List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7818812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The rejection of synthetic pesticides in organic farming has multiple benefits. Trends in Ecology and Evolution, 2022, 37, 113-114.	8.7	14
2	Pesticide exposure affects reproductive capacity of common toads (Bufo bufo) in a viticultural landscape. Ecotoxicology, 2021, 30, 213-223.	2.4	19
3	Indirect herbicide effects on biodiversity, ecosystem functions, and interactions with global changes. , 2021, , 231-272.		9
4	Bottomâ€up effects of fungicides on tadpoles of the European common frog (<i>Rana temporaria</i>). Ecology and Evolution, 2021, 11, 4353-4365.	1.9	3
5	Dermal Fungicide Exposure at Realistic Field Rates Induces Lethal and Sublethal Effects on Juvenile European Common Frogs (<i>Rana temporaria</i>). Environmental Toxicology and Chemistry, 2021, 40, 1289-1297.	4.3	9
6	Interspecific sensitivity of European amphibians towards two pesticides and comparison to standard test species. Environmental Sciences Europe, 2021, 33, .	5.5	9
7	Diversity of Insects in Nature protected Areas (DINA): an interdisciplinary German research project. Biodiversity and Conservation, 2021, 30, 2605-2614.	2.6	15
8	Biodiversity in European agricultural landscapes: transformative societal changes needed. Trends in Ecology and Evolution, 2021, 36, 1067-1070.	8.7	29
9	Co-formulants and adjuvants affect the acute aquatic and terrestrial toxicity of a cycloxydim herbicide formulation to European common frogs (Rana temporaria). Science of the Total Environment, 2021, 789, 147865.	8.0	6
10	Direct herbicide effects on terrestrial nontarget organisms belowground and aboveground. , 2021, , 181-229.		5
11	Direct pesticide exposure of insects in nature conservation areas in Germany. Scientific Reports, 2021, 11, 24144.	3.3	63
12	Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp. israelensis (Bti). Science of the Total Environment, 2020, 724, 137800.	8.0	62
13	Avoidance behavior of juvenile common toads (Bufo bufo) in response to surface contamination by different pesticides. PLoS ONE, 2020, 15, e0242720.	2.5	7
14	Fungicide Exposure Induces Sensitivity Differences in Aquatic Life Stages of European Common Frogs (Rana temporaria). Journal of Herpetology, 2020, 54, .	0.5	5
15	ls Osmia bicornis an adequate regulatory surrogate? Comparing its acute contact sensitivity to Apis mellifera. PLoS ONE, 2019, 14, e0201081.	2.5	18
16	The Impact of Pesticides on Flowerâ€Visiting Insects: A Review with Regard to European Risk Assessment. Environmental Toxicology and Chemistry, 2019, 38, 2355-2370.	4.3	58
17	Biodiversity Decline as a Consequence of an Inappropriate Environmental Risk Assessment of Pesticides. Frontiers in Environmental Science, 2019, 7, .	3.3	184
18	Mosquito control actions affect chironomid diversity in temporary wetlands of the Upper Rhine Valley. Molecular Ecology, 2019, 28, 4300-4316.	3.9	10

#	Article	IF	CITATIONS
19	Mosquito control based on Bacillus thuringiensis israelensis (Bti) interrupts artificial wetland food chains. Science of the Total Environment, 2019, 686, 1173-1184.	8.0	24
20	Fungicides: An Overlooked Pesticide Class?. Environmental Science & Technology, 2019, 53, 3347-3365.	10.0	374
21	Adverse effects of mosquito control using Bacillus thuringiensis var. israelensis: Reduced chironomid abundances in mesocosm, semi-field and field studies. Ecotoxicology and Environmental Safety, 2019, 169, 786-796.	6.0	36
22	European common frog Rana temporaria (Anura: Ranidae) larvae show subcellular responses under field-relevant Bacillus thuringiensis var. israelensis (Bti) exposure levels. Environmental Research, 2018, 162, 271-279.	7.5	14
23	How Does Changing Pesticide Usage Over Time Affect Migrating Amphibians: A Case Study on the Use of Glyphosate-Based Herbicides in German Agriculture Over 20 Years. Frontiers in Environmental Science, 2018, 6, .	3.3	20
24	Decreasing Bacillus thuringiensis israelensis sensitivity of Chironomus riparius larvae with age indicates potential environmental risk for mosquito control. Scientific Reports, 2017, 7, 13565.	3.3	30
25	Biological relevance of the magnitude of effects (considering mortality, subâ€lethal and reproductive) Tj ETQq1 amphibians and reptiles. EFSA Supporting Publications, 2017, 14, 1251E.	l 0.784314 0.7	4 rgBT /Overl 6
26	Nocturnal Risks-High Bat Activity in the Agricultural Landscape Indicates Potential Pesticide Exposure. Frontiers in Environmental Science, 2017, 5, .	3.3	24
27	Amphibian population genetics in agricultural landscapes: does viniculture drive the population structuring of the European common frog (<i>Rana temporaria</i>)?. PeerJ, 2017, 5, e3520.	2.0	24
28	Amphibians and plant-protection products: what research and action is needed?. Environmental Sciences Europe, 2016, 28, 17.	5.5	9
29	Interspecific sensitivity of bees towards dimethoate and implications for environmental risk assessment. Scientific Reports, 2016, 6, 34439.	3.3	35
30	The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod-Plant Interactions, 2016, 10, 21-28.	1.1	76
31	Non-target effects of a glyphosate-based herbicide on Common toad larvae (<i>Bufo bufo</i> ,) Tj ETQq1 1 0.784	1314 rgBT 2.0	Oyerlock 10
32	Assessing the Risk of Herbicides to Terrestrial Non-Target Plants Using Higher-Tier Studies. Human and Ecological Risk Assessment (HERA), 2015, 21, 2137-2154.	3.4	7
33	Temporal coincidence of amphibian migration and pesticide applications on arable fields in spring. Basic and Applied Ecology, 2015, 16, 54-63.	2.7	43
34	The effects of agrochemicals on Lepidoptera, with a focus on moths, and their pollination service in field margin habitats. Agriculture, Ecosystems and Environment, 2015, 207, 153-162.	5.3	40
35	Review on environmental alterations propagating from aquatic to terrestrial ecosystems. Science of the Total Environment, 2015, 538, 246-261.	8.0	88
36	Effects of herbicideâ€treated host plants on the development of <i>Mamestra brassicae</i> L. caterpillars. Environmental Toxicology and Chemistry, 2014, 33, 2633-2638.	4.3	14

#	Article	IF	CITATIONS
37	Characterization of field margins in intensified agroâ€ecosystems—why narrow margins should matter in terrestrial pesticide risk assessment and management. Integrated Environmental Assessment and Management, 2014, 10, 456-462.	2.9	13
38	Agrochemicals in field margins—Field evaluation of plant reproduction effects. Agriculture, Ecosystems and Environment, 2014, 189, 82-91.	5.3	38
39	Agrochemicals in field margins – An experimental field study to assess the impacts of pesticides and fertilizers on a natural plant community. Agriculture, Ecosystems and Environment, 2014, 193, 60-69.	5.3	55
40	Evaluating the risk of pesticide exposure for amphibian species listed in Annex II of the European Union Habitats Directive. Biological Conservation, 2014, 176, 64-70.	4.1	21
41	Terrestrial pesticide exposure of amphibians: An underestimated cause of global decline?. Scientific Reports, 2013, 3, 1135.	3.3	210
42	An expert-based landscape permeability model for assessing the impact of agricultural management on amphibian migration. Basic and Applied Ecology, 2013, 14, 442-451.	2.7	20
43	AGROCHEMICALS IN FIELD MARGINS—ASSESSING THE IMPACTS OF HERBICIDES, INSECTICIDES, AND FERTILIZER ON THE COMMON BUTTERCUP (<i>RANUNCULUS ACRIS</i>). Environmental Toxicology and Chemistry, 2013, 32, 1124-1131.	4.3	35
44	Averting biodiversity collapse in tropical forest protected areas. Nature, 2012, 489, 290-294.	27.8	909
45	16th SETAC GLB (Society of Environmental Toxicology and Chemistry German LanguageBranch) Annual meeting held under the main theme "EcoTOXICOlogy andEnvironmental CHEMISTRY: crossing borders― from 18th to 20th September2011 at Landau. Environmental Sciences Europe, 2012, 24, .	5.5	0
46	Bats at risk? Bat activity and insecticide residue analysis of food items in an apple orchard. Environmental Toxicology and Chemistry, 2012, 31, 1556-1563.	4.3	36
47	Constructed wetlands support bats in agricultural landscapes. Basic and Applied Ecology, 2012, 13, 196-203.	2.7	57
48	Bats as bioindicators – the need of a standardized method for acoustic bat activity surveys. Methods in Ecology and Evolution, 2012, 3, 503-508.	5.2	58
49	Global warming, elevational ranges and the vulnerability of tropical biota. Biological Conservation, 2011, 144, 548-557.	4.1	185
50	Global diversity in light of climate change: the case of ants. Diversity and Distributions, 2011, 17, 652-662.	4.1	87
51	Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides. Environmental Toxicology and Chemistry, 2011, 30, 2465-2472.	4.3	107
52	Fuelling the biodiversity crisis: species loss of ground-dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo). Biodiversity and Conservation, 2010, 19, 519-529.	2.6	104
53	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333.	6.4	233
54	Biofuel Plantations on Forested Lands: Double Jeopardy for Biodiversity and Climate. Conservation Biology, 2009, 23, 348-358.	4.7	445

#	Article	IF	CITATIONS
55	Fuelling the biodiversity crisis: species loss of ground-dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo). Topics in Biodiversity and Conservation, 2009, , 207-217.	1.0	1
56	How will oil palm expansion affect biodiversity?. Trends in Ecology and Evolution, 2008, 23, 538-545.	8.7	1,052
57	Influence of Habitat Fragmentation on the Genetic Variability in Leaf Litter Ant Populations in Tropical Rainforests of Sabah, Borneo. Biodiversity and Conservation, 2006, 15, 157-175.	2.6	26
58	Influence of habitat fragmentation on the genetic variability in leaf litter ant populations in tropical rainforests of Sabah, Borneo. , 2006, , 143-161.		1
59	Title is missing!. Biodiversity and Conservation, 2003, 12, 1371-1389.	2.6	94
60	Nesting and nest trees of stingless bees (Apidae: Meliponini) in lowland dipterocarp forests in Sabah, Malaysia, with implications for forest management. Forest Ecology and Management, 2003, 172, 301-313.	3.2	86
61	Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia. Oecologia, 2002, 131, 27-34.	2.0	95
62	Altitudinal distribution of leaf litter ants along a transect in primary forests on Mount Kinabalu, Sabah, Malaysia. Journal of Tropical Ecology, 1999, 15, 265-277.	1.1	143
63	Stratification of ants (Hymenoptera, Formicidae) in a primary rain forest in Sabah, Borneo. Journal of Tropical Ecology, 1998, 14, 285-297.	1.1	135