. International Journal of Environment and Pollution, 2002, 17, 102.	0.2	10
407	A process for synthesising polymeric ferric sulphate using sulphur dioxide from coal combustion. International Journal of Environmental Technology and Management, 2002, 2, 393.	0.2	2
408	Comparison of the Loss-on-Ignition and Thermogravimetric Analysis Techniques in Measuring Unburned Carbon in Coal Fly Ash. Energy & Fuels, 2001, 15, 1414-1417.	5.1	84
409	Toxicity evaluation of polymeric ferric sulphate. International Journal of Environmental Technology and Management, 2001, 1, 464.	0.2	18
410	Precision and accuracy of photoacoustic measurements of unburned carbon in fly ash. Fuel, 2001, 80, 1545-1554.	6.4	24